

ISSN: 0067-2904

\mathcal{R}_{as} -Projective Modules

Sarah Sh Hasan 1*, Alaa A. Elewi 2

¹Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq ²Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 4/9/2023 Accepted: 8/8/2024 Published: 30/8/2025

Abstract

A submodule A of an \mathcal{R} -module M is \mathcal{R} -Annihilator-small submodule $(\mathcal{R}_{as}-submodule)$ if whenever $A+A_1=M$, A_1 is a faithful submodule of M, implies that $Ann(A_1)=0$. In this paper, we introduce the notation of \mathcal{R}_{as} -projective as a generalization of projective modules. Also, we define and present some properties of \mathcal{R}_{as} -epimorphism.

Keywords: Projective modules, \mathcal{R}_{as} – submodules, \mathcal{R}_{as} –epimorphisim, \mathcal{R}_{as} –projective modules.

\mathcal{R} المقاسات التالفة الصغيرة الاسقاطية من النمط

2 سارة شاكر حسن 1 , ألاء عباس عليوي

¹ قسم الرياضيات، كلية التربية، الجامعة المستنصرية، بغداد، العراق ² قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

المقاس الجزئي A من المقاس M على الحلقة \mathcal{R} هو مقاس تالف صغير من النمط \mathcal{R} اذا متى ماكان A البحث، $A+A_1=M$ مقاس جزئي تالف من A يقود الى A على البحث، $A+A_1=M$ قدمنا مفهوم المقاسات التالفة الصغيرة الاسقاطية من النمط A كتعميم للمقاسات الاسقاطية. وكذلك، عرفنا وعرضنا بعض خواص التماثل الشامل الصغير التالف من النمط A.

1. Introduction

In the present paper, the ring \mathcal{R} is associative with identity and every \mathcal{R} —module is left and unitary. A submodule A of an \mathcal{R} —module M is small submodule (denoted by $A \ll M$) if whenever $A + A_1 = M$, implies that $A_1 = M$, where $A_1 \subseteq M$ [1-5]. Let \mathcal{R} be an integral domain, a module M is called a torsion-free \mathcal{R} —module if Ann(x) = 0, for every non-zero element x in M [6-8]. An \mathcal{R} —module M is called faithful if Ann(M) = 0 [9-10]. A submodule A of an \mathcal{R} — module M is \mathcal{R} —Annihilator—small submodule $(\mathcal{R}_{as}$ —submodule and denoted by $A \ll^a M$) if whenever $A + A_1 = M$, A_1 is a faithful submodule of M, subsequently $Ann(A_1) = 0$, where $Ann(A_1) = \{r \in \mathcal{R} : r, A_1 = 0\}$ [11],

* Email: sarahshh 87@uomustansiriyah.edu.iq

[12]. An \mathcal{R} -module M is an \mathcal{R} -Annihilator -hollow module (\mathcal{R}_{as} -hollow) if every proper submodule of M is an \mathcal{R}_{as} -submodule in M [13]. An \mathcal{R} -module P is projective, if for any $f \in Hom(P,B)$ and any epimorphism $g:A \to B$, there exists $f_1 \in Hom(P,A)$ such that $gof_1 = f$ [14-16]. An \mathcal{R} -module P is called small projective module, if for any epimorphism $g:A \to B$ with $ker(g) \ll A$ then goHom(P,A) = Hom(P,B) [17]. Let P be a projective module and $f:P \to M$ be an epimorphism with $ker(f) \ll P$, then a pair (P,f) is a projective cover of M [18], [19]. A ring \mathcal{R} is right-perfect if every right \mathcal{R} -module have a projective cover [18]. An epimorphism $f:A \to B$ is called split if there exists a homomorphism $f_1:B \to A$ with $fof_1 = I_B$ [20]. In this paper the \mathcal{R}_{as} -Projective modules and \mathcal{R}_{as} -epimorphism are studied and their properties are obtained.

2. \mathcal{R}_{as} -epimorphism

Definition 2.1:

For any \mathcal{R} —modules A and B. An epimorphism $g: A \to B$ is an \mathcal{R}_{as} — epimorphism as long as ker(g) is an \mathcal{R}_{as} —submodule of A.

Example 2.2:

Consider the module Z as Z—module. Let $\pi: Z \to \frac{Z}{nZ}$ be the natural epimorphism. To show that $ker(\pi) = nZ \ll^a Z$, let Z = nZ + mZ, where $Ann(mZ) = \{r \in Z; r.mZ = 0\} = 0$, hence mZ is a faithful submodule of Z. Thus, $ker \pi$ is Z_{as} —submodule of Z. Thus π is an Z_{as} —epimorphism.

Proposition 2.3:

Let M, M' and M'' be \mathcal{R} —modules. If $f: M \to M'$ and $g: M' \to M''$ are two epimorphisms, then:

- 1. If $g \circ f$ is an \mathcal{R}_{as} epimorphism, then f is an \mathcal{R}_{as} –epimorphism.
- 2. If g is an \mathcal{R}_{as} epimorphism, then $g \circ f$ is an \mathcal{R}_{as} –epimorphism.

Proof:

- 1. Let $g \circ f$ be an \mathcal{R}_{as} epimorphism and suppose that M = K + ker(f), where $K \subseteq M$. We claim that $M = K + ker(g \circ f)$. Clearly, $ker(g \circ f) + K \subseteq M$, so it is enough to show that $M \subseteq ker(g \circ f) + K$. Let $x \in M$ then $f(x) \in M'$ and $g(f(x)) \in M''$, but M = ker(f) + K, then x = a + b; where a belongs to ker(f) and b belongs to K, then f(x) = f(b), hence g(f(x)) = g(f(b)) and $M = K + ker(g \circ f)$. But $ker(g \circ f) \ll^a M$, therefore K is faithful submodule of M. Thus, ker(f) is an \mathcal{R}_{as} –epimorphisim.
- 2. Let g be \mathcal{R}_{as} epimorphism and suppose that $M = K + ker(g \circ f)$, where $K \subseteq M$. Claim that M' = ker(g) + f(K). It is clear that $ker(g) + f(K) \subseteq M'$. Now, let $y \in M'$, then $f^{-1}(y) \in M$, so $f^{-1}(y) = a + b$, where a belongs to $ker(g \circ f)$ and b belongs to K. As $y = f \circ f^{-1}(y) = f(a) + f(b)$, where $f(a) \in ker(g)$ and $f(b) \in f(K)$. Hence, M' = f(K) + ker(g). But $ker(g) \ll^a M'$, then $ker(g \circ f) = (f^{-1}(ker(g)) \ll^a M)$ by [11, Proposition 2.1.5], and hence K is faithful submodule of M. Thus, $ker(g \circ f)$ is an \mathcal{R}_{as} –epimorphisim.

Corollary 2.4:

Every split \mathcal{R}_{as} –epimorphism is an isomorphism.

Proof:

Let $f: M \to N$ be an \mathcal{R}_{as} -epimorphisim which is splits. To prove f is an isomorphism, it is enough to show that ker(f) = 0. Let $x \in ker(f)$, so f(x) = 0. Now, since f is splits so there exists $f_1: N \to M$ such that $f_1 \circ f = I_M$. Thus, $f_1 \circ f(x) = f_1(f(x)) = f_1(0) = 0$, and so x = 0. Hence, ker(f) = 0.

Proposition 2.5:

Consider the following commutative diagram of modules A_1 , B_1 , C_1 and A_2 , B_2 , C_2 :

$$0 \to A_1 \stackrel{f_1}{\to} B_1 \stackrel{g_1}{\to} C_1 \to 0$$

$$\alpha \qquad \beta \qquad \gamma$$

$$0 \to A_2 \stackrel{f_2}{\to} B_2 \stackrel{g_2}{\to} C_2 \to 0$$

With both rows are exact then:

- 1. If α, β are epimorphisms and g_2 is an \mathcal{R}_{as} -epimorphism, then g_1 is an \mathcal{R}_{as} -epimorphism.
- 2. If β is an epimorphism, γ is monomorphism and g_2 is an \mathcal{R}_{as} -epimorphism, then g_1 an \mathcal{R}_{as} -epimorphism.

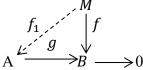
Proof:

- 1. Let $B_1 = ker(g_1) + D$, where D is a submodule of B_1 . Since the diagram is commute, then $f_2 \circ \alpha(A_1) = \beta \circ f_1(A_1)$. But α is onto, then $f_2(A_2) = \beta(ker(g_1))$. Also, the sequences are exact, hence $ker(g_2) = \beta(ker(g_1))$ and $\beta^{-1}(ker(g_2)) = ker(g_1)$. Since g_2 is an \mathcal{R}_{as} -epimorphisim and by [11, Proposition 2.1.5], we get $ker(g_1) = \beta^{-1}(ker(g_2)) \ll^a B_1$ and hence g_1 is an \mathcal{R}_{as} -epimorphisim.
- 2. Since the diagram is commute, then $\gamma \circ g_1 = g_2 \circ \beta$. But γ is monomorphism, so $\beta^{-1}(ker(g_2)) = ker(g_1)$. Since $ker(g_2) \ll^a B_1$ (g_2 is an \mathcal{R}_{as} -epimorphism), then $ker(g_1) \ll^a B_1$ by [11, Proposition 2.1.5]. Therefore, g_1 is an \mathcal{R}_{as} -epimorphism.

3. \mathcal{R}_{as} -Projective Modules

Definition 3.1:

If the following diagram is commute:

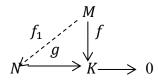


Where g is \mathcal{R}_{as} -epimorphism (i.e., $ker(g) \ll^a A$) and f is any homomorphism. Then an \mathcal{R} - module M is called an \mathcal{R}_{as} -projective.

NOTE: Obviously that every projective module is an \mathcal{R}_{as} -projective.

Remarks 3.2:

Let M, N and K be \mathcal{R} —modules and consider the following diagram:



Then:

- 1. If N is projective (free), then M is projective if and only if it is an \mathcal{R}_{as} -projective by [11, Proposition 2.1.12].
- 2. If N is faithful, then every small projective module M is an \mathcal{R}_{as} -projective by [11, Proposition 2.1.10].
- 3. Let N be a torsion-free with \mathcal{R} is an integral domain. Therefore, M is projective if and only if it is an \mathcal{R}_{as} -projective by [11, Proposition 2.1.11].
- 4. Let N be a faithful with $ker(g) \ll^e \mathcal{R}$. So, M is projective if and only if it is \mathcal{R}_{as} -projective, by [11, Proposition 2.1.13].

- 5. If M is an \mathcal{R}_{as} -projective, then N is a faithful by [11, Proposition 2.1.14].
- 6. Let N be a faithful and R is an integral domain with $Ann(ker(g)) \neq 0$. Then M is projective if and only if it is \mathcal{R}_{as} -projective by [11, Proposition 2.1.15].
- 7. Let N be a faithful and torsion-free and let \mathcal{R} be an integral domain such that ker(g) is finitely-generated submodule of N. So M is projective if and only if it is an \mathcal{R}_{as} -projective by [11, Proposition 2.1.16].
- 8. Let N be an \mathcal{R}_{as} -hollow module. Then M is projective if and only if M is an \mathcal{R}_{as} -projective.

Proposition 3.3:

Let M be an \mathcal{R} —module, then the statements below are equivalent:

- 1. M is \mathcal{R}_{as} -projective;
- 2. For each \mathcal{R}_{as} -epimorphism $g: N \to K$ the homomorphism $Hom(I,g): Hom(M,N) \to Hom(M,K)$ is an epimorphism;
- 3. For any \mathcal{R}_{as} -epimorphism $g: N \to K$, $Hom(M, K) = g \circ Hom(M, N)$.

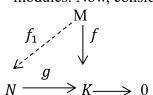
Proof:

 $(1 \Longrightarrow 2)$ Let $g: N \to K$ be an \mathcal{R}_{as} -epimorphism and $f \in Hom(M,K)$. Since M is an \mathcal{R}_{as} -projective, consequently there exists $f_1 \in Hom(M,N)$ such that $g \circ f_1 = f$. So, $Hom(I,g) \circ f_1 = g \circ f_1 = f$.

$$\begin{array}{ccc}
f_1 & & M \\
f & & \downarrow f \\
N & \xrightarrow{g} K \longrightarrow 0
\end{array}$$

 $(2 \Rightarrow 3)$ Let $g: N \to K$ be an \mathcal{R}_{as} -epimorphism. Form (2) we get $Hom(I,g): Hom(M,N) \to Hom(M,K)$ is an epimorphism. To show that $Hom(M,K) = g \circ Hom(M,N)$. It is enough to show that $Hom(M,K) \subseteq g \circ Hom(M,N)$, since it is clear that $g \circ Hom(M,N) \subseteq Hom(M,K)$. Now, let $f \in Hom(M,K)$, then there exists $f_1 \in Hom(M,N)$ such that $Hom(I,g) \circ f_1 = f$. Hence, $f \in g \circ Hom(M,N)$. Thus $Hom(M,K) \subseteq g \circ Hom(M,N)$.

 $(3 \Rightarrow 1)$ Let N and K are any \mathcal{R} – modules. Now, consider the following diagram:



Where g is \mathcal{R}_{as} -epimorphisim (i.e., $ker(g) \ll^a N$) and f is any homomorphism. From (3), we get $Hom(M,K) = g \circ Hom(M,N)$ and since $f \in Hom(M,K)$, so there exists $f_1 \in Hom(M,N)$ such that $g \circ f_1 = f$. Therefore, M is an \mathcal{R}_{as} -projective.

Proposition 3.4:

Let M be a projective \mathcal{R} — module and let \mathcal{R} be an integral domain. Consequently, every epimorphism $f: M \to N$ is an \mathcal{R} as —epimorphism.

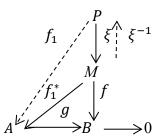
Proof: Let $f: M \to N$ be an epimorphism. Since every proper submodule of projective \mathcal{R} — module M is an \mathcal{R}_{as} —submodule by [11, Proposition 2.1.12]. So, $ker(f) \ll^a M$. Thus f is an \mathcal{R}_{as} —epimorphism.

Remark 3.5:

Let M be an \mathcal{R} – module and let P be an \mathcal{R}_{as} –projective such that $P \simeq M$. Then M is an \mathcal{R}_{as} –projective.

Proof:

Consider the following diagram:



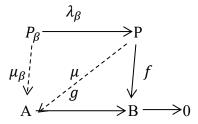
Where $\xi\colon P\to M$ is an isomorphism, f is any homomorphism and g is an \mathcal{R}_{as} -epimorphism. Since P is an \mathcal{R}_{as} -projective, then there exists a homomorphism $f_1\colon P\to A$ such that $g\circ f_1=f\circ \xi$. Define $\xi^{-1}\colon M\to P$ be a homomorphism such that $\xi\circ \xi^{-1}=I_M$ and $f_1^*\colon M\to A$ by $f_1^*=f_1\circ \xi^{-1}$. Now, to show that $g\circ f_1^*=f$. Since $g\circ f_1=f\circ \xi$, then $g\circ f_1^*=g\circ (f_1\circ \xi^{-1})=(f\circ \xi)\circ \xi^{-1}=f\circ I_M=f$.

Proposition 3.6:

Let $P = \bigoplus_{\beta \in J} P_{\beta}$. Then P_{β} is an \mathcal{R}_{as} -projective for all β belongs to J if and only if P is an \mathcal{R}_{as} -projective.

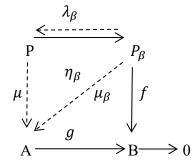
Proof:

Suppose that P_{β} is an \mathcal{R}_{as} -projective for all $\beta \in J$. Consider the following diagram:



Where $g: A \to B$ is an \mathcal{R}_{as} -epimorphism (i.e., $ker(g) \ll^a A$), $f: P \to B$ is any homomorphism and $\lambda_\beta \colon P_\beta \to P$ be the injection homomorphism. Since P_β is an \mathcal{R}_{as} -projective for all $\beta \in J$, so there exists a homomorphism $\mu_\beta \colon P_\beta \to A$ such that $g \circ \mu_\beta = f \circ \lambda_\beta$ for all $\beta \in J$. Define $\mu \colon P \to A$ such that $\mu_\beta = \mu \circ \lambda_\beta$. It enough to show that $g \circ \mu = f$. Since $f \circ \lambda_\beta = g \circ \mu_\beta$ and so $\mu_\beta = \mu \circ \lambda_\beta$. Consequently, $f \circ \lambda_\beta = g \circ \mu \circ \lambda_\beta$. So, we get by [2, Remark 4.1.4] $g \circ \mu = f$. As a result, $P = \bigoplus_{\beta \in J} P_\beta$ is an \mathcal{R}_{as} -projective.

Conversely, assume that $P = \bigoplus_{\beta \in J} P_{\beta}$ is an \mathcal{R}_{as} -projective module and let $\beta \in J$. Consider the following diagram:



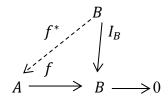
Where $g: A \to B$ is an \mathcal{R}_{as} -epimorphism (i.e $ker(g) \ll^a A$), $f: P_\beta \to B$ is any homomorphism, $\eta_\beta: P \to P_\beta$ is the projection homomorphism and the injection homomorphism $\lambda_\beta: P_\beta \to P$. Since P is \mathcal{R}_{as} -projective, so there exists $\mu \in Hom(P,A)$ such that $g \circ \mu = f \circ \eta_\beta$. Define $\mu_\beta: P_\beta \to A$ by $\mu_\beta = \mu \circ \lambda_\beta$. Now, $g \circ \mu_\beta = g \circ (\mu \circ \lambda_\beta) = (f \circ \eta_\beta) \circ \lambda_\beta = f \circ I_{P_\beta} = f$. Thus P_β is an \mathcal{R}_{as} -projective for all β belongs to J.

Proposition 3.7:

Let A be an \mathcal{R}_{as} -projective module and $f: A \to B$ be an R_{as} -epimorphism. Then f is splits if and only if $A \oplus B$ is an \mathcal{R}_{as} -projective.

Proof:

- \Rightarrow) Let f be a split \mathcal{R}_{as} -epimorphism, then f is an isomorphism by Corollary 2.4 and so B is an \mathcal{R}_{as} -projective by Remark 3.5. Consequently, $A \oplus B$ is an \mathcal{R}_{as} -projective by Proposition 3.6.
- \Leftarrow) Suppose that $A \oplus B$ is an \mathcal{R}_{as} -projective, then B is an \mathcal{R}_{as} -projective by Proposition 3.6. Now, consider the following diagram:



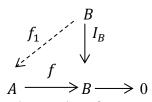
Since $f: A \to B$ is an \mathcal{R}_{as} -epimorphism and B is an \mathcal{R}_{as} -projective, so there exists $f^*: B \to A$ such that $f \circ f^* = I_B$. Thus f is split.

Remark 3.8:

Every \mathcal{R}_{as} -epimorphism $f: A \to B$ where B is an \mathcal{R}_{as} -projective is splits.

Proof:

Let $f: A \to B$ be an \mathcal{R}_{as} -epimorphism where $ker(f) \ll^a A$. Consider the following diagram:



Since B is an \mathcal{R}_{as} -projective, then there exists $f_1: B \to A$ such that $f \circ f_1 = I_B$. As a result, by [2, Lemma 3.9.3] the sequence

$$0 \longrightarrow ker(f) \xrightarrow{i} A \xrightarrow{f} B \longrightarrow 0$$

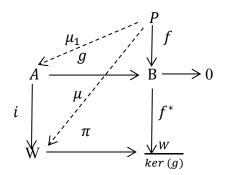
is splits. Where $i: ker(f) \rightarrow A$ is the inclusion homomorphism.

Proposition 3.9:

Let P be an \mathcal{R} —module. Then P is an \mathcal{R}_{as} —projective if and only if for every \mathcal{R}_{as} —epimorphism $g: A \to B$ where A is an injective module and every $f \in Hom(P,B)$, there exists $\mu \in Hom(P,A)$ such that $g \circ \mu = f$.

Proof:

- \implies) Clear.
- \iff Let $g: A \to B$ be any \mathcal{R}_{as} -epimorphism (i.e., $ker(g) \ll^a A$), for any modules A, B and let $f \in Hom(P, B)$. Consider the below diagram:



Where $i: A \to W$ is the inclusion homomorphism with W is injective module (every module can be embedded in W by [2, Corollary 5.5.5]), and let $\pi: W \to \frac{W}{ker(g)}$ be the nature epimorphism. Now, define $f^*: B \to \frac{W}{ker(g)}$ by $f^*(b) = a + ker(g)$ for all $b \in B$, where g(a) = b. Let $b_1, b \in B$ such that g(a) = b and $g(a_1) = b_1$. If $b = b_1$ we obtain $g(a) = g(a_1)$ which implies $a - a_1 \in ker(g)$ and so $a + ker(g) = a_1 + ker(g)$. Hence, f^* is a well define homomorphism.

According to the assumption, there exists $\mu \in Hom(P,W)$ such that $\pi \circ \mu = f^* \circ f$. Claim that $\mu(P) \subseteq A$. To show that, let $s \in \mu(P)$, then there exists $t \in P$ such that $s = \mu(t)$. Now, $\pi \circ \mu(t) = f^* \circ f(t)$ where f(t) = g(a). Means that $\mu(t) - a \in ker(g)$ and hence $\mu(t) \in A$. Define $\mu_1 : P \to A$ by $\mu_1(p) = \mu(p)$, for all p belongs to P. Now, $f^* \circ f = \pi \circ \mu = \pi \circ i \circ \mu_1 = f^* \circ g \circ \mu_1$. It enough to show that f^* is monomorphism. Let $f^*(b) = f^*(b^*)$, where $b^*, b \in B$. So, $a + ker(g) = a^* + ker(g)$ where g(a) = b and $g(a^*) = b^*$. Thus $a - a^* \in ker(g)$ this implies that $g(a^*) = g(a)$ and so $b^* = b$ therefore, f^* is monomorphism, so $f = g \circ \mu_1$. Hence, P is an \mathcal{R}_{as} -projective module.

Definition 3.10 [21]:

Let $f: P \to M$ be an epimorphism with $ker(f) <<^a P$ where P is a projective module. Then a pair (P, f) is a projective R - a —cover of M.

Proposition 3.11:

Let \mathcal{R} be an integral domain and P is an \mathcal{R} -module. Then every projective cover (P, f) of an \mathcal{R} -module M is a projective $\mathcal{R} - a$ -cover.

Proof:

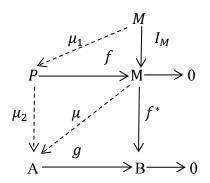
Let (P, f) be a protective cover of M where $f: P \to M$ is an epimorphism. Since P is a projective and \mathcal{R} is an integral-domain, so by Proposition 3.4 f is an \mathcal{R}_{as} -epimorphism. Thus (P, f) is a projective $\mathcal{R} - a$ -cover.

Proposition 3.12:

Let M be an \mathcal{R}_{as} -projective module. If (P, f) is a protective $\mathcal{R} - a$ -cover of M, then M is projective.

Proof:

Assume that M be an \mathcal{R}_{as} -projective and let (P, f) be a projective $\mathcal{R} - a$ -cover of M. Consider the following diagram:



Such that $g: A \to B$ is an epimorphism, $f^* \in Hom(M, B)$ and $I_M: M \to M$ is the identity. But f is an \mathcal{R}_{as} -epimorphism and M is an \mathcal{R}_{as} -projective. So, there exists $\mu_1 \in Hom(M, P)$ such that $f \circ \mu_1 = I_M$. Since P is projective, consequently, there exists $\mu_2 \in Hom(P, A)$ such that $g \circ \mu_2 = f^* \circ f$. Now, define $\mu: M \to A$ by $\mu = \mu_2 \circ \mu_1$. Finally, to show that $g \circ \mu = f^*$. Since $g \circ \mu = g \circ (\mu_2 \circ \mu_1) = (f^* \circ f) \circ \mu_1 = f^* \circ I_M = f^*$. As a result, M is a projective module.

Corollary 3.13:

Let \mathcal{R} be a right-perfect integral domain ring. Therefore, every \mathcal{R} -module is an \mathcal{R}_{as} -projective if and only if it is projective.

Proof:

- \Rightarrow) clear.
- \Leftarrow) Assume that M is an \mathcal{R}_{as} -projective \mathcal{R} -module and \mathcal{R} is a right-perfect ring and I.D.Then M have a protective cover (P, f). Consequently, by Proposition 3.11 and 3.12 we get M is a projective.

4. Conclusions:

In this work, the concepts of projective modules and epimorphism have been generalized to new concepts called \mathcal{R}_{as} -projective modules and \mathcal{R}_{as} -epimorphism respectively. Some properties of this type of module and epimorphism have been studied. Also, we see the relation between \mathcal{R}_{as} -projective, projective and small projective modules

References:

- [1] T. Inoue, "Sum of hollow modules," *Osaka Journal of Mathematics*, vol. 20, pp. 331-336, 1983.
- [2] F. Kasch, *Modules and Rings*, Academic Press Ins, London, 1982.
- [3] C. Nebiyev, H. H. Ökten. "r-Small Submodules", Conference Proceeding Science and Technology, 2020.
- [4] E. M. Kamil and W. Khalid, "On a generalization of small submodules," *Science International (Lahore)*, vol. 30, no. 3, pp. 359-365, 2018.
- [5] A. Kabban and W. Khalid, "On Jacobson-small submodules," *Iraqi Journal of science*, vol. 60, no. 7, pp. 1584-1591, 2019.
- [6] K. R. Goodearl, *Ring Theory, Non-Singular Rings and Modules*, New York: Mercel Dekker, 1976.
- [7] A. Abduljaleel, S. M. Yaseen, "On Large-Small Submodule and Large-Hollow Module," *Journal of Physics: Conference Series*, vol. 18, pp. 1-7, 2021.
- [8] M. A. Hassin, "Quasi-prime modules and Quasi-prime sub-modules," M.Sc Thesis, Univ. of Baghdad, Iraq, 1999.
- [9] G. Desale, and W. K. Nicholoson, "Endoprimitive Ring," *Journal of Algebra*, vol. 70, pp. 548-560, 1981.

- [10] Z. A. El-Bast and P.F. Smith, "Multiplication modules," *Communications in algebra*, vol. 16, pp. 755-779, 1988.
- [11] H. Al-Hurmuzy and B. Al-Bahrany, "R-Annihilator-Small Submodules," Iraq: M.Sc Thesis, Univ. of Baghdad, Iraq, 2016.
- [12] W. K. Nicholson and Y. Zhou, "Annihilator –small right ideals," *Algebra Colloquium*, vol. 18, pp. 785-800, 2011.
- [13] S. M. Yaseen, "R- annihilator-hollow and R- annihilator lifting modules," *Science International (Lahore)*, vol. 30, no. 2, pp. 204-207, 2018.
- [14] I. Kaplansk, "Projective Modules," *Annals of Mathematics*, vol. 68, no. 2, pp. 372-377, 1958.
- [15] P. Ribenboim, Rings and Modules, New York: Interscience Publishers, 1969.
- [16] J. Clark, C. Lamp, N. Vanaja and R. Wisbauer, *Lifting Modules Supplements and Projectivity in Module Theory*, Birkhäuser Basel, 2006.
- [17] A. K. Tiwary and K.N. Chaubey, "Small Projective Module," *Indian Journal of Pure and Applied Mathematics*, vol. 16, no. 2, pp. 133-138, 1985.
- [18] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, 1992
- [19] S. H. Aidi and I. M. Ali, "δ-Hollow Modules and δ-Semihollow Modules," M. Sc Thesis, Univ. of Baghdad, Iraq, 2014.
- [20] R. Wisbauer, Foundations of Modules and Rings theory, Philadelphia: Gordon and Breach, 1991.
- [21] O. K. Ibrahim and A. A. Elewi, "Hollow-R-Annihilator-Lifting Modules," Journal of Physics: Conference Series, Iraq, 2020.