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Abstract— The effectiveness and dependability of a network can be examined using graph theory techniques, and
the dependability of the network can be evaluated using its connection. Removing some vertices or edges can enhance
a network's diameter, which is a measure of its efficiency. In this paper, we calculate the maximum diameter f,,(¢tt) of
the modified graph G with n (n > 4) vertices, which resulted from removing t edges from the complete graph
K,, (n > 4) was determined using the adjacency matrix adj(K,).
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I.  INTRODUCTION

Due to its applications in a variety of mathematical and
scientific fields, including biology, engineering, and social
science, graph theory has seen a recent increase in popularity
[6]. A graph is the mathematical representation of the
network. In the majority of studies, a graph usually refers to
a mathematical model, while a network usually refers to an
actual system [2]. Graphs are well described by the concepts
of adjacency lists and adjacency matrices, which makes them
useful. Adjacency matrices are typically used to describe
networks in order to study them using graph theory. A graph
is saved on a computer as an adjacency matrix [3]. A key
idea in communication network design is fault tolerance,
which guantifies the maximum message delay that a message
can encounter while moving between any two network
vertices [4]. Communication is a key factor in network
architecture. Because of this, a robust network is difficult to
break and should continue to send and receive data even if
nodes or links fail [5]. Graphs that can endure severe shocks
when mistakes occur on the nodes or links are typically
preferred by network designers [6]. A measure of network
efficiency called diameter was used to examine the effects of
connection failures in networks. Knowing how a graph is
altered by deleting edges and vertices is helpful because a
network represented by one of these graphs may become less
effective. Adding or deleting edges can alter a graph's
diameter [7].

Several authors have looked into how a graph's width
changes when edges are removed. As an example,

The impact of decreasing and increasing edges on the
diameter of specific hypercube graphs was investigated by
Harary and Graham [8]. Bouabdallah et al. talked about
altering a hypercube graph's diameter after deleting its
maximum number of edges [9]. If D is an odd or even
(greater than 2) diameter, a lower bound for the greatest
diameter was determined by Schoone and associates and
providled by (DO-1E+D o EMD-2)+D+2
respectively. They found an upper bound for (ED + D).
They also take the entire graph complete graph (K,,) as the
particular case [10]. Najim and Jun-Ming investigated the
maximum diameter f(E, D) of the connected graph G, which
is created by removing E edges. They demonstrated that
f(EED) 2 D+(D—-1)E+1 were 7+E>D> 4+E
and E>3,D=2m+E(2m—-1) and m>=1, as well
asE =4and E = 1+ 10m [11]. Jasim and Najim were able
to determine the precise values of the maximum diameter of
a modified hypercube graph by eliminating specific edges
from it while preserving the graph's connectedness [12].

The greatest diameter of the graph GP(n,k,t) was
determined by Jasim and Najim by removing t edges from
GP(n, k) with k = 1,n = 3 (where the generalized Petersen
graph is denoted by GP(n, k)) [13]. Jasim and Najim looked
into how the diameter of a full graph expanded after deleting
a specific edge. By removing t edges from a complete graph,
they were able to display the precise values of f(t,d) for
each connected graph G; with n vertices and i>1,
accomplished by removing t edges from an entire graph [14].
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This study proposes a new approach to use the adjacency
matrix of K,,, (n = 4) to find the values of £, (tt) denotes the
maximum diameter of an altered connected graphs G;,i > 1
with order n . And G;,i = 1 obtained from a graph G after
deleting tt edges. A graph G obtained from a complete graph
K,, (n = 4) after deleting t edges.

II. PRELIMINARY

A graph G is a simple, undirected graph, containing
E(G) as the set of its edges and V (G). Assume that d(a,, a,)
stands for the distance between the vertices a, and a,, then
the greatest d(aq,a,) in G is referred to as the graph's
diameter G, denoted by D, such that D = max(d(a,,a,))
and a,,a, € V(G) [12]. Let {e} be a set of edges in a graph
G. Then the altered graph AG results by deleting {e} from G
and G/{e} = AG. The subgraph AG has the set of edges
E(G/{e}) = E(AG) and the set of wvertices V(G) =
V(AG) [15]. A complete graph is an undirected and simple
graph. Each pair of unique vertices in k, are adjacent, it
contains the greatest quantity of edges in all simple graphs.

Note that k, has n vertices and %n(n —1) edges. A
complete graph is (n — 1) regular graph with diameter
d = 1[16].

I11.  ADJACENCY MATRIX

In computer science and mathematics, an adjacency matrix
is a method for displaying which vertices of a graph are next
to which other vertices. In graph G, the adjacency matrix is
dependent on the vertex ordering, that is a different
adjacency matrix could be produced by a different vertex
ordering [3]. In an undirected graph G of order n the
adjacency matrix is a symmetric square matrix denoted by
adj(G), i.e. adj(G) = [b;] for all i,j > 1 and i # j [17].
Elements of adj(G) are 0 or 1 and can be represented by the
following:

) _{1 ife €EG),e=(,))
UTl0 ife ¢ E(G), e = (i,)).

A. Adjacency matrix of complete graph

The following examples display adjacency matrices of
complete graphs k, and k.

01 1 1 1111

. 1 0 1 1 . 10111
adj(k,) = 110 1 ,adj(ks) =1 1 0 0 1}
111 0 1 1 1 0 1

1 1 1 1 0

IV. EDGES DELETION PROBLEM OF COMPLETE
GRAPH

Numerous researchers have tried using a range of
techniques to calculate the graph's maximum diameter after
removing a specific number of edges from the complete
graph k, while maintaining the resulting graph's
connectivity, such as: Jasim and Najim determined the
maximal diameter f,(tt) of altered connected graphs
G;,i = 1 obtained from a graph G after deleting tt edges. A
graph G obtained from a k,, after deleting t edges and the
maximal diameter of a graph G denoted by f,(t) and
fn(®) = 2. All graphs (G;,i = 1,G,k,) with order n and
n = 4. The Lemma (4.1), is given the general formula of

fa(tt) [14].

Lemma (4.1):

If 1<tt<§(n—1)(n—2)—1,andn24,then:

fa(tt) = ln + %— f(n—%)Z - ZttJ.

The examples that follow demonstrate the value of f,(tt)
after edges deletion from k,, n € {4,5}. Figure (1),
demonstrates the edge deletion of complete graph k, [14].

1

@ fat=1)=2.

1

M fu(u=1)=2

A

(©) faltt=2)=3
Fig. 1. (a) G obtained from K,. (b) and (c) G;,1 < i < 4 obtained from G.
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Figure (2), demonstrates the edge deletion of complete graph
ks [14].

,ffffjf
X

@/fslt=1)=2

{b) fs(=1)=2

X %

() fst=2)=2

. . Ty -

(D fs(tt=5)=4

Fig. 2. (a) G obtained from K. (b),(c),(d),(e) and (f) G;,1 <i <19
obtained from G.

V. PROPOSED METHOD OF EDGES DELETION
PROBLEM

In this section, we studied how removing edges impacts the
diameter of a complete graph by using a new proposed
method to solve edges deletion problems. A proposed
method finds f,(tt) of an altered graph derived from a

complete graph after a number of edges were removed by
using the adjacency matrix of K,. The following steps
provide a summary of the suggested method's methodology:

Step (1). determine the adj(K,,) for K,,.

Step (2). convert adj(K,) into upper triangular matrix,
denoted by up(adj(K,)).

e Step (3). calculate }.7_, b;; for each row i, denoted by
sumr; = Y5 by with1 < i <n.

e Step (4). determine sumr; =1 with 1 < i < n. Then in
step (3) we note that the number of the formulas
(sumr; = 1) equal to diameter of K,,.

o Step (5). Process of deleting tt edges from K,, with:

1<ttt < é (n—1)(Mm—-2)—1 with n >4, and figuring
out the sum of (sumr; =1)with 1 <i<n after each
deletion. The deletion process is done by: deleting one edge
at a time.

Compared with the results in [14], note that the summation
of the formula (sumr; = 1, 1 < i < n) equal to f,(tt) after
the deletion process.

VI. EXAMPLES ILLUSTRATING THE
APPLICATION OF THE PROPOSED METHOD

By using the proposed method, we can determine the value
fn(tt) values of an altered graph that is produced when a
specific number of edges from K, and K5 are removed while
the resulting graph is still connected.

A. lllustrating the proposed method for K,

Applying the edges deletion process in K, and finding f, (tt)
using the proposed method.

o Step (1). determine the adj(K,) for K,, see Figure (3a).

e Step (2). convert adj(K,) into upper triangular matrix,
denoted by up(adj(K,)), see Figure (3b).

e Step (3). calculate Y7, b;; for each row i, denoted by
sumr; = Z?:l bij withl <i < 4.

e Step (4). determine sumr; = 1,1 < i < 4. Then in Step
(3). we note that the number of the formula (sumr; = 1)
equal to diameter of K,,, see Figure (3c).

o Step (5). process of deleting 1 < tt < 2 edges from K,,
see Figure (3d).

Note that the formula (sumr; =1, 1 <i<4) in Figure
(3c), equal to 1. Next, by applying the edges deletion
process in Step (5) and finding f,(tt) for an altered
connected graph It was acquired following the deletion of
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(1 < tt < 2) edges from k,, which can be shown in Figure
(3d). Figure (3), displays the outcomes of the previous steps.

0111
oo 1011
= ad)(.’(‘,)—{1 1 0 1]
1110
(a) Step(l).
0111 0111
1011 , 0011
WHI=11 1 g 1| = wedEKD=5 g o 3
1 110 0000
(b) Step (2).
0111 sumry = 3
) (0011 sumry =
up(adj(K,)) = 000 1 sumry = 1
00 00 sumr, =0
() Step(3.9).
tt=0| tt=1 | tt=2
t=1
sumry =3 3 2 1D
sumr, =2 |5 Ca5 | T
sumrs=1 |1 3] 10|10
sumr, =0 o o 0
Z(sumr;zl) 2 z J
i=1
Fa(tt) 2 2 3

(d) Step (5).
Fig. 3. The application of the proposed method of K,,.

B. Illustrating the proposed method for K

Applying the edges deletion process in K5 and finding f5(tt)
using the proposed method.

e Step (1). determine the adj(Ks) for Ks, see Figure (4a).

e Step (2). convert adj(Kz) into a upper triangular matrix,
denoted by up(adj(Ks)), see Figure (4b).

e Step (3). calculate 215-=1 b;; for each row i, denoted by
sumr; = Y3_; a;; With 1 < i < 5.

e Step (4). determine sumr; =1 with 1 < i < 5. Then in

Step (3) we note that the number of the formulas
(sumr; = 1) equal to diameter of Ks, see Figure (4c).

Step (5). process of deleting 1 < tt < 5 edges from K5,
see Figure (4d).

Note that the formula (sumr; =1, 1 <i <5) in Figure
(4c), equal to 1. Next, by applying the edges deletion

process in Step (5) and finding fs(tt) for an altered
connected graph It was acquired following the deletion of
(1 <tt <5) edges from kg, which can be shown in Figure
(4d). Figure (4), displays the outcomes of the previous steps.

01111
10111
= adj(lc)=|1 1 0 1 1
11101
11110
(a) Step (1).
01111 01111
10111 00111
adj(Ks)=[1 1 0 1 1|=upadiiKs)=(0 0 0 1 1
11101 00001
11110 0 00O0O
(b) Step (2).
01111 sumr, = 4
00111 sumr, = 3
up(adj(Ks) ={0 0 0 1 1| = sumr=2
00001 csumr, = 1>
00 0 0 0 sumrg =0
(c) Step (3.4).

‘::f tt=1|tt=2 | tt=3 | et=4 | tt=5
sumry =4 4 3 2 (1] C1)|C1)
sumr; =3 3 3 3 3 2 (1)
sumra=2 (21| C1 [ 1) [C1) | C1)y (1)
sumra=1 [(1)]C21)[Cr)[C1y[C1)[C1)
sumrg; =0 0 o} 0 ¢] 0 0
5

Z(sumr, =1) 2 2 2 3 3 7\
i=1
fs(tt) 2 2 | 3 3 | 3 4
(d) Step (5).

Fig. 4. The application of the proposed method of K.

C. Hlustrating the proposed method for K,

Applying the edges deletion process in K, and finding f; (tt)
using the proposed method as shown in Figure (5).
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011111
101111
; 110111
= =
WK =1 1 1 011
111101
111110
(a) Step(1).
011111 0011111
101111 001111
adjiky=|1 10 1 11 . 000111
Y711 110 1 1] = upladi(Ke) =
000011
111101
111110 000001
000000
(b) Step (2).
011111 sumr; =5
001111 sumr, =4
; oo 011 1] = sum=3
w(adi®) =g o g ¢ 1 1|  semy=2
000O0O01 csumis = 1>
0 00O0O00D0 sumig =0
(c) Step (3.4).
‘:::10 ft=1|tt=2 tt=3 it=4 U=5|U=6|(t=7 |tt=8 |U=9
sunry =5 5 4 3 2 (l/‘ [EI (‘i) kl_) 1
sunr, =4 4 1 1 q 2 3 T [Cao|C1o|CL
suinry =3 3 3 3 3 3 3 3 3 2 (1
sumrg=2 | QAD|C15 C135 15 1y C1oC10[C10[C1[C1
sumrg=1 [C1o|C1 5010 C1) 1y C1o[C1o[Ca)]C1D[C!
suinrg =0 0 1] [ 0 ] 0 0 4] 0 0
i;(mr;-l) 2 2 2 2 3 3 3 4 4 5
foltt) 2 2 2 3 3 3 2 4 4 5

(d) Step (5).

Fig. 5. The application of the proposed method of Kj.

In the same way as in the above examples in Figures (3),(4)
and (5) , the value of £, (tt),n = 4 can be obtained using the
proposed method.

VI1. CONCLUSION

The paper's findings provide a method for calculating the
maximum diameter of complete graph k,,,n = 4 in a shorter
amount of time. In comparison to the method proposed by
Anwar and Alaa in [13]. Actually, the utilization of the
adjacency matrix connected to complete graph is what
speeds up this process. We demonstrate our suggested
methodology in section (V1) using the complete graph k,, ks
and k, instances.
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