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Abstract— In this paper, we study basic geometric properties of analytic and univalent functions in the open unit
disk. A new family Wf,’j;ﬁo (w,p,Y;R) of analytic and univalent functions is defined by using a generalization of
Tremblay fractional differential operator associated with the convolution product of a multiplier transformation and a
Ruscheweyh derivative, especially. Coefficient-related studies and extreme points, distortion properties for the
functions in class W5 (w, p,Y; R) are given and properties of starlikeness and the convexity of this class are also

mn,o
presented.
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I. INTRODUCTION denoted by f * g and is defined as:
Fractional calculus of complex order has become a novel - .
field of study, in order to define and create new subfamilies, a f@)x g(z) =z+ Z asbs z° = (f * g)(2).
number of researchers have extended fractional calculus 5=2
operators on popular families of analytic and univalent Also, let T the subfamily of S whose functions represented

functions. They have also investigated various interesting  jth negative coefficients by
properties of these new families such as (see, [1, 2, 3, 4]). In

[oe]

our research, the family of functions in the open U={z € C: .
lz]<1} that are analytic, regular, or holomorphic will be f(z) = z—ZaSz , a;=20,z€eU. (2)
represented by the notation H(U). Assuming thata € C and a ) s=2
positive integer s, H[a ,s] is the subclass of H consisting of ~ Remark 1.1:
functions with the following formula: i.  The condition ¥, s|ay| < 1 is sufficient for all f of
f(2) =a+az*+agz°t + -,z €U, the form (1) to be in S.
and A, ={f €EHQU), f(2) =2+ a1 25+ + ag4p2°*2 + ii. The condition Y2, sas < 1 is sufficient for all f of
.-,z € U}with A; = A the class of the following function the form (2) tobein T (see[5]).
oo We consider the following multiplier transformations.
fz)=z+ Z a,z*%, €Y For f € A, m € NU{0}, {, o >0, the multiplier
s=2 transformation I(m,¢,{) was defined by Catas [6] in the

we also denote by S the subfamily of A consisting of  following infinite series:
functions satisfying (1.1) which are also univalent inU. The © 1 D+ 1\™
Hadamard product (or convolution) of two analytic functions in 1m0, 0) = 2 + Z ( +o(s—1)+ > 0752 €.
s=2

the open unit disk U 1+¢

= = In addition, Ruscheweyh [7] defined derivative operator
f(z)=z+2aszs and g(z)=z+stzs R™: A - A, by
s=2 s=2

R°f(2) = f(2),
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R'f(2) = zf'(2),

(n+ DR™f(2) = z(R"f(2))' +nR"f(2), z€ U.
Remark 1.2: If f € A, then
I'n+s)

1 [ee]
HECES)) Z ()

Moreover, by using the Hadamard product methods of
multiplier transformation I(mcr() and the Ruscheweyh
derivative R™, the operator IR ":A—> A defined by Alp
Lupas[8] as following form:

IR77'f(2) = (1(m,0,{) * RMf (2),

R"f(z) =z

asz°%,z € U.

r(n+s) - e
re 407

zeU

Zs , (1+a(s—1)+1)

F(n+1) 144

foreach m,n e N, ¢, ( = 0.

Remark 1.3: For{ =0, ¢ = 0, then

1. Operator DI* =
by Al-Oboudi [9].

2. Operator S™ = I(m, 1,0) for o = 1 was reduced to the
Salagean differential operator [10] .

3. R" = [(0,0,0) for m = 0 reduced to the Ruscheweyh
derivative operator [7].

I(m, o, 0) was introduced and utilized

Researchers in geometric function theory have shown
considerable interest in topic of fractional differential and
integral operators (see, for example, [10,11,12 and13]). The
generalization of the Tremblay fractional calculus operators
[14, 15] were introduced and investigated as follows:

Definition 1.1: [14, 15] For 0 <3 <1, 0 < p <1 such that
1>p—3>0 and ¥ >—1. The generalized fractional

integral operator sz’l’” of three parameters is defined by:

A©)
»+ 1P z tHH-1e(t
_ A PTG 4, O
r(p)rip—13) 0 (z1+% — t1+x)1-p+3
3
For 0<3<1,0<p<1 such that 1>p—-3=0

and »x > —1, the generalized fractional differential operator
T2 of three parameters, is defined by:

T) £ (z)
CE 1)P—1r(;)
T r(r(i-p+ J)

P ()

1 d=n
dZ J- (Zl+x_t1+x)p Jdt

)

18

where f(z)(z € U) is an analytic function in a simply-
connected region of the z-plane that is simply connected and
contains the origin €. The multiplicity of (z** — t1**)p=3-1
in(3)and (z'** — t1**)=P* in (4) are removed by requiring

log(z1** — t'**) to be real when (z'** —¢t!**) > 0,
respectively.
Example 1.1: [15] For f(z) = z°, we obtain

T2 (2)

p—3 p +s
_ G+ 1) ror (H + 1) ®(1-p+N+s , e [
F()F(%(p—l+1)+l+s_1) ’ '
P x+1

By utilizing the fractional differential operator defined in
(4) and implementing Example 1, a new fractional differential
operator associated with the convolution product of a multiplier
transformation and a Ruscheweyh derivative can be defined as
follows:

Definition 1.2: For »x»>-1, 3, (>0, m, n €N and
0<3<1,0<p<1 such that 1=p—31>0. Let f(2)
given in (1), the fractional differential associated with the
convolution product of a multiplier transformation and a
Ruscheweyh derivative is defined by:

TS IR f(2) =
Ge+DPALG) . 1y d fz e HPHSTLRTE(8)
r(p) F(l—p+J)( dz) 0

e+ 1P
S T(Mrd-p+m»

(zx+1_tn+1)p—]

(5],
dz/ J,

Ge+ 1P
') rn+Drd—p+13)
14o0(6-1)+1\"T'(n+s) 5
1+¢ ) ris)
(=

d z tH+p+s—1
),
after a simple calculation, we obtain the following formula:
p+1

p—3
G+ 0Py (B 1)2(1—p+m+1 .

r(o)r (H(J;f)l+ J)

Ge+ DPT()
rp)r(n+1)

t(x+1)+p—1
dt +

(Zu+1 — tu+1)p—l

s=2 % dt

(Zx+1 — tu+1)p—1

TpJuIRmnf( )

. p+s 1+0'(S—1)+1)m
rn+s)r (H+1)< 1+¢ 2 (1—p+N)x+s
Z #(A—p)+ 3+s—1 42 o
s=2 F(S)r( x+1 )
eVU.
()

The operator T¢**IR; 7'f (2) given in (1.4) is now used to
define a new subclass of analytlc functions as followas:
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Definition 1.3: Forx > -1, 3, ¢, (20, w =1, m, n €N,
YeC—-{0},0<3<1, 0<p<1lsuchthat1=p—-31>0
and

[(1— p+]);f+a)]l"(u+1)
[(1=p 4N+ w] r(iii)+|y|r("“—‘”“‘)

be the subclass of A consisting of functions that satisfy the

<R<1, let W

mmn,o

(w,p,Y;R)

following inequality:
T“”IR’"”f(z)
A=—p+x¥(,Ax)| (1-w f
+
W¥ (p, 22 (T7IRYT () .
<
T3 IR (2)
(1 p+ D (o0 | (1 - ) e[
+
W (p, 2 2) (T IRD f (2))" =
(6)
where
_(x+ D I(p)
By wusing the above definition the new family
,fl:.‘,l”(,(a) p,Y;X) of analytic functions involving the

modification of fractional differential operator associated with
operator T, IR’ is defined in the open unit disk. We

presented some basic geometric properties such as finding the
coefficient bounds, distortion bounds, and radius of starlike and
convexity.

2. COEFFICIENT INQUALITIES

In the following result the coefficient bounds and extreme

points for functions in W n}; ¢ (w,0,Y;X) are obtained.

Theorem 2.1: The function f € A belongs to the class
wh - (w,0,Y;R) if and only if
M) [(1-p 4+ wsr(

1+
1o rPEBE)

R[Y[Fr(n+1)
N+1

s o)

a2
e ag; <
[(-p+Ns+w] F(2X3)r(n+1)

F(u(:\uﬂ+ :\)

)

the result is sharp for the function

(a? -« ’;Ei){fﬁ’)]f;()”“) ) I(n+1)
x+1
A—p)+r3+s—-1
x () (%
F(z)=z+ (1+0(};t1)+1m) 5
I"(n+s)( 15¢ >
\ x[(l—p+l)x+ws]1‘(£1—i)

19

s =2

Proof.  Let the function f € A and the inequality in (6)
satisfies, then we obtain:

T2 IRy f(2)

(1 —p+Nu¥(p,2xn) ~

(1-w)

+w¥ (p, 1) (TS IRV f (2))’

pJJ{IRm‘n.f(Z)
V4

(1 —-pt I)KIP(P' J!”) (1 - )

+w¥(p, 3, 2)(TOI IR} f(2)) —

[(1-p+N)x+w] T _
(M(J— T J()M+1) (1 p+])u+

n+1

1+o(s—1)+1
. I‘(n+s)(0fZ

S=2

) (- p+;)x+ws]r(”+1) aZz(1=p+Nxts—1
r(n+1)r(s) (u(] p)+ 3+s— 1)
H+1

[(1—p+N)x+w] ’"(u+1) ey
(u(l—p)+1)
H+1
1+o(s—1)+1 +5
. F(n+s)(T> [(1— p+1)x+ws]1‘(£+1) 22(1—p+1)u+s—1_y
S=2 r(n+1)r(s) (u(] p)+ I+s— 1)
H+1

[A-p+3)s+w] F(M+1) Z(1=p+3)3c o

(n(:\ p)+ :\)

71+0(15_:{1)+1) [(1- p+2)u+ws][‘(%+1)
r(n+1)I(s) F(n(:\ p)+ 3+s— 1)
n+1

o I"(n+s)(

2, a? 2,(1—p+)x+s-1

[(1—p+)rtw] F(;{+1) 1-ptie,

(u(]; fi+ :\)

m
F(n+5)<1+a(15;1)+1)

[(1- p+J)M+ws]F( %)
T(m+1)I'(s) 1+1) 2 (1-p+N)ats—1_y

r(x() p}31-11+s 1)

S=2
<

p+1
[G-pt+Dx+tw] F(m)z(l—p+))% n

F(z(l—p)+ J)

1+o(s—1)+1
F(THS)( 1+ ) (- p“)”+‘*’5]r(n+1) 2,(1—p+Nx+s—1
TF D) F(;{(l D)+ 35— 1) sZ
H¥1

S=2

[(1-p+N)x+w] F(u+1) | (—p3)x|_

vi- F(u(: P+ :«)

- F(TL+S)(%_{1)+1) [(1- p+:\)x+ws]l"(”+1)
$=2 r(n+1)r(s) (;{(l p)+ A+s— 1)
H+1

a2z(1=p+Nn+s-1
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[A-p+x+ol] F(x+1)| (-p+x|4
F(H(J p)+ J)

1+o(s—1)+1
0 F(n+5)( 1+ ) (- ""':‘)”"'“’s]r(uﬂ) a2|z(1=p+Nr+s—1
s=2 T(n+1DI(s) |Z

F(H(J p;3111+s 1)

[(A-p+Nr+w] F(n+1)| (A-p+2x|-

Ivi- F(n(:\ P+ l)

F(n+5)(%) [a-p+)xtsin(F37) 2|, (—p+Dx+s—1
s=2 T(+DI(s) [‘(W) 4z |
n+1

< N,z €eU.

Choosing values of z on the real axis and considering z - —1,
we have:

p+1

[(1-p+Nr+w] r(;m) N

F(n()—p)+ :\)

n+1
I’(n+s)(%+}1)+1) [(1- p+l)}t+ms]1"(£:i) 2 o
s=2 HO—p)F 35—1 as
F(n+1)F(s)F(T)
(1 —p+Nx+w] r("j:)
lel - r #(Q—p)+3
o)
_— r(mg(%;”l) [a-p+n+asir(2e)
= a
s=2 I‘(n+1)[‘(s)[’(“o p}i:lﬂs 1) S

which is equivalent to

Fn+s) (1 + 0(15+—€1) + 1)’"
1)

X[ —p+Nx+ cus]I"(

s=2 I"(s)]"(%(J p)+ A+s— )

n+1

RIV|I'(n+1) [(1-p+Nx+w] (p+1)F(n+1) (®)
B G—p)+3
N+1 p(%)
Getting that £ € WA~ - (w,0,Y;X).

WP

mmn,o,{

Conversely, let assuming that f €
we obtain the following inequality:

(w,0,Y;X), then

A—p+Nu¥(p,)xn)

T’””IR'""f(z)
(1-w )f
+
w¥(p, 3 2) (T IRV £ (2))
R (1= p+Dx#(p, %) >
plx mn
(1 )T IR;:'f(2)

Z

+
W (p, 3, 20) (TS IR f (2)) —

20

we have

A—p+Nu¥P(p,2xn)

,]I,pJuIRmn
(1- o) IR
+
W (p,3,20) (T3 IR} (2))'
R 1 =p+2x¥(p,3x) RO
,]I,p J%IRmn
(1 _ )$
+
w¥(p, 3, #)(TP1 IR}V f(2)) —
and

[(1-p+N)x+w] F(

(1+8) u+1) Z(1=p+)3x

(z(l—p)+1)
HH1
+
1+K
r(n+1)
1+0(s—1)+1
o r(n+5)( 1+ ) fa- pﬂ)”“"s]r(;ﬁl) a2 7A=p+xts—1 _ gy
S=2 r(s) (M(J p)+ 3+s— 1) as
HF1
R T
[(1-p+N)u+w] F(E3L) (1—pinn
(u(] p)+]) Z
H+1
+
F(n+s)(m) [(1- p+1)u+ws]1‘(p+s)
®, 1+¢ ML 27 (1-p)uts—1_y
= r(s)F(”O p}3¢11+s 1)
>0
Taking account that R(—e®) > —|e?| = -1, the above

inequality is due to:

[(A-p+Dx+tw] F(H+i) r@=p+)3

a+%) r(u(u o)+ 1)

x+1
+

1+0(s—1)+1 +s
1+R F(n+s)< 1+¢ ) [a- p+1)u+a)s][‘(fl+1) a2y (@=-p+Dxu+s—1
FntD) Lo G r(u(u P+ ats— 1) as
x+1

— XY

_ pt1l
[A-—p+VNx+w]l (” T 1) (mp

G=-p)+ 2 1
F<K H-fl >+F(n+1)
X

/ Fn+s) (1 + (7(15;51) + 1)’" \

[(1—p+l)%+ws]1‘( +i) I

az (- -
w() — + 3+s—-1 s r(1—p+Nxts-1 _y
F(s)F( ( pz{+1 )

252

> 0.
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Letting r - —1 and by using the mean value theorem, we
have the desired inequality (7). This completes the proof of
Theorem 2.1.

Corollary2.1: Function fEW,fl“:f;((a),a,Y;N) indicates

that:
as <
w ﬂ+1 — —_
e i Jreeraregzey
1+0(s—1)+1 p+s y 522
F(n+s)(1—+{) [a- p+l);t+ws]1"( +1)
)
with equality only for functions defined by (8).
Theorem 2.2: Let f;(z) = z and
fs(2) =
Ryl [(A—p+Dx+w]T o+l (O—p)+ +s—
<x+1 (M(J p)+:\()”+1) F(n+1)[‘(s)[‘(" PH:1+S 1)
zZ= 1::(15 D+1\ p+s z°,
F(n+s)(T) [(1—p+));{+ws]l"(m)
s=2. (10)

For x30,(,w=1 mmneN, 0<31<1,0<p<
LYeC—-{0}and0 <X <1, then f € Wi (w,0,Y;X)
if and only if it can presented in the following form:

f@ =) pfi@, (1n
s=1
where
ps =0, and Y2, p, = 1.
Proof. Assume f can be presented as in (11).Then,
f@)
RIY|  [a-p+xtol r(E2)
R
o r(n+1)r(s)r<"0_p)+ 31“_1)
-y Z 2. 7+ _ s
— 1+o(s—1)+1
<= rot ) (ST )
\ [(1—p+1)}t+ws]1"( +1)
Now, let
1+0(S_1)+1) [(1- p+J)x+ws]F(£Ii)
Ps

S=2 Rly| [(A-p+Dx+w] F(u+1)
N+1 F(H(J p)+J)

Z r(n+s) T

>1“(n+1)1“(s)1“(7{7(1_p}2: 1“5‘1)

<x|}f| _ [a-p+xtal r(%))
1 O-p)+13
R+ F(H ;f-fl )
(B —p)+ A+s—1
r'n+ 1)r(s)r( )+ )

1+o(s—1)+1\"
)

[(1 —p+3)%+ws]1“(£1_i)

=Z:ns=1—ﬁlsl-
s=2

Therefore, f € WP ¢ (0,0,V;X).

F(n+s)(

e

mmn,o,

Conversely, let f € WS  (w,0,Y;X). Then by utilizing
(9), setting
( R[Y| _ [a-prerol (D) )
A— p)
N+1 F(H(”fF )
u(A—p)+ i+s—1
- ree+re)r 17 )a
s — m S
1+o(s—1)+1
r'(n+ s)( 15¢ )
+s
\ [(1—p+l)x+ws]F(f{+1)
s=2
and p, =1-X2,p,, we obtain p, =1-3Y2,p,, we

obtain f(z) = Yoo, ps fs(2), the proof of Theorem 2.2 is

completed.
3. DISTORTION BOUNDS

In the following theorem, we establish distortion
inequalities for functions belonging to the

class W,‘,’l me¢ (@,0,Y;X). These inequalities are illustrated.

Theorem 3.1: For f € Wrﬁnd(“’ 0,Y; R), inequality

r
! RIY|  [G-p+Nx+ol] r(ﬁ—ﬁ) r (;f(:i —p)+ 3+ 1)
NN+1 F(x(l—p)+ 1) w+ 1
71 5
_ p+2\(/1+o+1\"
\I(n+1)[(1 p+J)J{+2w]F(H+1)( TT7 )
<If@l <
r
RIY[  [a-p+xtw] r(e3) r (K(J —p)+ 3+ 1)
N+1 r(u(l—p)+ :i) %+ 1
H+1 5
’ i Ado 1y (L2
\(n+1)[(1—p+l)x+2w]1"(%+1)( TT7 )

holds if the sequence {x (p,3, w,3 m,n, o, {)};2, is non-
decreasing, and

)
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1-—

[

| +1

| RIY|  [a-p+dx+ol r(227) F<%(3_p)+ J+1)

| N+1 F(x(l p)+J) %+ 1
2 I n+1 2 1 1 _ 2

+ +o+

\](n+1) (1—p+1)x+2w]1"(p+1)( TH¢ )

< If'@ =1+

[

([ RIY] _ (a-psrol r(Gi7) F(%(J—p)+ J+1)

| N+1 (%(1 p)+J) n+1

| +2 1+or+1mr2(13
\](n+1)[(1—p+1)x+2w]r(£+1)( 157 )

holds if the sequence {“s@2@m1e)

where

Yo, iS non- decreasing,

< (p, ) w,x,mn,o0,{)

1+o(s—1)+1
1+¢

r(s) r(

reues)( ) la-p+0serasir(23)

#(A—p)+ I+s— 1)
n+1

The bounds in (1.11) and (1.12) are sharp, for f given by
f@)=z+

Nly| [A-p+)rtwl F(”H) r(2G=p)+ a1
R+1 F(n(l— i+ J) ( n+1 )
T 2Z2, 7z = +r. 14
(n+1)[(1—p+1)}t+2m]1’(£—:j)(1;i}-1) (14
Proof: By applying Theorem 1, we obtain:
Z;.;Z as =<
[
I[ RIY]  [a-p+ix+ol r(25]) r (J{(J —p)+ 3+ 1)
I N+1 F(M) n+1
| - p+2 1+0+1m'(15)
\l(n+1)[(1—p+l)%+2w]F(%+1)( s )
we get

[oe] o]

=122 ) < If @I < 12+ 1217 )

s=2 s=2
Thus,
r—
[
[ RIYL _ a-prdmtal r(Gig) | o (2G—p) + 3+1
I R+1 (%(J—p)+ J) +1
| n+1 2
|

Vo D10 =g+ 390 20l (52) (L)

<lf@lsr+

22

)

[

I\ RIY] _
\R+T

|

|

oot e 2 GED ()

Thus, (12) follows from (16).

[(-p+to] r(2ED) r (x(l —p)+ 3+ 1)
F(}r(l—p)+ J) n+1
n+1

—12.(16)

Furthermore,

z:saS

s=2
[
i RIY|  [a-p+ixtw] r(22]) F(%(J\— P+ 3+ 1)
; N+1 (m p)+n> n+1

< | n+1

= |
|

p+2)(1+0+1)m

\I(n+1)[(1—p+3)%+2w]F(%+1 157

Hence (13) follows from

[oe] [oe]

1 —rz sa; < |f'(@)] <1 +rZsas.

s=2 s=2

4. RADIUS OF STARLIKENESS AND CONVEXITY
In this section we give the radii of close-to-convexity,
starlikeness and convexity for the class W57 - (w, 0, Y; X).

Theorem 4.1: The function f € W27 . (w,0,Y;X) is close-
to-convex of the order (0 < 0 < 1) in|z| < r, where:

(1 - )2+ D[A—-p+ N+ ws]

r (f; J+r i) (1 + 0(15;(1) + 1)’”

r :=inf
522

—.
RIY|  [a-p+ox+ol r(27)
sl'(s+1) (N o F(H(l—p)+ J)u+1

n+1

\ (H(l — p)”++31+ s — 1)

The result is sharp, with the extremal function f given by (14).

Proof: For the function f € A, we have to show that:
lf'(z)-1<1-0

By a simple calculation we obtain

lee]

'@ =11 salzl,

s=2

(18)

which is lessthan 1 — 9 if

)

s=2

1= aaS|z|<1.

Function f € Wo" - (w,0,Y;X) if and only if
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I(n+s) (1 + 0(154-_{1) + 1)

_ pts
x [(1 p+))%+ws]F(H+ 1) 21
2<1.
RIY  [a-p+dxto] r(EE)
N+1 F(M(J—p)+ A)
n+1

Xr(}f(l—p)+ 2+ s—l)

[oe]

1
r(n+1)

=2r(s)

x+1
The relation (16) is true if

1+o(s—1)+1\"
)

|z|_i x[(l—p+l)}f+ws]1"(zii)

F(n+s)(

s
1-20

+1y\
= | r(s) RIY[  [a-p+x+ol r(855)
R+1 F(M)
n+1
QA—p)+ 1+ s—1
\xF(n+1)F( et )

or, equivalent to

(- 2o+ (+ c*(1s+—€1) + 1)m
|Z|S§: x[(l—P+J)}t+ws]F(£Ii)1 |
s=2 IsI'(s + 1) (kﬁl-/ll - [(1-:}1{)(?;];)();[%))
n+1
\ XT(+1r (”(3 - p)%++11+ s — 1)

which completes the proof.

Theorem 4.2: Let f € Wi - (w,0,Y;X), then:
H(L)- f

where:

is starlike of order 9(0<d<1),in |z|<n

1+o(s—1)+1
1+{

Nyl La-p+dxcto] (231
T@)(s+0-2)2 (m‘ e
(58™)

|
|
|
!
\ rnsnyr(20LA 2571y

)m[(l—p+1)x+ws]1"(p—+s)

(1—6)21"(n+s)( e

r, = infgs,

H(2)- f is convex of order (0 <d <1),in|z|] < 1
where:
Té =
(- a)2r(n+s)[(1-p+;)u+ws]r(£—ﬁ)(%)m
infg.,

N+1 n+1

F(;{(J;fi+ J)

Each of these results is sharp for the extremal function f given
by (17).
Proof. 1. For 0 < 0 < 1 we have

sC(s+1)(s—1)2 <M— W(‘m)r(n.'. 1)p(w

zf'(2)
——1|<1-20. 19
@ (19)
We obtain
2f'(2) _ ‘ _Za(—Da el
f(2) T o1+ ¥az]
whichis lessthan1 — @ if
= (s+0-2)
?as |Z| <1
s=2
Function f € Wyfl‘j;;( (w,0,Y;R) ifand only if
I‘(n+s)(71+0(15:<1)+1)m
[(1—p+l)x+ws][‘(£—ﬁ) a? <

p+1

F(nl+1) Z;ozz
r(s) (m—
relation (19) holds if:
(s+0-2)

=5

x| [a—p+Dr+] r(m)>r(uo—p)+ i s—1)

I,(u(l—p)+ J) n+1

n+1

F(n+s)(

x[(l—p+1);{+ws]1"(p+s)

1+0(s—1)+1)m

1+¢

n+1

|z].

o) (-

[(1-p+Nx+aw] r(ﬁ—ﬁ))

F(J{(J;fi+ J)

#QA—p)+ 3+ s—1

(X I+ r (
Equivalently,

x+1 )

(1—8)2I(n +s) (

1+o(s—1+1\"
)

x[(l—p+3)}t+ws]1“(p+s)

Iz] < x+1 (p+1) ’
X|Y| [A-p+Nu+w] I'(S=
I(s)(s+0-2) <N +1 F(H(J—P)‘F 1>H+1 )
n+1
Q—p)+ A+ s—-1
AT 1)r( 2 )

which yields the starlikeness of the family.

H(2)- The function f is convex if and only the function zf’ is

starlike; therefore it is enou
method as that of the proof
convex if and only if:

lzf"(2)| <1-2.

We obtain

[oe]

2" @) <) s(

s=2

gh to prove H(2) with a similar
of H(1). Thus, the function f is

(20)

s—1Das|z|| <1-0.
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Equivalent to,

[ee)

s(s—1)
Z ﬁas |Z| <1
s=2
Function f € W2 (w,0,Y;X) ifand only if:

1+o(s—1)+1\"
)

_ pts
L Z (1 p+J)J{+ws]F(%+1)
r(n+1)

F(n+s)<

az < 1.

= X|Y| [A=-p+Dxtw] T o+l
s=2 1—'(5) (R T T _ }{(l—p)+1(”+1)
()
F(%(J—p)+ )+ 5—1)
n+1
The relation (20) holds if
1+o(s—1)+1\"
F(Tl + S) ((1#())
+s
s(s—1) 2] < [(1—p+ N+ ws]l (fz T 1) 2]
1-0 - RV [a-p+axtel r(25)
O ) #O—p)+ 3
()
uBd—p)+ 3+ s—1

Equivalent to

1+o(s—1)+1\"
)

[(1 —p+l)%+ws]1*(ﬁii)

(1—0)2I'(n +s) (

|z| <

_ p+1y\’
s(s—1Dr(s+1) (glj_fll _la p+i)(:j$]+rfx+1)>
1"( n+1 )
Q—p)+ A+ s—1
\ n+1

which leads the convexity of the family.
CONCLUSION

We examine fundamental geometric characteristics of
both analytic and univalent functions in the open unit disk in
this research. In particular, a generalization of the Tremblay
fractional differential operator associated with the convolution
product of a multiplier transformation and a Ruscheweyh

r'n+ 1)r(

derivative is used to establish a novel family
wh (w,0,Y;X) of analytic and univalent functions.

Studies on coefficients, extreme points, distortion qualities, and
properties of starlikeness and convexity for the functions in

P , i
class W), ¢ (w,0,Y; X) are provided.
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