

AL-KUNOOZE SCIENTIFIC JOURNAL ISSN: 2706-6231 E ,2706-6223 P

Vol.11 No.4 (2025)

Prevalence of Some Virulence Genes Among Enterococcus faecalis Bacteria Isolated From Urinary Tract Infection Patients

¹ Mohammad A.M.Hadi , ² Ashwak B. Al-Hashim , ³ Mohammed N. Al-Qayyim , ⁴ Amal S. Al-mansouri

¹Ministry of health, Baghdad, Iraq, ²Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, ³ University of Baghdad, ⁴ Department of Biology, Collage of Science, ⁵Babylon University

Corresponding Author Email Address: dr.ashwaqb.jassim@ige.uobaghdad.edu.iq

ORCID ID: https://orcid.org/0009-0002-9690-5594 **Received:** May 29, 2025 **Accepted:** July 7, 2025

Abstract: The human gastrointestinal system, vaginal tracts, and oral cavity are home to the common gram-positive, facultative anaerobic bacteria known as Enterococcus species. When recovered from clinical specimens of hospitalized patients, the most prevalent species of the broad genus Enterococcus bacteria—which contains over 50 species—are E. faecalis and E. faecium. This study aim to isolation and identifaction of E.faecalis depended on phenotype and molecular method, the phenotypic patterns using traditional, and then diagnosed it based on the genotypes and using specialized primers for 16srRNA and D-Ala:D-Ala ligase genes using polymerase chain reaction as well as molecular detection of SprE and PAI virulence genes and carrying out antibiotic susceptibility test. Between June and September 2024, one hundred and forty five urine samples were collected from patients of different ages (from 26 to 60 years old) and of both sexes (males number 81 and female number 64) that suffering from UTIs that avoid from taking antibiotics for at least a week, Mid-stream urine samples were collected in sterilized screw-cap containers. To prevent any potential contamination, the specimens were gathered in the correct manner. Three Babylonian hospitals—Al-Hilla Teaching Hospital, Marjan Hospital, and Imam Al-Sadq Hospital—were the sites of sample collection, The result showed presence (16srRNA and ddl) genes in all isolation bacteria at 100% and sprE, PAI genes were performed by Conventional PCR amplification was 35.71 %, 21.42 % respectively. Antibiotic sensitivity tests were performed using Vancomycin, linezolid, ampicillin, chloramphenicol, nitrofurantoin and ciprofloxacin, the result of antibiotic sensitivity tests showed very high resistant (96.42%) to ampicillin, whereas a few isolates exhibited strong ciprofloxacin resistance (85.71%) and vancomycin (82.14%), while some isolates showed moderate resistance (46.42%) to nitrofurantoin, and (57.14%) to chloramphenicol, and show low resistance to linezolid (10.71%).

Key words: *E.faecalis*, *sprE*, *PAI*, UTIs.

Introduction /

A common commensal bacteria in the human digestive system is Enterococcus faecalis. However, certain strains are probiotic, while others are associated with opportunistic infections, making it challenging to differentiate between these strains using conventional taxonomic methods [1]. This bacterium is observed single, under a microscope, it appears in pairs or short chains; facultative anaerobic, non-motile, and usually non-hemolytic, colonies on blood agar with a diameter of 1-2 mm. Enterococci generate lactic acid through fermentation without producing gasEnterococcus has negative catalase and oxidase reactions. A 6.5% saline medium with a pH range of 4.8 to 9.6 and an ideal temperature range of 35 to 37°C is suitable for its growth [2]. It possesses the capability to generate virulence certain factors Enterococcus faecalis can induce many nosocomial infections, including urinary tract infections (UTIs). Its pathogenicity is influenced by multiple virulence factors [4]. Although most Enterococci are anaerobic, several species require oxygen for survival. Enterococci cannot digest cellulose or pectin, and their metabolic route does not include nitrate reduction. They are a common, possibly dangerous species that have phenotypic tolerance or resistance to a variety of physical treatments and disinfectants [5]. Enterococci are among the primary contributors to severe healthcareassociated illnesses. their Due to inherent tolerance to various antibiotics, Enterococci can rapidly acquire substantial drug resistance via horizontal gene transfer [6]. Antibiotic resistance influences pathogenicity, making it more difficult to treat enterococcal infections

medically because there aren't many effective treatment options [7]. By controlling adhesion and colonization, invasion of host tissues, and the production of poisons and enzymes, virulence factors play a role in disease [8]. The genus Enterococcus has a relatively brief history, largely connected to that of other Gram-positive particularly streptococci. cocci, Currently, 55 species of Enterococci have been documented based on 16S sequences [9]. Numerous virulence factors are associated with the pathogenesis of E. faecalis. Microbial infections release extracellular chemicals called virulence factors, which allow them to get past the host's defenses and cause illness [10].

Material and methods Sample collection

Between June and September 2024, 145 urine samples were obtained from patients with various age groups and both sex, suffering from UTIs that avoid from taking antibiotics for at least a week, Sterilized screw-cap vials were used to collect urine samples midstream. To prevent any potential contamination, the specimens were gathered in the correct manner. Three Babylonian hospitals—Al-Hilla Teaching Hospital, Marjan Hospital, and Imam Al-Sadq Hospital—were the sites of sample collection. each urine sample was placed in a disposable screw cap container used for collection of urine samples, labeled with sex, number and date of collection.

Isolation and Identification of *E. faecalis*

The VITEK-2 system, chromogenic agar, blood base agar, and bile esculin agar base were used to cultivate each specimen. They were then incubated for

24 hours at 37 °C and examined at the molecular level using a traditional polymerase chain reaction.

Molecular methods DNA extraction

The DNA was extracted from E. faecalis isolates using the Favorgen® Genomic DNA Extraction Mini Kit (Korea). and utilize gel electrophoresis to determine DNA purity.

Diagnosis of *E.faecalis* using PCR technology

The polymerase chain reaction technique was used to diagnose and identify E. faecalis bacteria and some virulence genes using specific primers prepared according to the manufacturer's instructions, the composition of which includes specific sequences present in the bacterial genetic material. Table (1) describes the primers used for detection of (16srRNA, ddl E. faecalis, sprE, PAI) genes.

Table (1): Primer sequences and product size of the genes used in the study

Target gene	Nucleotide sequence (5'—3')	Product	Reference
		Size/ bp	
16SrRNA	F: GGATTAGATACCCTGGTAGTCC	320	11
	R: TCGTTGCGGGACTTAACCCAAC		
Ddl	F:ATCAAGTACAGTTAGTCTTTATTAG	941	12
	R:ACGATTCAAAGCTAACTGAATCAGT		
SprE	F: GGT AAA CCA ACC AAG TGA ATC	300	
	R: TTC TTC CGA TTG ACG CAA AA		13
Pai	F: GAC GCT CCC TTC TTT TGA C	387	
	Nucleotide sequence (5'—3')		

Optimization of PCR master mix for amplification of (16srRNA, ddl E.faecalis, SprE, PAI) gene was accomplished after several trails; thus,

the following mixtures were adopted for detect this genes of *E.faecalis* isolate as in Table (2).

Table (2): PCR master mix to detect the genes of *E.faecalis* isolates.

Component	25μL (Final volume)		
Masret mix	12.5μ1		
Forward primer	10 picomols/μ1 (1 μl)		
Reverse primer	10 picomols/μl (1 μl)		
DNA	1.5μ1		
Distill water	9μ1		

Detection of *ddl E.faecalis*, *16srRNA*, *SprE*, *PAI* genes by conventional PCR

Optimization of PCR program for amplification of (16srRNA, ddl E.faecalis, SprE, PAI) gene was

accomplished after several trails; thus, the following program were adopted for *E.faecalis* isolates, as in Table (3), (4), and (5).

Table (3): PCR Program to detect ddl gene for E.faecalis

No.	Phase	Tm (C°)	Time	No. of cycle
1-	Initial Denaturation	94 C°	5min	1 cycle
2-	Final Denaturation	94 C°	1min	
3-	Annealing	54 C°	45 Sec	30 cycle
4-	Extension	72 C°	1min	
5-	Final Extension	72 C°	5 min	1 cycle

Table (4): PCR program to identify the 16srRNA gene amplification by conventional PCR.

No.	Phase	Tm (C°)	Time	No. of cycle
1-	Initial Denaturation	94 C°	5min	1 cycle
2-	Final Denaturation	94 C°	1min	
3-	Annealing	54 C°	1min	30 cycle
4-	Extension	72 C°	1min	
5-	Final Extension	72 C°	5 min	1 cycle

Table (5): PCR program to identify the SprE and PAI genes amplification by conventional PCR.

No.	Phase	Tm (C°)	Time	No. of cycle
1-	Initial Denaturation	94 C°	3min	1 cycle
2-	Final Denaturation	94 C°	30 s	
3-	Annealing	54 C°	30 s	30 cycle
4-	Extension	72 C°	30 s	
5-	Final Extension	72 C°	5min	1 cycle

Antibiotics sensitivity test

A small number of identical bacterial colonies were taken from a new culture on an agar plate after 24 hours incubation 37°C and suspended until the turbidity reached 0.5 McFarland, which corresponded to 1.5×108 CFU/ml.

Bacteria are put on a Mueller-Hinton agar (MHA) plate, then antibiotic disks are added. After allowing the bacteria to develop overnight, transparent media surrounds the six disks (linezolid, ampicillin, ciprofloxacin, nitrofurantoin, vancomycin, chloramphenicol).

Results and discussion

Isolation and identification of *E.faecalis*

The isolated bacteria were determined to be Gram-positive cocci, which had spherical or oval forms and may be observed alone, in pairs, or in brief chains. Enterococcus faecalis was isolated based on the cultural characteristics of the colonies, including the shape, size, color, and texture of the colonies. Colonies of E. faecalis appeared on bile esculin agar in the form of small, transparent colonies with brown-black halos, and the color of the

medium turned black, Bile Esculin Agar mostly used to distinguish Streptococcus. Enterococcus from Members of the Enterococcus genus may thrive in 40% bile (oxgall) and hydrolyze esculin into glucose and esculetin. Esculetin interacts with ferric ions to form a black complex. indicating the presence of bacterial growth in the medium figure (1A). and On chromogenic agar medium figure (1B), small-sized bacterial colonies with a transparent blue color appeared depending on the chromogenic substrates present in the medium, where one of the chromogenic substrates is cleaved by the β -glucosidase that it possesses *Enterococci*, leading to the formation of blue colonies.

Figure: (1A) Colonies of $\it E.faecalis$ on bile esculin agar after 24 hours of incubation at 37°C appear colonies with brown-black halos on bile esculin agar .

Figure: (1B) Colonies of *E.faecalis* on chromogenic agar after 24 hours of incubation at 37°C appear blue color on chromogenic agar.

Molecular methods for identification of *Enterococcus faecalis* isolate.

The findings of this study revealed that all E. faecalis isolates (100%)had the *ddl*, *16srRNA*, *SprE*

genes, respective and PAIwith product 941bp, 320bp, sizes of respectivelly 300bp, and 387bp (Figures 2,3,4,5).

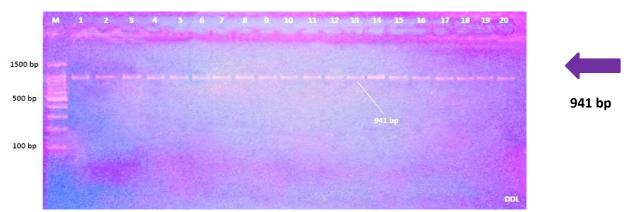


Figure (2): Gel electrophoresis of ddl gene of *Enterococcus faecalis* (from line 1 to line 20) using 1.5% agarose gel electrophoresis (80 volt for 1 hours).

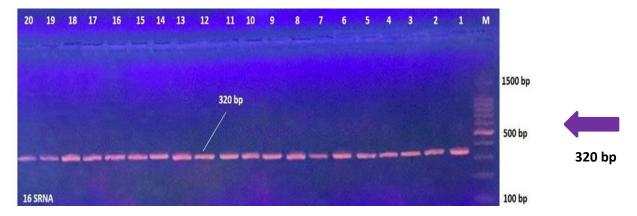


Figure (3): Gel electrophoresis of 16srRNA gene of *Enterococcus faecalis* (from line 1 to line 20) using

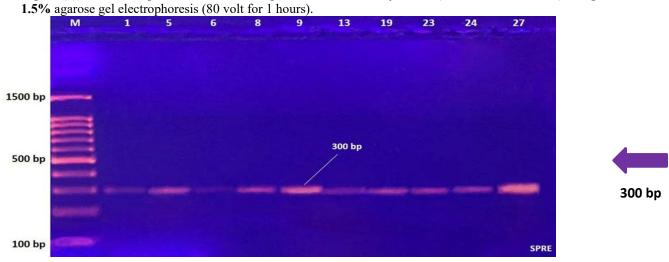


Figure (4): Gel Electrophoresis of *SPRE* (300 bp) Gene using 1.5% Agarose Gel Electrophoresis (80 volt for 1 hours).

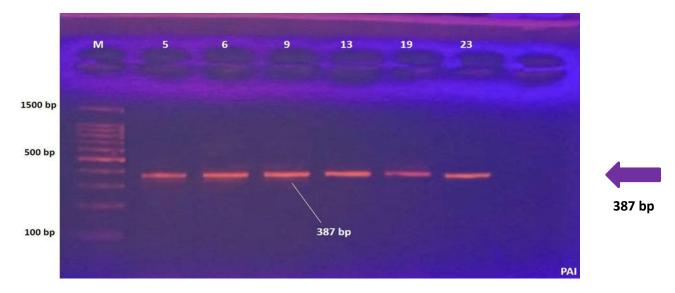


Figure (5): Gel Electrophoresis of *PAI* Gene Using 1.5% Agarose Gel Electrophoresis (80 volt for 1 hours).

The polymerase chain reaction technique was employed to diagnose and identify 28 isolates of E. faecalis utilizing specific primers prepared per instructions manufacturer's (Macrogen), which comprise specific sequences found in the bacterial genetic material targeting the 16S rRNA and ddl genes, And gel electrophoresis was used to assess DNA purity. The results indicated the presence of 16s rRNA and ddl genes in all isolated bacteria at 100%. These findings are consistent with those of Azhar and Hussein [14]. Who used 16S rRNA to identify E. faecalis, similar to the findings reported by Mustafa et al [15]. Using the ddl gene for molecular identification of this bacteria. The SprE gene encodes a serine protease, is located just downstream of gelE, and is co-transcribed with it. This gene produces a 26-kDa serine protease that is secreted and shares similarities with Staphylococcus aureus V8 protease [16]. SprE facilitates the adhesion to extracellular matrix proteins, hence augmenting the capacity of E. faecalis to develop and reinforce biofilms [17]. The results of the current experiment are fairly comparable to those of Sachit and Bunyan [18]. 27.2% of the population carried the SPRE gene. Enterococcus faecalis has a 153-kb pathogenicity island (PAI) that contains several virulence components, including the Enterococcal surface protein (esp). Laverde Gómez [19]. Many clinical strains of E. faecalis include a significant pathogenicity island that encodes the Enterococcal surface protein (Esp), which is thought to improve biofilm formation and virulence [20]. The current study similar to Al- Hamdani and Tuwaij [21] that show Percentage of PAI gene was 23.8%. Based on the

results obtained from the current research on *SprE* gene, it appears that these results Mismatched with Hashem and his colleague [4] They found that the percentage reached 87% of all isolates of *E. faecalis*. Also this current study disagred with Yean [13] that show percentage of *SPRE* gene was 76% and *PAI* gene was 39.9%.

Antimicrobial susceptibility test

Antibiotic sensitivity tests were performed using *Vancomycin*, *linezolid*, *ampicillin*, *chloramphenicol*, *nitrofurantoin* and *ciprofloxacin*. The result of the current study and the Percentage of antibiotics show in Table (6).

Table (6): Percentage result for each antibiotic

antibiotic		
Antibiotic	Sensitive (%)	Resistance (%)
Ciprofloxacin	4 (14.28)	24 (85.71)
Nitrofurantoin	15 (53.57)	13 (46.42)
Chloramphenicol	12 (42.85)	16 (57.14)
Vancomycin	5 (17.85)	23 (82.14)
Ampicillin	1 (3.57)	27 (96.42)
Linezolid	25 (89.28)	3 (10.71)

The results of the current study contradicts with studied by Molechan et al. [22] whose result indicate resistance ciprofloxacin (4%)and chloramphenicol (10%) in South Africa. Also this study disagreed with Khdir [23] who showed that Nitrofurantoin Sensitivity was 100% in Kurdistan Iraq, and close to results in the same study towards vancomycin and ampicillin which showed (100%) resistant to bacteria. In another hand disagreed with study by Georges et al. [24] in Kenya which showed that isolates of *E. faecalis* had no resistance to *vancomycin*. The sensitivity to the *Linezolid* in the present study was relevant to other studies reported by Akpaka et al. [25] in

Caribbean countries and Karimi et al. [26] in Iran, of *E. faecalis* isolates who displayed 100%, 98% respectively was sensitivity to *Linezolid*.

References

- 1. Panthee S, Paudel A, Hamamoto H, Ogasawara AA, Iwasa T, Blom J, Sekimizu K. Complete genome sequence and comparative genomic analysis of *Enterococcus faecalis* EF-2001, a probiotic bacterium. *Genomics*. 2021;113(3):1534–42.
- 2. Geraldes C, Tavares L, Gil S, Oliveira M. *Enterococcus* virulence and resistant traits associated with its permanence in the hospital environment. *Antibiotics*. 2022;11(7):857.
- 3. Noha Q. Detection of Enterocin Production From Local Isolates of *Enterococcus faecalis* and Relationship With Some Virulence Factors and Resistance to Antibiotics. *Iraqi J Biotechnol*. 2010;9(3):642–56.
- 4. Hashem YA, Abdelrahman KA, Aziz RK. Phenotype—genotype correlations and distribution of key virulence factors in *Enterococcus faecalis* isolated from patients with urinary tract infections. *Infect Drug Resist*. 2021;14:1713–23.
- 5. Deng J-J, Deng D, Wang Z-L, Luo X-C, Chen H-P, Liu S-Y, et al. Indole metabolism mechanisms in a new, efficient indole-degrading facultative anaerobe isolate *Enterococcus*

- hirae GDIAS-5. *J Hazard Mater*. 2022;434:128890.
- 6. Golob M, Pate M, Kušar D, Dermota U, Avberšek J, Papić B, et al. Antimicrobial resistance and virulence genes in Enterococcus faecium and faecalis Enterococcus from humans and retail red meat. Biomed Res Int. 2019;2019:2815279.
- 7. Hosseini SM, Zeyni B, Rastyani S, Jafari R, Shamloo F, Tabar ZK, et al. Presence of virulence factors and antibiotic resistances in *Enterococcus* sp. collected from dairy products and meat. *Der Pharm Lett.* 2016;8(4):138–45.
- 8. Francisco PA, Fagundes PI da G, Lemes-Junior JC, Lima AR, Passini MRZ, Gomes BPFA. Pathogenic potential of *Enterococcus faecalis* strains isolated from root canals after unsuccessful endodontic treatment. *Clin Oral Investig*. 2021;25:1–9.
- 9. Kim MH, Moon DC, Kim S-J, Mechesso AF, Song H-J, Kang HY, et al. Nationwide surveillance on antimicrobial resistance profiles Enterococcus faecium and Enterococcus faecalis isolated from healthy food animals in South Korea, 2010 to 2019. Microorganisms. 2021;9(5):925.

- 10. Noman A, Aqeel M, Islam W, Khalid N, Akhtar N, Qasim M, et al. Insects–plants–pathogens: Toxicity, dependence and defense dynamics. *Toxicon*. 2021;197:87–98.
- 11. Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. *J Clin Microbiol*. 2000;38(8):3092–5.
- 12. Sharifi Y. Survey of virulence determinants among vancomycin-resistant *Enterococcus faecalis* and *Enterococcus faecium* isolated from clinical specimens of hospitalized patients of northwest of Iran. *Open Microbiol J.* 2012;6:34–9.
- 13. Yean CY. Genotypic variations of virulent genes in *Enterococcus faecium* and *Enterococcus faecalis* isolated from three hospitals in Malaysia. *Adv Clin Exp Med.* 2015;24(1):121–7.
- 14. Azhar RAKA-D, Hussein N. Molecular characterization of resistance to antiaminoglycosides in enterococci. *Iraqi J Humanit Soc Sci Res.* 2023;3(10).
- 15. Mustafa EA, Hamdoon SM, Shehab EY. Molecular detection and identification of *Enterococcus faecium* isolated from dental root canals. *Iraqi J Sci.* 2021;62(4):1447–51.
- 16. Deng J-J, Deng D, Wang Z-L, Luo X-C, Chen H-P, Liu S-Y, et al. Indole metabolism mechanisms in a new, efficient indole-degrading facultative anaerobe isolate *Enterococcus*

- hirae GDIAS-5. *J Hazard Mater*. 2022;434:128890.
- 17. Son Y, Jin YB, Cho E-J, Park AR, Flores RA, Nguyen BT, et al. Comparative analysis of antibiotic resistance and biofilm characteristics of two major *Enterococcus* species from poultry slaughterhouses in South Korea. *Vet Sci.* 2024;11(4):180.
- 18. Sachit HG, Bunyan IA. Molecular detection of *sprE*, *fsrA* and *cpd* genes among *E. faecalis* isolates. *HIV Nurs*. 2023;23(2):385–91.
- 19. Laverde Gomez JA, Hendrickx APA, Willems RJ, Top J, Sava I, Huebner J, et al. Intra-and interspecies genomic transfer of the *Enterococcus faecalis* pathogenicity island. *PLoS One*. 2011;6(4):e16720.
- 20. Spiegelman L, Bahn-Suh A, Montaño ET, Zhang L, Hura GL, Patras KA, et al. Strengthening of enterococcal biofilms by Esp. *PLoS Pathog*. 2022;18(9):e1010829.
- 21. Al-Hamdani ZALI, Tuwaij NSS. Molecular screening of virulence genes among uropathogenic *Enterococcus faecalis* isolated from patients in Al-Najaf City, Iraq. *Int J Pharm Res*. 2020;12(4).
- 22. Molechan C, Amoako DG, Abia ALK, Somboro AM, Bester LA, Essack SY. Molecular antibioticepidemiology of resistant *Enterococcus* spp. from the farm-to-fork continuum in intensive poultry production in KwaZulu-Natal, South Africa. Sci Total Environ. 2019;692:868–78.

- 23. Khdir KH. Molecular and bacteriological study of *Enterococcus faecalis* isolated from different clinical sources. *Zanco J Pure Appl Sci*. 2020;32(2):157–66.
- 24. Georges M, Odoyo E, Matano D, Tiria F, Kyany'a C, Mbwika D, Determination al. of Enterococcus faecalis and Enterococcus faecium antimicrobial resistance and factors virulence and their association with clinical and demographic factors in Kenya. J Pathog. 2022;2022:3129439.
- 25. Akpaka PE, Kissoon S, Jayaratne P, Wilson C, Golding GR, Nicholson AM, et al. Genetic characteristics and molecular epidemiology of vancomycinresistant *Enterococci* isolates from Caribbean countries. *PLoS One*. 2017;12(10):e0185920.
- 26. Karimi A, Ghalavand Z, Fallah F, Eslami P, Parvin M, Alebouyeh M, et al. Prevalence of virulence determinants and antibiotic resistance patterns of *Enterococcus faecalis* strains in patients with community-acquired urinary tract infections in Iran. *Int J Environ Health Res*. 2018;28(6):599–608.

مدى انتشار بعض جينات الضراوة في بكتريا المكورات المعوية البرازية المعزولة من مرضى التهابات المسالك البولية

محمد علي محمد 1 , اشواق باسم 2 , محمد نوري دوحي 3 , امال سامي مكي 4

وزارة الصحة، بغداد، العراق¹ ، معهد الهندسة الوراثية والتقنيات الاحيائية للدراسات العليا ² ، جامعة بغداد ³ ، قسم علوم الحياه، كلية العلوم، جامعة بابل ⁵

الخلاصة:

تعد المكورات المعوية البرازية هي واحدة من الأمراض البكتيرية الأكثر شيوعا التي تتطلب العلاج بالمضادات الحيوية هي التهابات المسالك البولية. تعد هذه البكتريا إيجابية الجرام، واللاهوائية اختيارية، وتعتبر واحدة من أكثر عدوي المستشفيات شيوعاً، مع ارتفاع معدل الوفيات، وقد تم الإبلاغ عن أن بكتيريا المكورات المعوية البرازية هي السبب الثاني الأكثر شيوعاً لعدوى المسالك البولية، والقدرة على التسبب في التهابات حادة بسبب امتلاكها ترسانة من جينـات الفوعـة, في الفترة ما بين حزيران 2024 وأيلول 2024، تم الحصول على (145) عينة بول سريرية من المرضى من كلا الجنسين وفئات عمرية مختلفة، تم جمعها من ثلاث مستشفيات في بابل (مستشفى الحلة التعليمي، مستشفى مرجان، مستشفى الامام الصادق)، تمت زراعة جميع العينات السريرية على أجار الاسكولين الصفراوي وأجار الكروموجينيك، ، ومن ثم تم إجراء التشخيص باستخدام نظام Vitek2 ، حيث تم اعتماد النتائج الإيجابية لجميع الاختبارات السابقة حيث تم الحصول على (28) عزلة بكتيرية من المكورات المعوية البرازية ، وتم إجراء اختبار الحساسية للمضادات الحيوية فانكومايسين، لينز وليد، الأمبيسيلين، الكلور امفينيكول، النيتر وفور انتوين والسيبر وفلوكساسين باستخدام طريقة الانتشار القرصي حيث أظهرت النتائج أن البكتيريا كانت شديدة المقاومة للأمبيسيلين والسيبر وفلوكساسين والفانكومايسين بينما كانت حساسة للغاية للينزوليد. تم استخراج الحمض النووي لجميع العزلات البكتيرية ثم تم استخدام جهاز الفصل الكهربائي لتقدير جودته, وتم إجراء الكشف الجزيئي لبعض الجينات على النحو التالى. تم تأكيد تشخيص البكتيريا باستخدام بادئات تشخيصيه للبكتريا الاثنين من الجينات التشخيصية (ddl وddl) و التي أعطت نتائج مماثلة لتلك التي تم الحصول عليها باستخدام الطرق السابقة وكذلك الكشف الجزيئي لجينين الفوعة سيرين. البروتياز SprE والجزر المرضية PAI حيث أظهرت النتائج وجود جين SprE بنسبة (35.71%)، بينما كانت نتيجة جين PAI كانت .(%21.42)