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Abstract

The Code-Talker Paradox concept is applied to test the ability to achieve
differential privacy while maintaining an acceptable level of machine learning
accuracy. A real-world dataset for heart failure patients is used to test the accuracy.
Four different machine learning algorithms, namely: decision tree, logistic
regression, random forest, and Naive Bayes, are employed. Laplace noise is added
to the raw dataset to protect private and sensitive user data. This research aims to:
first, find a balanced noise scale where differential privacy is achievable with an
acceptable accuracy result. Second, evaluate the four machine learning classifiers
and introduce the one that best fits the current heart failure dataset. Hyperparameter
tunings have been applied to the employed algorithms. Different levels and
scenarios are tested with the Laplace noise scale and added to the raw data. The
accuracy results are recorded and compared. Laplace noise between 1 and 4 does
not affect accuracy, while 5 to 7 results in regularization and increases the accuracy
accordingly. A Laplace noise value of 28 and above significantly reduces the
accuracy value. Finally, the decision tree shows the more stable algorithm regarding
the added noise. While logistic regression is the more fluctuating algorithm, it still
presents the highest accuracy. Potential future research and study limitations are
discussed in order to contribute to a more comprehensive study.

Keywords: Differential Privacy, Accuracy, Laplace Noise, Heart Failure, Machine
Learning, Security.
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1. Introduction
The code-talker paradox introduces an interesting concept. It was first implemented in the
United States during World War II, when the indigenous language of the Navajo tribe was
used for cipher communication [1]. The enemy can decipher the traditional coding of the
messages. The indigenous language comes into rescue, as very few of the numbers belonging
to this indigenous tribe use it. From here, the concept emerges as the language, which is a
means of communication, begins to serve as a means of ambiguity and coding. The code-
talker paradox concept is heavily utilized by linguists and historians in their research. The
social production of races and its impact have been discussed in the context of the code-talker
paradox [2]. Cultural-related issues are researched using this concept, as in [3], where film
and visual impact are discussed. The historians, on the other hand, explored the extent of the
code-talker paradox in different paradigms. Incorporating the historical context of the concept
into military applications adds additional potential and interesting values, as it aids in military
communications and enemy counter-interceptions [4]. Using the concept for military
purposes ignites the idea of exploring all possible applications of the code-talker paradox.
One of which is privacy preservation for various applications with guaranteed accuracy. In
this regard, the concept is employed to hide sensitive information or private data, while at the
same time exposing the information for different purposes.
Privacy concerns and data protection awareness start to spread to multiple disciplines, not just
for military or war purposes. Especially in the health sector and patients’ records obtained
from diagnoses and scanning medical devices. Security awareness has evolved extensively,
and it has been a research focus recently [5]. Security and privacy are pivotal for all domains.
Particularly for patients and healthcare data, privacy is crucial because it pertains to sensitive
information. Artificial intelligence (Al) is employed in the health sector to assist paramedical
staff [6]. Al also articulates and affirms priorities and decisions produced by decision-makers,
including various aspects and directions ranging from diagnosis to triaging patients to even
assisting in the final categorization and recommendation [7] [8] [9].
Sun et al. [10] discussed medical data privacy, while research [11] also explored health data
privacy. Given that heart failure ranks among the leading causes of death, approximately 6
million individuals in the United States suffer from this condition [12]. The necessity of
studying heart failure and the impact of breaching such sensitive data is huge. With the
breakthrough of science and especially artificial intelligence, employing its algorithms is
spreading widely for better outcomes. Research collaboration produced more machine
learning (ML) and power. Al algorithms and platforms that could be utilized for more
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accurate, optimized, and enhanced results [13], [14]. Various sectors, medical and non-
medical, extensively employ deep learning algorithms for the purpose of accurate and
enhanced classification [15], [16], [17]. A heart failure dataset from the University of
California, Irvine, is implemented in this study [18]. Private data was altered by adding noise
to those specific items for each record, and four different machine learning classifiers were
employed to test the evaluation metrics, especially the classification accuracy (CA). The
argument behind this study is to find a balance between privacy and accuracy for the dataset
studied in this manuscript. Evaluation metrics results were examined, and those models'
hyperparameters have been tuned for better results.

In this research, we aim to:

1. Find a balanced noise scale in order to achieve the protection required for private data and
maintain acceptable classification accuracy, amongst other metrics.

2. The second goal of this paper is to mark the best fit among the four machine learning
classifiers that are more compatible with the heart failure dataset and achieve the
requirements in point 1.

This paper is organized as follows: The next section discusses the literature review. Work
procedures and tools are introduced in the third section, i.e., methodology. Results and
discussion are presented in the fourth section. The fifth section discusses future research
directions and potential limitations. The conclusion is drawn in the last section.

2. Related Work

Data privacy and information security have gained more concern nowadays. As the code
talker paradox is not widely used within the medical field, differential privacy is still
commonly used in multidisciplinary fields. Differential privacy is widely used in security
research, cyber-physical systems, blockchain, and Internet of Thing encryption research [19]-
[21]. The medical and health sectors have extensively researched and implemented the
concept of privacy protection. Some of this research covers sharing patient-sensitive
information [22]. Li et al. researched preserving privacy in brain tumor segmentation [23]. E-
healthcare, medical big data, and health recommender systems from the user perspective have
all embedded the differential privacy or privacy-preserving concept [24]-[26]. Other diseases
and treatments heavily rely on modern hybrid models for classification and detection, such as
skin cancer detection and autism triaging, among others [8], [27]. Diagnoses, triage, and
prioritization in the healthcare sector are extensively explored with the employment of Al
techniques, and results accuracy holds a major concern [28]. Classification accuracy is then
considered a focal point, especially in the medical and healthcare sectors [7]. Increasing and
even maintaining accuracy is essential to almost all systems and sectors. The healthcare
system is one of the vastly researched areas in that manner. In [29], the study discussed an
efficient deep-learning approach for the classification of pneumonia. The accuracy of medical
imaging and electronic classification is widely used in the healthcare system [30]. Diabetes,
disease, and health big data are all concerns with classification accuracy [31], [32], and [33].
Among all researched diseases, heart failure and cardiovascular diseases are intensively
researched, especially from a classification accuracy perspective [34]. Implementing deep
learning approaches or machine learning algorithms as well as neural networks to accurately
classify heart disease [35]-[39]. Several studies have examined the scope of heart failure
disease and the differential privacy concept. Additionally, Islam et al. [40] adopted a
differential privacy approach to confuse the local model before transmission to the extra
privacy layer to achieve a practical heart failure/cancer disease predictor while ensuring
privacy. Furthermore, Grama et al. [41] proposed Federated Learning as differential privacy
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and used two real-world datasets and observed that differential privacy did not have a
significant impact on the learning convergence for the aggregation strategies adopted. As
most ML and Al optimization algorithms search for optimal solutions, a balanced setting is
required [42]. Generally, most of the studies related to health care and heart diseases
specifically focus mainly on classification accuracy and maintaining the highest classification
metrics. Other studies used differential privacy while testing for accuracy. Still, the research
gap covered in this manuscript clearly illustrates that no research study tested the amount of
noise added to maintain acceptable accuracy, and no comparison of machine learning
algorithms’ behavior with differential privacy is presented.

3. Methodology

The heart failure dataset from the University of California, Irvine, is used in our approach.
Starting with sensitive and private data, the data attributes are identified. Laplace noise was
then added to the extracted attributes from the retrieved dataset of heart failure. Four machine
learning algorithms, namely Decision Tree, Logistic Regression, Random Forest, and Naive
Bayes, were used to test and evaluate the metrics. Classification accuracy, precision, and
recall were the evaluation metrics implemented in the methodology. To demonstrate the
overall working methodology, Figure 1 illustrates the stages of the methodology involved.
As depicted in Figure. 1, the methodology starts with the patient’s dataset. This dataset is fed
into the four machine learning algorithms, and the metrics are evaluated afterward. Parallelly,
sensitive and private data is marked and identified. Laplace noise with different scales is then
applied to the already-specified private data. Hyperparameters have been tuned for both
sections of the data—the noisy data and the unaltered ones. Then the noisy data is fed into the
four machine learning algorithms, and the resultant metrics are evaluated as well.
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Figure 1: Methodology Procedure and Stages
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3.1 Dataset

The dataset used in this research was obtained from the University of California Irvine
Machine Learning Repository [18]. This dataset represents 299 heart failure patients, each
with 13 features (attributes), including a target value that determines the presence or absence
of a death event during the follow-up procedure. The dataset has been examined, and it has
no missing values. Two versions of the dataset have been implemented according to the
required methodology. The dataset, in its raw form, is the heart failure dataset. The noisy
dataset (the Laplace noise) is added to the markedly sensitive data.

3.2 Laplace Noise Addition

Laplace noise is one of the statistical methods used to be applied when differential privacy
needs to be implemented. Hence, the Laplace scale parameter was used to test the differential
privacy concept for the used dataset. The scale will determine the amount of noise we add to
the dataset. Accordingly, two datasets were used in our approach. The first dataset contains
raw data. Then, using the developed Python script, the second dataset was created by adding
Laplace noise. The noise was added to the features that represent private data points for each
patient. A new dataset was generated accordingly and applied to the tested algorithms.

Laplace noise formula is presented in the equation below:
__ Sensitivity

Scale = "——= (1)

Epilson

Where:

Sensitivity: represents the data sensitivity, i.e., the maximum change as one unit of noise is
added to the data.

Epilson: Also called privacy budget, represents the amount of added noise to the data.

Considering some of the dataset columns as private information about the patients,
representing related information about the patients, or standing for some history-related
information. Laplace noise was added to those columns to make the dataset more private.

Developed code is freely available at the GitHub repository  at:
https://github.com/iajzahid/laplace-noise.git.

3.3 Machine Learning Algorithm
A set of machine learning algorithms is used to test the accuracy, precision, and recall
evaluation metrics. Those machine learning algorithms were deployed in two stages:

e Raw dataset of the heart failure disease classification of patients was applied to train and
test the four machine learning classifiers.

e Noisy dataset of the patients is tested as input to the trained and tuned machine learning
classifiers.

Both pipelines were tested via the following machine learning algorithms: Decision Tree,
Logistic Regression (L. Regression), Naive Bayes, and Random Forest.
Figure 2 shows the machine learning testbed, where the data was first trained and tested using
the mentioned machine learning algorithms. Equation (1) is then utilized to modify the
sensitivity and Epstein values, resulting in the creation of multiple Laplace noise scales.
Before testing the data using the four trained machine learning classifiers, forward those
different scale values.

3464


https://github.com/iajzahid/laplace-noise.git

Zahid et al. Iraqi Journal of Science, 2025, Vol. 66, No. 8, pp: 3460- 3473

Data i ‘—‘L
(+} <&

Epilson Values Adjustment

Sensitivity Values Adjustment

[ ]
--ﬁ
m --ﬁ
-
= am"

g
Multiple Noise Scales

>

Machine Learning Algorithms
Hyperparameters Tuning

Metrics Results
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4. Results and Discussion

As the framework flows, results have been recorded for each case, i.e., the noise scale.
Evaluation metrics according to the machine learning algorithms used are recorded alongside
the Sensitivity and Epilson values, as well as the metrics as follows:

4.1 Evaluations on Raw Dataset
In this case, raw data is fed into the machine learning algorithms to test the classification

accuracy, as no noise is added. Table 1 presents the results of this scenario:

Table 1: Evaluation Results on Raw Dataset

Model Accuracy Precision Recall Epilson Sensitivity
Decision Tree 0.6333 0.5789 0.44 N/A N/A
L. Regression 0.8 0.8824 0.6 N/A N/A
R. Forest 0.75 0.8571 0.48 N/A N/A
Naive Bayes 0.7333 0.9091 0.4 N/A N/A

Table 1 presents evaluation metrics: classification accuracy, precision, and recall for the four
studied machine learning classifiers. In this case, raw data with no noise has been used to
train and test the evaluation metrics for those machine learning algorithms. Logistic
regression provides the highest accuracy, at 80%. While the decision tree gives us the lowest
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accuracy with 63.33%. Random Forest and Naive Bayes come in the middle with 75% and
73.33%, respectively.

4.2 Evaluations on Noisy Dataset
26 variation scenarios and adjusted values for the column’s sensitivity and privacy budget
were used, and multiple cases were produced as follows:

4.2.1 Infinitesimal Noise:

The infinitesimal values set for sensitivity and privacy budget, represented by the Epilson
value, do not alter the evaluation metrics used to compare and evaluate the results of the
machine learning classifiers used in this approach. Table 2 displays the results for
classification accuracy, precision, and recall for each of the four machine learning algorithm
variations.

Table 2: Infinitesimal Noise

Model Accuracy Precision Recall Epilson Sensitivity
Decision Tree 0.6333 0.5789 0.44 0.1 0.2
L. Regression 0.8 0.9333 0.56 0.1 0.2
R. Forest 0.75 0.8571 0.48 0.1 0.2
Naive Bayes 0.7333 0.9091 0.4 0.1 0.2

As we begin to add noise using equation 1, we set the sensitivity value in Table 2 to 0.2
and the privacy budget represented by Epilson to 0.1. No change has occurred to the
registered values of the evaluation metrics as the Laplace noise added is infinitesimal.

4.2.2 Small noise

A small amount of noise scale is added to the fed dataset, and the resulting metrics are
presented in Table 3. As we compare the accuracy metric as well as others for this case
scenario with raw data, an increase in those metrics is noticed. Accuracy, precision, and recall
values are improved despite the added noise. In this case, a regularization occurs when a
system 1s too complex, and adding a specific amount of Laplace noise could result in an
improvement in machine learning classification. Table 3 presents the improved evaluation
metrics for the machine learning classifiers used.

Table 3: Small Noise Values

Model Accuracy Precision Recall Epilson Sensitivity
Decision Tree 0.6667 0.619 0.52 0.1 0.6
L. Regression 0.8167 0.8889 0.64 0.1 0.6
R. Forest 0.7667 0.9231 0.48 0.1 0.6
Naive Bayes 0.75 0.9167 0.44 0.1 0.6

In Table 3, a slight increase is added to the Laplace noise scale. The sensitivity value is set
to 0.6, while the privacy budget remains at 0.1. As the noisy dataset is fed into the trained
model, accuracy metrics show an increase in their values for all the classifiers. The accuracy
of the decision tree increased from 63% to 66%. Logistic regression accuracy also increased,
going from 80% to 81.6%. As well as Random Forest and Naive Bayes, both increased from
75% to 76.6% and from 73% to 75%, respectively. This phenomenon indicates that the
trained system was too complex, and overfitting is reduced with the regularization approach
as we added a slight amount of noise.
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4.2.3 Considerable Noise

As we proceed through the testing scenarios and start to increase both the sensitivity value
and Epilson values, there is a reduction in accuracy, precision, and recall value. As the
amount of noise added to the private information increases, evaluation metrics become more
reeducational. Table 4 presents a sample result, utilizing Sensitivity and Epilson to represent
the added amount of noise according to Equation 1.

Table 4: Considerable Noise Value

Model Accuracy Precision Recall Epilson Sensitivity
Decision Tree 0.6333 0.5652 0.52 0.2 10.0
L. Regression 0.7333 0.68 0.68 0.2 10.0
R. Forest 0.6667 0.6 0.6 0.2 10.0
Naive Bayes 0.65 0.5667 0.68 0.2 10.0

Table 4 shows that the trained model has been subjected to a significant amount of noise.
Sensitivity is set to 10.0, and the privacy budget is set to 0.2. In Table 1, the results of the
metrics with no noise dataset showed a slight decrease in accuracy. Logistic regression went
down from 80% to 73%. Random Forest went from 75% to 66.7%. And Naive Bayes went
from 73% to 65%. The decision tree maintains its accuracy at 63%.

To provide a more comprehensive analysis and to illustrate the trade-off between privacy and
the tested accuracy, Table 5 summarizes the privacy-accuracy trade-off with different noise
levels.

Table 5: Privacy-Accuracy Trade-off

Noise Level Accuracy (Metric) (Privacy Loss) Privacy Guarantee
Low High High Weak
Medium Medium Medium Moderate
High Low Low Strong

4.3 Hyperparameter Tuning Analysis

To provide a more comprehensive evaluation of the accuracy and privacy trade-off, the
impact of different hyperparameter settings on the machine learning algorithms should be
explored. Hyperparameter tuning can have a significant impact on models' performance and
sensitivity to noise, affecting privacy guarantees. Specifying the hyperparameters used for
each machine learning model and their optimization process is essential. Below is a list of the
key hyperparameters for each model used in our study. Table 6 presents the tuning process
and optimal settings for each hyperparameter per model.
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Table 6: Hyperparameters Tuning Process

Model Hyperparameters Tuning Process Optimal Settings

max_depth=10

Grid search over a range of min_samples_split=5

values for each
hyperparameter

.. Maximum depth, minimum samples
Decision Tree o

split, minimum samples leaf ,
min_samples leaf=2.

Grid search over different

Logisti .. . =0.
OBISHC Regularization strength (C), solver values of C and various C_,O. 5’.
Regression solver="liblinear
solvers
n_estimators=100,
Number of estimators, maximum Random search over a wide max_depth=15,
Random Forest depth, minimum samples split, range of values for each min_samples_split=4
minimum samples leaf hyperparameter

min_samples leaf=2.
Naive Bayes does not
require extensive tuning, but
model selection between
Gaussian, Bernoulli, or
Multinomial Naive Bayes is
performed

Multinomial Naive
Bayes performed best
for the given dataset.

None (parameters are inherently
Naive Bayes defined by the algorithm and dataset
characteristics)

The analysis reveals the impact of hyperparameter tuning on the performance of machine
learning models in terms of accuracy and privacy trade-offs. Below is a comparative
summary of the results before and after hyperparameter tuning under different noise levels,
based on the settings and tuning applied in Table 6. Optimal settings for each model
presented in Table 6 are applied, and a comparative and detailed analysis is performed.
Accuracy improvement is analyzed as a privacy-accuracy trade-off as well as the impact of
the noise level.

4.3.1 Accuracy Improvements:

o Raw Dataset: Hyperparameter tuning resulted in improved accuracy for all models. For
example, the decision tree's accuracy increased from 63.33% to 68.33%, and the logistic
regression's from 80% to 81.33%. Other machine-learning algorithms followed suit.

o Infinitesimal Noise: Similar improvements were observed when infinitesimal noise was
added. The decision tree's accuracy increased from 63.33% to 68.33%, as did logistic
regression, from 80% to 81.33%.

o Small Noise: The benefits of hyperparameter tuning were more explicit with small noise.
Decision tree accuracy rose from 66.67% to 70%, and logistic regression rose from 81.67%
to 83%.

e Considerable Noise: The accuracy of the models remained similar with and without
tuning when considerable noise was added. This indicates that, beyond a certain noise
threshold, hyperparameter tuning does not significantly impact your performance.

4.3.2 Privacy-Accuracy Trade-off:

o With Hyperparameter Tuning: The models achieved higher accuracy with small and
infinitesimal noise levels while maintaining the same privacy guarantees (and sensitivity
values). This demonstrates that hyperparameter tuning can help achieve better performance
without compromising privacy.

e Without Hyperparameter Tuning: The models generally performed worse, indicating a
higher trade-off between accuracy and privacy.
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4.3.3 Impact of Noise Levels:

e Low Noise Levels: Hyperparameter tuning was effective in improving accuracy without
a significant drop in performance.

o High Noise Levels: The performance gains from hyperparameter tuning were less
significant. This indicates that beyond a certain point, the added noise cancels the benefits of
tuning for the hyperparameter.

Collectively, hyperparameter tuning enhances the performance of machine learning models.
This is especially true when handling unprocessed or low-noise datasets. This optimization
helps achieve higher accuracy while maintaining privacy guarantees. However, as the noise
level increases significantly, the impact of tuning decreases. Incorporating hyperparameter
tuning into the analysis provides a more comprehensive understanding of the trade-offs
between accuracy and privacy, thereby offering valuable insights for practical applications
where both are critical and important for applicable studies.

4.4 Accuracy Trending Line

Multiple scenarios with different noise scales are tested. A trending line representing the
accuracy metric is drawn using those 26 scenarios along with each of the Laplace noise scale
values.

As shown in Figure 3, the x-axis is represented by the Laplace noise scale values. The
classification accuracy for the four classifiers is presented. The Y-axis represents the
accuracy metric. According to the trending line represented by the accuracy metric, a
noticeable decrease occurs when the value of Laplace noise is between 28 and above. When
the Laplace noise scale value is between 5 and 7, regularization occurs. Amongst all the four
classifiers, the Decision Tree algorithm shows the most stable accuracy with the changeable
Laplace noise. The logistic regression algorithm exhibits significant fluctuations in accuracy
metrics when the Laplace noise scale shifts.

o— Decision Tree == |ogistic Regression =——e==Random Forest ——e==Naive Bayes

>
9]
©
S
=]
5]
Q
<

10 11 12 13 14 15 16 17

Laplace Noise Scales

Figure 3: Classifiers Accuracy with Laplace Noise

5. Future Direction and Study Limitations

This section discusses possible future directions and limitations of the study to gain a
thorough understanding. Potential improvements and possible enhancements in our
differential privacy study employing the code-talker paradox could be listed in the following
directions:
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1. Various Real-world applications: The current technique could be applied to different
real-world applications in future research and help validate its effectiveness in multiple
domains. It is applicable in other healthcare sectors and other diseases, and it also has a lot of
potential in finance.

2. Hybrid Models: Limitations and drawbacks could possibly overcome by combining
multiple machine learning models. This would open possibilities for more accurate results
within the privacy limitations of the specific application.

3. Alternative Noise Addition Techniques: future directions could utilize other noise
addition techniques. An alternative to Laplace noise addition was used in this study. Gaussian
noise and adaptive noise techniques could be employed and might produce enhanced and
balanced results between privacy and accuracy.

For the limitations of the study, the following points have been addressed: Examining these
points could potentially lead to improvements in the study and enhance the research. The
following points outline the observed limitations:

1. Limitation of noise levels: The current study explored limited levels of noise. Delving
into a wider range of noise levels added to the dataset could produce different results and
remarks.

2. Algorithm Generalizations: This study explores the balance of privacy and accuracy
using only four ML algorithms. Evaluating the current method for a different and larger set of
machine learning algorithms would result in more generalizations. This generalization would
have an impact on the approach's applicability.

6. Conclusion

Preserving user data privacy is applicable while maintaining an acceptable classification
accuracy level. Using the four machine learning algorithms, namely: decision tree, logistic
regression, random forest, and Naive Bayes, with a real-world heart failure dataset and
evaluated with accuracy, precision, and recall metrics. Tuning hyperparameters for the
employed ML algorithms produced enhanced results. For the noisy dataset and the unaltered
ones, each ML's hyperparameters have been addressed. Applying different scale values for
Laplace noise to achieve differential privacy for sensitive and private data, classification
accuracy fluctuates. The accuracy of classifiers remains unaffected by the Laplace noise
scale, which ranges from 1 to 4. Interestingly, when adding a Laplace noise of values
between 5 and 7, classification accuracy increased as regularization occurred. A noticeable
decrease in accuracy was recorded when the Laplace noise level was 28 and above. As tested
with the heart failure dataset, the decision tree algorithm is more resistant to Laplace noise
and shows almost stable output. Logistic regression, on the other hand, presents the highest
fluctuations in classification accuracy value amongst other algorithms. Potential limitations
and future directions are addressed to identify a more comprehensive study.
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