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Abstract  

     The Code-Talker Paradox concept is applied to test the ability to achieve 

differential privacy while maintaining an acceptable level of machine learning 

accuracy. A real-world dataset for heart failure patients is used to test the accuracy. 

Four different machine learning algorithms, namely: decision tree, logistic 

regression, random forest, and Naïve Bayes, are employed. Laplace noise is added 

to the raw dataset to protect private and sensitive user data. This research aims to: 

first, find a balanced noise scale where differential privacy is achievable with an 

acceptable accuracy result. Second, evaluate the four machine learning classifiers 

and introduce the one that best fits the current heart failure dataset. Hyperparameter 

tunings have been applied to the employed algorithms. Different levels and 

scenarios are tested with the Laplace noise scale and added to the raw data. The 

accuracy results are recorded and compared. Laplace noise between 1 and 4 does 

not affect accuracy, while 5 to 7 results in regularization and increases the accuracy 

accordingly. A Laplace noise value of 28 and above significantly reduces the 

accuracy value. Finally, the decision tree shows the more stable algorithm regarding 

the added noise. While logistic regression is the more fluctuating algorithm, it still 

presents the highest accuracy. Potential future research and study limitations are 

discussed in order to contribute to a more comprehensive study. 

 

Keywords: Differential Privacy, Accuracy, Laplace Noise, Heart Failure, Machine 

Learning, Security.  
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أربع خوارزميات مختلفة    عمالمجموعة بيانات حقيقية لمرضى قصور القلب لاختبار الدقة. وباست  عمال يتم است
.  Decision Tree  ،Logistic Regression  ،Random Forest Naive Bayesللتعلم الآلي؛ وهي:  

إضافة   والحساسة.    Laplace Noiseتم  الخاصة  المستخدم  بيانات  لحماية  الأولية  البيانات  مجموعة  إلى 
التفاضلية   الخصوصية  تحقيق  يمكن  حيث  المتوازن  الضوضاء  مقياس  إيجاد  أولًا،  إلى:  البحث  هذا  يهدف 

مقبولة.   دقة  يتم بنتيجة  الحالية    ثانيا  الحالة  يناسب  ما  أفضل  وتقديم  الأربعة  الآلي  التعلم  مصنفات  تقييم 
الاعدادات   مختلف  اختبار  تم  القلب.  قصور  بيانات  الآلي  لمجموعة  التعلم  بخوارزميات  الخاصة  للمتغيرات 

باستعملة المست مختلفة  وسيناريوهات  مستويات  اختبار  تم  إلى    عمال .  وإضافتها  لابلاس  ضوضاء  مقياس 
  4و  1بين     Laplace Noiseايجاد ما يلي:  لا تؤثر  ومقارنتها. تمالبيانات الأولية. تم تسجيل نتائج الدقة  

تمثل قيمة    7إلى    5على الدقة، في حين أن   التنظيم وتزيد الدقة وفقًا لذلك.    Laplace Noiseتؤدي إلى 
الخوارزمية الأكثر    Decision Treeوما فوق انخفاضًا ملحوظًا في قيمة الدقة. وأخيرًا، تعرض    28البالغة  

أن   في حين  المضافة.  بالضوضاء  يتعلق  فيما  تقلبًا    Logistic Regressionاستقرارًا  هو خوارزمية الأكثر 
دقة أعلى  تقدم  تزال  لا  ا   .فإنها  والجوانب  الحالية  للدراسة  الممكنة  المستقبلية  التوجهات  مناقشة  لمحدودة  تم 

 .الممكن تطويرها من اجل المشاركة في انتاج دراسة شاملة
1. Introduction 

     The code-talker paradox introduces an interesting concept. It was first implemented in the 

United States during World War II, when the indigenous language of the Navajo tribe was 

used for cipher communication [1]. The enemy can decipher the traditional coding of the 

messages. The indigenous language comes into rescue, as very few of the numbers belonging 

to this indigenous tribe use it. From here, the concept emerges as the language, which is a 

means of communication, begins to serve as a means of ambiguity and coding. The code-

talker paradox concept is heavily utilized by linguists and historians in their research. The 

social production of races and its impact have been discussed in the context of the code-talker 

paradox [2]. Cultural-related issues are researched using this concept, as in [3], where film 

and visual impact are discussed. The historians, on the other hand, explored the extent of the 

code-talker paradox in different paradigms. Incorporating the historical context of the concept 

into military applications adds additional potential and interesting values, as it aids in military 

communications and enemy counter-interceptions [4]. Using the concept for military 

purposes ignites the idea of exploring all possible applications of the code-talker paradox. 

One of which is privacy preservation for various applications with guaranteed accuracy. In 

this regard, the concept is employed to hide sensitive information or private data, while at the 

same time exposing the information for different purposes. 

Privacy concerns and data protection awareness start to spread to multiple disciplines, not just 

for military or war purposes. Especially in the health sector and patients’ records obtained 

from diagnoses and scanning medical devices. Security awareness has evolved extensively, 

and it has been a research focus recently [5]. Security and privacy are pivotal for all domains. 

Particularly for patients and healthcare data, privacy is crucial because it pertains to sensitive 

information. Artificial intelligence (AI) is employed in the health sector to assist paramedical 

staff [6]. AI also articulates and affirms priorities and decisions produced by decision-makers, 

including various aspects and directions ranging from diagnosis to triaging patients to even 

assisting in the final categorization and recommendation [7] [8] [9]. 

Sun et al. [10] discussed medical data privacy, while research [11] also explored health data 

privacy. Given that heart failure ranks among the leading causes of death, approximately 6 

million individuals in the United States suffer from this condition [12]. The necessity of 

studying heart failure and the impact of breaching such sensitive data is huge. With the 

breakthrough of science and especially artificial intelligence, employing its algorithms is 

spreading widely for better outcomes. Research collaboration produced more machine 

learning (ML) and power. AI algorithms and platforms that could be utilized for more 
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accurate, optimized, and enhanced results [13], [14]. Various sectors, medical and non-

medical, extensively employ deep learning algorithms for the purpose of accurate and 

enhanced classification [15], [16], [17]. A heart failure dataset from the University of 

California, Irvine, is implemented in this study [18]. Private data was altered by adding noise 

to those specific items for each record, and four different machine learning classifiers were 

employed to test the evaluation metrics, especially the classification accuracy (CA). The 

argument behind this study is to find a balance between privacy and accuracy for the dataset 

studied in this manuscript. Evaluation metrics results were examined, and those models' 

hyperparameters have been tuned for better results. 

In this research, we aim to: 

 

1. Find a balanced noise scale in order to achieve the protection required for private data and 

maintain acceptable classification accuracy, amongst other metrics. 

2. The second goal of this paper is to mark the best fit among the four machine learning 

classifiers that are more compatible with the heart failure dataset and achieve the 

requirements in point 1. 

 

This paper is organized as follows: The next section discusses the literature review. Work 

procedures and tools are introduced in the third section, i.e., methodology. Results and 

discussion are presented in the fourth section. The fifth section discusses future research 

directions and potential limitations. The conclusion is drawn in the last section. 

 

2. Related Work 

     Data privacy and information security have gained more concern nowadays. As the code 

talker paradox is not widely used within the medical field, differential privacy is still 

commonly used in multidisciplinary fields. Differential privacy is widely used in security 

research, cyber-physical systems, blockchain, and Internet of Thing encryption research [19]–

[21]. The medical and health sectors have extensively researched and implemented the 

concept of privacy protection. Some of this research covers sharing patient-sensitive 

information [22]. Li et al. researched preserving privacy in brain tumor segmentation [23]. E-

healthcare, medical big data, and health recommender systems from the user perspective have 

all embedded the differential privacy or privacy-preserving concept [24]–[26]. Other diseases 

and treatments heavily rely on modern hybrid models for classification and detection, such as 

skin cancer detection and autism triaging, among others [8], [27]. Diagnoses, triage, and 

prioritization in the healthcare sector are extensively explored with the employment of AI 

techniques, and results accuracy holds a major concern [28]. Classification accuracy is then 

considered a focal point, especially in the medical and healthcare sectors [7]. Increasing and 

even maintaining accuracy is essential to almost all systems and sectors. The healthcare 

system is one of the vastly researched areas in that manner. In [29], the study discussed an 

efficient deep-learning approach for the classification of pneumonia. The accuracy of medical 

imaging and electronic classification is widely used in the healthcare system [30]. Diabetes, 

disease, and health big data are all concerns with classification accuracy [31], [32], and [33]. 

Among all researched diseases, heart failure and cardiovascular diseases are intensively 

researched, especially from a classification accuracy perspective [34]. Implementing deep 

learning approaches or machine learning algorithms as well as neural networks to accurately 

classify heart disease [35]–[39]. Several studies have examined the scope of heart failure 

disease and the differential privacy concept. Additionally, Islam et al. [40] adopted a 

differential privacy approach to confuse the local model before transmission to the extra 

privacy layer to achieve a practical heart failure/cancer disease predictor while ensuring 

privacy. Furthermore, Grama et al. [41] proposed Federated Learning as differential privacy 
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and used two real-world datasets and observed that differential privacy did not have a 

significant impact on the learning convergence for the aggregation strategies adopted. As 

most ML and AI optimization algorithms search for optimal solutions, a balanced setting is 

required [42]. Generally, most of the studies related to health care and heart diseases 

specifically focus mainly on classification accuracy and maintaining the highest classification 

metrics. Other studies used differential privacy while testing for accuracy. Still, the research 

gap covered in this manuscript clearly illustrates that no research study tested the amount of 

noise added to maintain acceptable accuracy, and no comparison of machine learning 

algorithms’ behavior with differential privacy is presented. 

 

3. Methodology 

     The heart failure dataset from the University of California, Irvine, is used in our approach. 

Starting with sensitive and private data, the data attributes are identified. Laplace noise was 

then added to the extracted attributes from the retrieved dataset of heart failure. Four machine 

learning algorithms, namely Decision Tree, Logistic Regression, Random Forest, and Naïve 

Bayes, were used to test and evaluate the metrics. Classification accuracy, precision, and 

recall were the evaluation metrics implemented in the methodology. To demonstrate the 

overall working methodology, Figure 1 illustrates the stages of the methodology involved. 

As depicted in Figure. 1, the methodology starts with the patient’s dataset. This dataset is fed 

into the four machine learning algorithms, and the metrics are evaluated afterward. Parallelly, 

sensitive and private data is marked and identified. Laplace noise with different scales is then 

applied to the already-specified private data. Hyperparameters have been tuned for both 

sections of the data—the noisy data and the unaltered ones. Then the noisy data is fed into the 

four machine learning algorithms, and the resultant metrics are evaluated as well. 

 

 
Figure 1: Methodology Procedure and Stages 
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3.1 Dataset 

     The dataset used in this research was obtained from the University of California Irvine 

Machine Learning Repository [18]. This dataset represents 299 heart failure patients, each 

with 13 features (attributes), including a target value that determines the presence or absence 

of a death event during the follow-up procedure. The dataset has been examined, and it has 

no missing values. Two versions of the dataset have been implemented according to the 

required methodology. The dataset, in its raw form, is the heart failure dataset. The noisy 

dataset (the Laplace noise) is added to the markedly sensitive data. 

 

3.2 Laplace Noise Addition 

     Laplace noise is one of the statistical methods used to be applied when differential privacy 

needs to be implemented. Hence, the Laplace scale parameter was used to test the differential 

privacy concept for the used dataset. The scale will determine the amount of noise we add to 

the dataset. Accordingly, two datasets were used in our approach. The first dataset contains 

raw data. Then, using the developed Python script, the second dataset was created by adding 

Laplace noise. The noise was added to the features that represent private data points for each 

patient. A new dataset was generated accordingly and applied to the tested algorithms. 

Laplace noise formula is presented in the equation below: 

𝑆𝑐𝑎𝑙𝑒 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝐸𝑝𝑖𝑙𝑠𝑜𝑛
                                                                (1) 

   Where: 

   Sensitivity: represents the data sensitivity, i.e., the maximum change as one unit of noise is 

added to the data. 

   Epilson: Also called privacy budget, represents the amount of added noise to the data. 

   Considering some of the dataset columns as private information about the patients, 

representing related information about the patients, or standing for some history-related 

information. Laplace noise was added to those columns to make the dataset more private. 

   Developed code is freely available at the GitHub repository at: 

https://github.com/iajzahid/laplace-noise.git. 

 

3.3 Machine Learning Algorithm 

   A set of machine learning algorithms is used to test the accuracy, precision, and recall 

evaluation metrics. Those machine learning algorithms were deployed in two stages: 

 

• Raw dataset of the heart failure disease classification of patients was applied to train and 

test the four machine learning classifiers. 

• Noisy dataset of the patients is tested as input to the trained and tuned machine learning 

classifiers. 

 

   Both pipelines were tested via the following machine learning algorithms: Decision Tree, 

Logistic Regression (L. Regression), Naïve Bayes, and Random Forest. 

Figure 2 shows the machine learning testbed, where the data was first trained and tested using 

the mentioned machine learning algorithms. Equation (1) is then utilized to modify the 

sensitivity and Epstein values, resulting in the creation of multiple Laplace noise scales. 

Before testing the data using the four trained machine learning classifiers, forward those 

different scale values. 

https://github.com/iajzahid/laplace-noise.git
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Figure 2: Laplace Noise Multiple Scales 

 

4. Results and Discussion 

     As the framework flows, results have been recorded for each case, i.e., the noise scale. 

Evaluation metrics according to the machine learning algorithms used are recorded alongside 

the Sensitivity and Epilson values, as well as the metrics as follows: 

 

4.1 Evaluations on Raw Dataset 

   In this case, raw data is fed into the machine learning algorithms to test the classification 

accuracy, as no noise is added. Table 1 presents the results of this scenario: 

 

Table 1: Evaluation Results on Raw Dataset 

Model Accuracy Precision Recall Epilson Sensitivity 

Decision Tree 0.6333 0.5789 0.44 N/A N/A 

L. Regression 0.8 0.8824 0.6 N/A N/A 

R. Forest 0.75 0.8571 0.48 N/A N/A 

Naive Bayes 0.7333 0.9091 0.4 N/A N/A 

 

Table 1 presents evaluation metrics: classification accuracy, precision, and recall for the four 

studied machine learning classifiers. In this case, raw data with no noise has been used to 

train and test the evaluation metrics for those machine learning algorithms. Logistic 

regression provides the highest accuracy, at 80%. While the decision tree gives us the lowest 
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accuracy with 63.33%. Random Forest and Naïve Bayes come in the middle with 75% and 

73.33%, respectively. 

 

4.2 Evaluations on Noisy Dataset 

     26 variation scenarios and adjusted values for the column’s sensitivity and privacy budget 

were used, and multiple cases were produced as follows: 

 

4.2.1 Infinitesimal Noise: 

     The infinitesimal values set for sensitivity and privacy budget, represented by the Epilson 

value, do not alter the evaluation metrics used to compare and evaluate the results of the 

machine learning classifiers used in this approach. Table 2 displays the results for 

classification accuracy, precision, and recall for each of the four machine learning algorithm 

variations. 

 

Table 2: Infinitesimal Noise 

Model Accuracy Precision Recall Epilson Sensitivity 

Decision Tree 0.6333 0.5789 0.44 0.1 0.2 

L. Regression 0.8 0.9333 0.56 0.1 0.2 

R. Forest 0.75 0.8571 0.48 0.1 0.2 

Naive Bayes 0.7333 0.9091 0.4 0.1 0.2 

 

     As we begin to add noise using equation 1, we set the sensitivity value in Table 2 to 0.2 

and the privacy budget represented by Epilson to 0.1. No change has occurred to the 

registered values of the evaluation metrics as the Laplace noise added is infinitesimal. 

 

4.2.2 Small noise 

     A small amount of noise scale is added to the fed dataset, and the resulting metrics are 

presented in Table 3. As we compare the accuracy metric as well as others for this case 

scenario with raw data, an increase in those metrics is noticed. Accuracy, precision, and recall 

values are improved despite the added noise. In this case, a regularization occurs when a 

system is too complex, and adding a specific amount of Laplace noise could result in an 

improvement in machine learning classification. Table 3 presents the improved evaluation 

metrics for the machine learning classifiers used. 

 

Table 3: Small Noise Values 

Model Accuracy Precision Recall Epilson Sensitivity 

Decision Tree 0.6667 0.619 0.52 0.1 0.6 

L. Regression 0.8167 0.8889 0.64 0.1 0.6 

R. Forest 0.7667 0.9231 0.48 0.1 0.6 

Naive Bayes 0.75 0.9167 0.44 0.1 0.6 

 

     In Table 3, a slight increase is added to the Laplace noise scale. The sensitivity value is set 

to 0.6, while the privacy budget remains at 0.1. As the noisy dataset is fed into the trained 

model, accuracy metrics show an increase in their values for all the classifiers. The accuracy 

of the decision tree increased from 63% to 66%. Logistic regression accuracy also increased, 

going from 80% to 81.6%. As well as Random Forest and Naïve Bayes, both increased from 

75% to 76.6% and from 73% to 75%, respectively. This phenomenon indicates that the 

trained system was too complex, and overfitting is reduced with the regularization approach 

as we added a slight amount of noise. 
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4.2.3 Considerable Noise 

     As we proceed through the testing scenarios and start to increase both the sensitivity value 

and Epilson values, there is a reduction in accuracy, precision, and recall value. As the 

amount of noise added to the private information increases, evaluation metrics become more 

reeducational. Table 4 presents a sample result, utilizing Sensitivity and Epilson to represent 

the added amount of noise according to Equation 1. 

 

Table 4: Considerable Noise Value 

Model Accuracy Precision Recall Epilson Sensitivity 

Decision Tree 0.6333 0.5652 0.52 0.2 10.0 

L. Regression 0.7333 0.68 0.68 0.2 10.0 

R. Forest 0.6667 0.6 0.6 0.2 10.0 

Naive Bayes 0.65 0.5667 0.68 0.2 10.0 

 

Table 4 shows that the trained model has been subjected to a significant amount of noise. 

Sensitivity is set to 10.0, and the privacy budget is set to 0.2. In Table 1, the results of the 

metrics with no noise dataset showed a slight decrease in accuracy. Logistic regression went 

down from 80% to 73%. Random Forest went from 75% to 66.7%. And Naïve Bayes went 

from 73% to 65%. The decision tree maintains its accuracy at 63%. 

To provide a more comprehensive analysis and to illustrate the trade-off between privacy and 

the tested accuracy, Table 5 summarizes the privacy-accuracy trade-off with different noise 

levels. 

 

Table 5: Privacy-Accuracy Trade-off  

Noise Level Accuracy (Metric) (Privacy Loss) Privacy Guarantee 

Low High High Weak 

Medium Medium Medium Moderate 

High Low Low Strong 

 

4.3 Hyperparameter Tuning Analysis 

     To provide a more comprehensive evaluation of the accuracy and privacy trade-off, the 

impact of different hyperparameter settings on the machine learning algorithms should be 

explored. Hyperparameter tuning can have a significant impact on models' performance and 

sensitivity to noise, affecting privacy guarantees. Specifying the hyperparameters used for 

each machine learning model and their optimization process is essential. Below is a list of the 

key hyperparameters for each model used in our study. Table 6 presents the tuning process 

and optimal settings for each hyperparameter per model. 
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Table 6: Hyperparameters Tuning Process 

Model Hyperparameters Tuning Process Optimal Settings 

Decision Tree 
Maximum depth, minimum samples 

split, minimum samples leaf 

Grid search over a range of 

values for each 

hyperparameter 

max_depth=10 

min_samples_split=5

, 

min_samples_leaf=2. 

Logistic 

Regression 
Regularization strength (C), solver 

Grid search over different 

values of C and various 

solvers 

C=0.5, 

solver='liblinear 

Random Forest 

Number of estimators, maximum 

depth, minimum samples split, 

minimum samples leaf 

Random search over a wide 

range of values for each 

hyperparameter 

n_estimators=100, 

max_depth=15, 

min_samples_split=4

, 

min_samples_leaf=2. 

Naïve Bayes 

None (parameters are inherently 

defined by the algorithm and dataset 

characteristics) 

Naive Bayes does not 

require extensive tuning, but 

model selection between 

Gaussian, Bernoulli, or 

Multinomial Naive Bayes is 

performed 

Multinomial Naive 

Bayes performed best 

for the given dataset. 

 

     The analysis reveals the impact of hyperparameter tuning on the performance of machine 

learning models in terms of accuracy and privacy trade-offs. Below is a comparative 

summary of the results before and after hyperparameter tuning under different noise levels, 

based on the settings and tuning applied in Table 6. Optimal settings for each model 

presented in Table 6 are applied, and a comparative and detailed analysis is performed. 

Accuracy improvement is analyzed as a privacy-accuracy trade-off as well as the impact of 

the noise level. 

 

4.3.1 Accuracy Improvements: 

• Raw Dataset: Hyperparameter tuning resulted in improved accuracy for all models. For 

example, the decision tree's accuracy increased from 63.33% to 68.33%, and the logistic 

regression's from 80% to 81.33%. Other machine-learning algorithms followed suit. 

• Infinitesimal Noise: Similar improvements were observed when infinitesimal noise was 

added. The decision tree's accuracy increased from 63.33% to 68.33%, as did logistic 

regression, from 80% to 81.33%. 

• Small Noise: The benefits of hyperparameter tuning were more explicit with small noise. 

Decision tree accuracy rose from 66.67% to 70%, and logistic regression rose from 81.67% 

to 83%. 

• Considerable Noise: The accuracy of the models remained similar with and without 

tuning when considerable noise was added. This indicates that, beyond a certain noise 

threshold, hyperparameter tuning does not significantly impact your performance. 

 

4.3.2 Privacy-Accuracy Trade-off: 

• With Hyperparameter Tuning: The models achieved higher accuracy with small and 

infinitesimal noise levels while maintaining the same privacy guarantees (and sensitivity 

values). This demonstrates that hyperparameter tuning can help achieve better performance 

without compromising privacy. 

• Without Hyperparameter Tuning: The models generally performed worse, indicating a 

higher trade-off between accuracy and privacy. 
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4.3.3 Impact of Noise Levels: 

• Low Noise Levels: Hyperparameter tuning was effective in improving accuracy without 

a significant drop in performance. 

• High Noise Levels: The performance gains from hyperparameter tuning were less 

significant. This indicates that beyond a certain point, the added noise cancels the benefits of 

tuning for the hyperparameter. 

Collectively, hyperparameter tuning enhances the performance of machine learning models. 

This is especially true when handling unprocessed or low-noise datasets. This optimization 

helps achieve higher accuracy while maintaining privacy guarantees. However, as the noise 

level increases significantly, the impact of tuning decreases. Incorporating hyperparameter 

tuning into the analysis provides a more comprehensive understanding of the trade-offs 

between accuracy and privacy, thereby offering valuable insights for practical applications 

where both are critical and important for applicable studies. 

  

4.4 Accuracy Trending Line 

       Multiple scenarios with different noise scales are tested. A trending line representing the 

accuracy metric is drawn using those 26 scenarios along with each of the Laplace noise scale 

values. 

       As shown in Figure 3, the x-axis is represented by the Laplace noise scale values. The 

classification accuracy for the four classifiers is presented. The Y-axis represents the 

accuracy metric. According to the trending line represented by the accuracy metric, a 

noticeable decrease occurs when the value of Laplace noise is between 28 and above. When 

the Laplace noise scale value is between 5 and 7, regularization occurs. Amongst all the four 

classifiers, the Decision Tree algorithm shows the most stable accuracy with the changeable 

Laplace noise. The logistic regression algorithm exhibits significant fluctuations in accuracy 

metrics when the Laplace noise scale shifts. 

 
Figure 3: Classifiers Accuracy with Laplace Noise 

 

5. Future Direction and Study Limitations 

     This section discusses possible future directions and limitations of the study to gain a 

thorough understanding. Potential improvements and possible enhancements in our 

differential privacy study employing the code-talker paradox could be listed in the following 

directions: 
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1. Various Real-world applications: The current technique could be applied to different 

real-world applications in future research and help validate its effectiveness in multiple 

domains. It is applicable in other healthcare sectors and other diseases, and it also has a lot of 

potential in finance.    

2. Hybrid Models: Limitations and drawbacks could possibly overcome by combining 

multiple machine learning models. This would open possibilities for more accurate results 

within the privacy limitations of the specific application.  

3. Alternative Noise Addition Techniques: future directions could utilize other noise 

addition techniques. An alternative to Laplace noise addition was used in this study. Gaussian 

noise and adaptive noise techniques could be employed and might produce enhanced and 

balanced results between privacy and accuracy.  

For the limitations of the study, the following points have been addressed: Examining these 

points could potentially lead to improvements in the study and enhance the research. The 

following points outline the observed limitations: 

1. Limitation of noise levels: The current study explored limited levels of noise. Delving 

into a wider range of noise levels added to the dataset could produce different results and 

remarks.  

2. Algorithm Generalizations: This study explores the balance of privacy and accuracy 

using only four ML algorithms. Evaluating the current method for a different and larger set of 

machine learning algorithms would result in more generalizations. This generalization would 

have an impact on the approach's applicability. 

 

6. Conclusion 

     Preserving user data privacy is applicable while maintaining an acceptable classification 

accuracy level. Using the four machine learning algorithms, namely: decision tree, logistic 

regression, random forest, and Naïve Bayes, with a real-world heart failure dataset and 

evaluated with accuracy, precision, and recall metrics. Tuning hyperparameters for the 

employed ML algorithms produced enhanced results. For the noisy dataset and the unaltered 

ones, each ML's hyperparameters have been addressed. Applying different scale values for 

Laplace noise to achieve differential privacy for sensitive and private data, classification 

accuracy fluctuates. The accuracy of classifiers remains unaffected by the Laplace noise 

scale, which ranges from 1 to 4. Interestingly, when adding a Laplace noise of values 

between 5 and 7, classification accuracy increased as regularization occurred. A noticeable 

decrease in accuracy was recorded when the Laplace noise level was 28 and above. As tested 

with the heart failure dataset, the decision tree algorithm is more resistant to Laplace noise 

and shows almost stable output. Logistic regression, on the other hand, presents the highest 

fluctuations in classification accuracy value amongst other algorithms. Potential limitations 

and future directions are addressed to identify a more comprehensive study. 
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