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ARTICLE INFO ABSTRACT
Article history: The dissipation of excessive heat flux is presently a significant issue that needs to be addressed due to the use of
Received 07 March 2023 microdevices in fields such as nuclear energy, electronic devices, aerospace engineering, building engineering,
Received in revised form 25 December 2024 and more. Because of their increased heat transfer and compact size, microchannel cooling systems have become
Accepted 03 July 2025 an effective way to manage the temperature of microdevices and equipment upgrades. However, due to the

increasing demands placed on microdevices for thermal load, controlling the temperature, and conserving energy,
keyword.: efficient heat exchangers, in particular microchannels, are attracting a growing amount of interest. A key passive
Microchannel technique for successfully increasing the heat transfer of the microchannel cooling system and improving the
Laminar performance of microchannels is channel shape optimization. Therefore, the characteristics of microchannel
Heat transfer geometry from prior research have been reviewed, categorized, and summed up in this article. The analysis focuses
CFD simulation primarily on structural features and microchannel geometry attributes that enhance the impact of pressure drop
Thermal analysis and heat transfer. It also presents the relationship between boiling heat transfer and the geometrical features of

microchannel flow and discusses the potential study directions for microchannel geometry design. The current
review of microchannels will provide researchers working on these microchannel components with specialized
expertise. In an effort to improve the impact of heat transfer, this study reviews, categorizes, and summarizes the
characteristics of prior studies’ microchannel geometry.

© 2025 University of Al-Qadisiyah. All rights reserved.

1. Introduction heat transfer fluids containing particles with a mean size of roughly 10 nm
made of metal or carbon [16]. Zhang et al. altered the microchannel cooling
system with two phases to generate a 969 W/cm?2 critical heat flow [17]. Kim
et al. [18] achieved a heat flux of up to 2 kW/cm2 using a two-phase dedicated
hot-spot cooler, whereas Tang et al. developed microchannels with single and
three expansion areas for comparison. According to experimental findings,
adding three expansion areas to microchannels can significantly up to 43.3%
more flow-boiling heat transfer efficiency [19]. The significance of researching
microscale phenomena in engineering has only recently increased, despite
the fact that the study of fluid flow and heat transmission in channels with
incredibly tiny hydraulic mean diameters has long drawn attention [20]. The
smaller channels are defined by the hydraulic diameter. Microchannels are
channels with a maximum polygonal cross-sectional area of less than 1 mm
and hydraulic diameters of 10 to 200 um [21]. Figure 1 shows some kind of
cross-sectional area of microchannels used in engineering applications. We
must utilize a cooling system that is applicable to the same scale as electronic
components get smaller at the micro/mini scale. Among the most suitable
options for tiny cooling is fluid movement inside micro and tiny channels.
According to this, the hydraulic diameter (Dp) is used to categorize micro
and tiny [22]. Table 1 illustrates the difference between minichannels and
microchannels. According to the scaling law, when compactness rises, heat
transmission rises, and pressures fall as well. Hence, a larger heat transfer
coefficient results in a greater pressure drop, which increases the need for
pumping power. By increasing the hydraulic diameter from micro to various
small-scale configurations, we are able to achieve a heat transfer coefficient
that is adequate at a significantly lower pressure drop for a specific system
application [23].

Over the past 40 years, the fields of microfluidics and biomedicine have
shown a great deal of interest in microchannels based on Micro Electromecha-
nical Systems (MEMS). Tuckerman et al. [1] first suggested the microchannel
heat rejection concept in 1981 to address the issue of heat dissipation in
extremely small integrated circuits with up to 790 W/cm?2 of massive heat
dissipation capabilities. Microdevices have been utilized in a variety of in-
dustries applications, e.g., aerospace industry [2], chemical engineering [3],
physical particle separation [4], nuclear energy [5], inkjet print heads [6], elec-
tronic devices [7], heat exchangers for cooling computer chips [8], building
engineering [9], and biological engineering [10]. Fluid flows in all types of
channels and machined fluid systems are numerically analysed by using the
Navier-Stokes equations [11]. However, some previous studies have shown
that flows on the microchannel are different from that on the macrochannel.
Therefore, using the Navier-Stokes equations only in numerical analysis of
flow in microchannel cannot provide a clear and correct simulations [12]. As
a result, a greater comprehension of fluid flow at the microscopic level is
required in order to design and manufacture such microdevices efficiently.
Moharana et al. [13] looked at the heat transmission properties of microchan-
nels with a rectangular shape. Aspect ratio, distance from center to center,
velocity of the fluid, and their effects on heat transmission were among the
variables used. Water flowing through a trapezoidal-shaped microchannel with
a hydraulic diameter ranging from 62 um to 169 pm was the subject of an
investigation by Qu et al. [14]. A new class of designed heat transfer fluids
with metallic or carbon-based particles with an average size of about 10 um
are referred to as nanofluids, according to Choi et al. [15]. According to Koo
and Kleinstreuer, the word “nanofluids”refers to a brand-new class of tailored
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Nomenclature

A Cross-sectional area of the conduit or channel
Dy Hydraulic diameter for all types of ducts

P Wetted perimeter

Re Reynolds number

T Temperature

% Velocity of the fluid

Greek Symbols

Fluid’s dynamic viscosity
Density of the fluid

Gradient

Velocity vector field of a fluid

Several media, including liquid, gas, and air, can be used to cool electronics.
In the past years, people favoured using air and water to cool off [24]. When
compared to water, which has a higher density and a higher heat capacity,
air has a lesser heat carrying capacity and is almost at its thermal maximum
of roughly 100 W /cm?. Therefore, water cooling rather than air cooling is
employed to remove high heat flux. Today, a variety of different liquids are
used instead of water [25]. Two-phase flow has a higher pressure decrease than
single-phase flow, and both strategies have advantages and limitations. Two-
phase flow with a single component can transmit more heat than one-phase
flow when a substance is boiling. These previous articles [26,27] focused on
the movement of a single-phase liquid in a tiny channel. The thermophysical
characteristics of different fluids have been compared and studied to better
understand the heat transfer mechanism. Fluid and flow parameters have an
impact on the convective heat transfer coefficient. The mass flow rate, fluid
specific heat, shape, and roughness of the channel’s surface all significantly
affect how fluids behave.

Figure 1. Three different types of microchannel cross-sectional area.

Table 1. Listed the distinction between minichannels and microchannels.

Type of channel Hydraulic diameterDy
Minichannels 3mm > Dy > 200um
Microchannels 200um > Dy > 10um

2. Fundamentals of heat transfer

This section will provide a review of the fundamentals of flow and heat transport
in microchannels performed in recent years using cutting-edge conventional
CFD methodology as well as experimental work. Heat transfer is a process
that provides thermal energy from a hotter body to a colder body. This may
happen between two or more physical objects or systems [28]. Heat transfer
is a scientific discipline that serves as a foundation for several scientific and
engineering fields, such as mechanical engineering, chemical engineering,
materials science, physics, and electrical engineering etc. Analysis of heat
transfer properties is based on both experimental and theoretical approaches
[29]. Models and numerical simulation tools have been established over ti-
me with laboratory tests to explore the heat transfer mechanisms with more
precision and efficiency. Heat transfer investigations are still of paramount
interest in a variety of industrial processes. Its importance is increasing through
technological development and new engineering problems [30].
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2.1 Reynolds number

The Reynolds number is a dimensionless quantity that is used to indicate how
laminar, transitional, or turbulent the fluid flow is. It represents the ratio of
inertial to viscous forces in a fluid [31,32]. The following formula represents
the Reynolds number, Eq. 1.

Re=(p/u)VDn )]

If the Reynolds number is less than 2300, this indicates that the flow is laminar.
While if it is more than 4000, this means the flow is turbulent. Some cases
have Reynolds numbers between 2300 and 4000; these types of flows may
transition between laminar and turbulent depending on changing conditions
[33]. In general, fluid particles in laminar flow travel in a predictable and
ordered pattern. On the other hand, the fluid particles in turbulent flow are
moving in an erratic and chaotic way. Figure 2 illustrates laminar, turbulent,
and transition boundary layers.
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Figure 2. All types of boundary layers.

2.2 Type of flow

An interesting phenomenon, fluid flow is significant in several engineering
and scientific applications. The investigation and analysis of how fluids move
through different media, such as pipes, channels, and ducts, is a key component
of the study of fluid flow [34]. Understanding fluid flow is crucial and needed
in order to design and improve systems containing fluid materials, such as
pumps, pipelines, turbines, etc. There are various fluid flow patterns, and each
has certain traits and ramifications [35]. Laminar flow, turbulent flow, transi-
tional flow, and steady flow are a few examples of these fluid flow types. Some
previous studies examined each kind of fluid flow, went over its characteristics,
and explained how it affects various applications [36, 37]. A laminar fluid
flow is characterized as a flow type in which the fluid particles travel along
distinct, straight, parallel streamlines. The particles consequently move in
layers or laminas, gently sliding over one another [38]. This kind of flow is also
referred to as smooth flow and flows with viscosity. A turbulent fluid flow is
characterized by the zig-zag motion of the fluid particles. A significant part of
energy is lost due to eddy generation [39]. This type of fluid flow is calculated
for pipe flow by a Reynolds number, which is a dimensionless quantity [40].
The flow is laminar when the Reynolds number is less than 2000. While it
is turbulent when the Reynolds number is greater than 4000. In the range of
Reynolds between 2000 and 4000, the flow could be laminar and turbulent.
Understanding a variety of kinds of fluid flow is important in a range of studies,
including science, engineering, and medicine [41]. The overall behavior of
fluids under different conditions is affected by the diverse properties of laminar,
transitional, and turbulent flow. Laminar flow is smooth and predictable, while
turbulent flow is disorderly and unpredictable [42]. Transitional flow presents
characteristics of both laminar and turbulent flows. Each of these three kinds
of regimes of flow has advantages and limitations. The properties of fluid
flow, such as velocity, density, and viscosity, can affect how each type of flow
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behaves [43]. In many applications Fig. 3, including aerodynamics, hydraulics,
and blood flow in the human body, effective fluid flow management is essential
for achieving optimal efficiency and performance [44]. To achieve the optimal
efficiency, fluid systems can be designed with an understanding of the different
types of fluid flow. In general, fluid flow field is a difficult and challenging
subject that needs to understand the physical characteristics of fluids and their
behavior under different conditions [45].

2.3 Hydraulic diameter

The hydraulic diameter represents a measure of the effective internal diameter
of any cross-sectional area of pipe or channel. It is a ratio of four times the
cross-sectional area of the pipe to its wetted perimeter [46]. It can be expressed
mathematically, Eq. 2.

Dy =4(A/P) (@]

The hydraulic diameter is useful for determining the fluid flow characteristics
inside pipes, such as the friction factor and Reynolds number [47]. The hy-
draulic diameter is used when dealing with non-circular pipes or channels, as
it provides an equivalent diameter that can be used in calculations as if the
flow were occurring in a circular pipe or channel. For example, the hydraulic
diameter of a rectangular cross-sectional pipe may be used as the equivalent
diameter of a circular cross-sectional pipe to calculate the friction factor [48].
Another important application of using hydraulic diameter is the calculation of
heat transfer for different geometries. In these cases, the hydraulic diameter is
used to calculate the heat transfer coefficient and overall heat transfer rate [49].
In summary, hydraulic diameter is an important parameter for calculations of
fluid flow and heat transfer in non-circular pipes or channels by providing an
equivalent measure of the internal diameter that can simplify calculations and
comparisons between different systems [50].
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Figure 3. Some applications of microchannel flow.

2.4 Governing equations

The Navier-Stokes equations and the energy equation are used to calculate
all fluid flow properties and heat transfer. Most studies of heat transfer inside
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microchannels neglect radiation calculations to simplify the solutions. Conti-
nuity, momentum, and energy equations used in this field are listed in Eq. 3,
[51].
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3. Methods of solution

Computational Fluid Dynamics (CFD) simulations and experimental techni-
ques can both be used to calculate all properties of fluid flow inside a micro-
channel. Some researchers prefer to use computational fluid dynamics (CFD)
simulations [52-59], while others use experimental techniques [60, 61]. In
general, both techniques are useful to study the flow inside microchannels, and
each of them has advantages and limitations. Available resources are the main
key to choosing methodology [51,62,63].

3.1 Experimental

Some experimental techniques use microscopic particles suspended in the fluid
to visualize the flow patterns of the fluid. Another technique is used to measure
the pressure drop across a microchannel at a known flow rate to determine the
flow resistance. Experimental techniques need specialized equipment and are
typically time-consuming and expensive [60,61, 64].

3.2 Numerical

The simulation involves creating geometry, creating a mesh, setting up bounda-
ry conditions, and solving the governing equations of fluid flow using numerical
methods. The simulation can provide a very accurate prediction of the velocity,
pressure, temperature, and other properties inside the microchannel. The accu-
racy of CFD simulations depends on many things, such as boundary conditions,
type of mesh, and setup [52-59].

3.2.1 COMSOL software

COMSOL is a great engineering software for modeling and simulating com-
plex physical systems in a wide range of scientific and engineering fields [65].
It allows researchers to create different virtual models, such as fluid dynamics,
heat transfer, chemical reactions, and electromagnetics. It can simulate how
all these models behave under different conditions. Academic study, industry,
and research institutions have used COMSOL software to create different
geometries and optimize new products and processes through simulations.
COMSOL helps to improve our understanding of the natural world [65]. The
biggest advantage of the COMSOL software is that it can be used easily, and
it has some of the important key features [65].

3.2.2 Ansys software

Ansys software is widely used in engineering and physics fields for numerical
simulations. Researchers can simulate and analyze huge cases in different
fields by using finite element analysis [66,67]. A lot of studies of stress and
strain, fluid dynamics, heat transfer, electromagnetic fields, and more are using
this software. It offers a variety of tools and features to create and simulate
complex models, and its powerful solver technology can accurately simulate
real cases [68,69]. Ansys contains mesh generation tools and a wide range of
turbulent models; therefore, huge academic studies depend on this software in
numerical studies.

3.2.3 MATLAB

MATLARB is widely used in computational fluid dynamics [70]. It can be used
to solve different fluid dynamics problems, including laminar and turbulent
flow, heat transfer, and multiphase flow. However, the usage of MATLAB in
fluid flow requires a deep knowledge of the tools of the program [71]. The main
steps to using MATLAB in simulations of fluid flow are as follows: Define
the problem and set up the governing equations [72]. Then, categorize the
governing equations using finite difference, finite volume, or finite element
techniques [73]. After that, write a code depending on which technique you use
[74]. Then, define the initial and boundary conditions for the case problem [75].
The next step is to run the code simulation to solve the governing equations
for the fluid flow variable within the entire domain [76].
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4. Geometric design of channels

Geometric design of pipes and channels is the process of determining the
optimal shape and dimensions of that pipe or channel required. The optimal
design of a pipe or channel means efficient and safe transport of water or other
fluids [77]. The main points in design involve consideration of various factors
such as flow rate and hydraulic efficiency. It requires an understanding of fluid
mechanics and hydraulic principles. Geometric design of pipes or channels
typically includes determining the cross-section, length, arrangement, and
slope measures [78].

4.1 Channels

A channel or pipe is typically a long enough, narrow, and enclosed structure
that is used to control the fluid flow, such as water, gas, or oil [79]. The great
design of a pipe or channel should provide efficient flow with minimal energy
loss due to friction. The main points of any design are the shape and dimen-
sions [80]. Determining the flow rate and the properties of the fluid that will
be transported is the first step in designing a channel. In addition to including
the viscosity, density, and temperature of the fluid [81, 82]. The most common
cross-sectional shapes of pipes and channels are circular, rectangular, and
trapezoidal [83]. The shape of the pipe or channel is determined by the flow
rate of the fluid and the conditions that the pipe or channel will be installed on
[84]. The hydraulic diameter is a significant factor in the design process of a
pipe or channel. It can be calculated as the ratio of four times the channel’s
cross-sectional area to its wetted perimeter [85]. The length of contact between
fluids and all ribs that make up the boundary of the cross-sectional area is
called the wetted perimeter. To calculate the flow rate and the velocity of the
fluid flow, the hydraulic diameter is used. To achieve efficient flow, the slope of
the pipe or channel would be chosen correctly [86]. The change in elevation of
the pipe position over a certain distance is called slope or gradient. It should be
steep enough to maintain flow but not so steep that there is excessive erosion
or turbulence [87]. In general, the cross-sectional design as well as the suitable
length of a channel is important in ensuring the efficient and safe transportation
of fluids. Choosing the shape of the cross-sectional area and its dimensions, the
length of the channel, and the slope of the channel must be selected carefully
to ensure that the channel works as designed and delivers the fluid to its target
destination with minimal energy loss [88].

4.2 Minichannels

A mini-channel has a geometry design that is a narrow and compact channel
that is used to transport any type of fluid. Mini-channels are usually used in
microfluidic devices for a wide range of uses, including chemical analysis,
medical diagnosis, and drug delivery [89].
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Figure 4. Rectangular microchannel heat sink.

The design and size of mini-channels are unique and differ significantly from
ordinary channels. The overall size of the mini-channel is typically less than a
millimeter in diameter, which means that the properties of flow reveal different
behavior than ordinary channels. The fluid flow in mini-channels is laminar
due to the low maximum velocity of flow, meaning that the flow inside the
mini-channel is streamlined without any turbulence [90]. There are a lot of
different geometries of mini-channels used depending on the specific appli-
cation. However, the most common design shapes of cross-sectional area in
mini-channels are rectangular and circular. The mini-channel with the rec-
tangular cross-section has a maximum surface area, which means maximum
heat transfer. This reason is enough to select this type in applications of heat
transfer and chemical reactions [91]. On the other hand, circular channels have
some advantages, such as being easy to make, having a low pressure drop, and
having a more uniform flow. Mini-channel design is typically characterized
by its aspect ratio, which is the ratio of the channel’s height or width to the
length of the mini-channel [92]. The flow properties and pressure drop inside
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mini-channels depend on the aspect ratio. Therefore, the aspect ratio is a criti-
cal factor in the design process. If the mini-channel has a lower aspect ratio,
then it can have lower pressure drops and is more suitable for microfluidic
applications such as lab-on-a-chip devices [93,94].

4.3 Microchannels

A microchannel has a special geometry design so that its dimensions are very
small. A tiny passage in the microchannel with a hydraulic diameter less than 1
millimeter is used for some important applications that need the controlled flow
of fluids. Microfluidic devices, heat exchangers, and chemical reactors are the
most common applications of minichannels [95]. There are different geome-
tries available for microchannels which are selected based on the application
and its requirements [57,96,97]. Some common geometries of microchannels
are:

4.3.1 Rectangular microchannel

Rectangular microchannels are widely used in microfluidics applications, as
they provide a more significant surface area for fluid-solid interaction and ther-
mal exchange. Many previous studies used a rectangular cross-sectional area
in microchannels because it has a lot of advantages [98—104]. The aspect ratio
(channel height to width ratio) of rectangular microchannels usually ranges
from 0.1 to 10 [105]. Figure 4 shows the rectangular microchannel heat sink
and its computational domain [106].

Heat Flux (@)

“ X3

Figure 5. Circular microchannel heat sink.

4.3.2 Circular microchannels

Circular microchannels offer some benefits over rectangular channels, like
more straightforward fabrication, easier cleaning, and lower surface area to
volume ratios. Because it has numerous advantages, circular cross-sectional
areas of microchannels have been used in many prior research [102, 103, 107].
However, circular channels may suffer from uneven fluid flow distribution and
reduced heat transfer efficiency [108]. Figure 5 shows the circular microchannel
heat sink [109].
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Figure 6. Trapezoidal microchannel heat sink.

4.3.3 Trapezoidal microchannels

Trapezoidal microchannels offer better fluid-dynamics performance than rec-
tangular or circular microchannels [103, 104, 110, 111]. They have a higher
thermal exchange capability as they have a larger surface area [112]. Figure 6
shows the trapezoidal microchannel heat sink [51].

4.3.4 Triangular microchannels

Triangular microchannels offer better fluid mixing due to their unique geo-
metry that provides swirling flows and a larger contact surface with the walls
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[100-102, 104]. This cross-sectional design leads to the creation of a laminar
flow pattern, and it has the lowest pressure drop compared to other microchan-
nel geometries [113]. This type of microchannel has a lot of uses, such as in
microfluidic devices for various biomedical applications. These applications
can be such as drug delivery, lab-on-a-chip systems, and cell analysis. The
large ratio of surface area to volume in this type of microchannel provides
high fluid pressure drop, efficient mixing, and increased heat transfer rates.
In general, triangular microchannels have become a popular tool in scientific
research and development. Figure 7 illustrates a triangular microchannel heat
sink [114].

4.3.5 Elliptic microchannels

An elliptic microchannel is a kind of microchannel with an elliptical cross-
sectional design. It can be used for many applications, such as microfluidic
devices, chemical sensors, and heat exchangers. One of the biggest advantages
is having a lower pressure drop compared to circular microchannels with the
same hydraulic diameter. Microchannels with elliptic cross-sectional area have
a higher surface-to-volume ratio than circular microchannels, and that can lead
to higher heat transfer rates [100, 101]. Figure 8 shows a sample of an elliptic
microchannel heat sink [115].

Figure 8. Elliptical microchannel heat sink.

5. Cooling fluid

Any liquid that is used to transfer heat away from any hot body or surface to
keep it from overheating is called a coolant or cooling fluid. A hot body can
be an engine or other machinery component. The cooling process circulates
through a closed system of pipes and connections to absorb heat generated by
the engine, heat source, or machinery, and then rejects this heat to the air by
using a heat exchanger or radiator. There are a lot of types of coolants, and each
of them can have different viscosities, colors, and other properties. Cooling
fluid keeps machinery from freezing in cold temperatures and melting in very
high temperatures. Many types of cooling fluids are available for different
applications. Usually, coolant is made from a mixture of water and antifreeze
or ethylene glycol [116-118].

5.1 Air

Most dissipating heat processes from a fluid use air as a cooling medium. In the
cooling process, heat is transferred from a higher temperature (fluid) to a lower
temperature (air), which can carry the heat away [119]. Many applications
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use the air-cooling process, such as car engines, electronic devices, industrial
processes, and power plants. Most of these applications used a heat exchanger
where heated fluid is passed inside a heat exchanger while air works to cool the
external surfaces of the heat exchanger [120]. After the fluid loss, its heat can
circulate back into the system. All air that passes through the heat exchanger
is rejected externally [121]. Three types of air cooler processes are forced-air
coolers, natural convection coolers, and hybrid coolers [122]. If air is forced
to move over the heat exchanger by using a fan or blower, then the process
is called forced-air cooling [123]. Any system without any external device
to force the air is called a natural convection cooler [124]. Hybrid coolers
combine forced-air coolers and natural convection coolers. A fan or blower
is used to enhance natural convection [125]. Using the air-cooling technique
has some advantages, which are low maintenance, lower cost, and portability
[126]. On the other hand, the air-cooling technique has some limitations, such
as lower heat transfer efficiency compared to the liquid cooling technique and
reduced performance in high-temperature environments [127]. The efficiency
of air-cooling techniques depends on some parameters such as airflow rate,
ambient temperature, and cooling system design [128, 129].

5.2 Water

In the last years, several researchers studied the application of water as a medi-
um in microchannel heat sinks. Water in microchannels has many important
applications, such as electronics cooling, chemical and biological analysis, and
microfluidic devices [130, 131]. The flow rate of water inside the microchannel
heat sink is significantly reduced because of the small cross-sectional area.
And that can improve efficiency and control of temperature. This is a great
idea with small amounts of fluids or biological samples. Flowing of water
inside microchannels shows higher convective heat transfer coefficients than
bulk fluids because of the higher velocity of water near the microchannel walls
[99, 101]. This phenomenon can lead to improved cooling capacity, making
microchannels an excellent choice for thermal management in electronics and
other applications [104, 132].

5.3 Ethanol

Using ethanol as a cooling fluid inside microchannels is not recommended
because it has a low boiling point and may cause risks of flammability and
safety hazards. Ethanol is dangerous and must be handled with particular
care because it is a highly flammable substance [133]. Therefore, very few
researchers used ethanol. And it is recommended to use alternative cooling
fluids. They are specifically designed for cooling applications [134]. Ethanol
has another limitation, which is low specific heat capacity. It can only absorb a
smaller amount of heat energy per unit mass, so using it as a cooling fluid can
also be ineffective [135]. More quantity of ethanol is required to cool a given
system, which means it is more expensive than other cooling fluids. Another
significant limitation of ethanol is that it is corrosive and can damage some
materials [136]. This point can lead to leaks and decreased system efficiency
because most cooling systems have rubber, plastic, and some metals. In general,
using ethanol as a cooling fluid in industrial applications is not recommended
because it has many limitations [137].

6. Conclusion

This study offers a thorough, current analysis of flow and heat distribution
in microchannels. This article aims to inspire scientists to focus more on the
performance of heat exchanger systems by encouraging them to analyze he-
at transfer in microchannels. Circular microchannels are more efficient than
rectangular channels in terms of straightforward fabrication and easier clea-
ning. Trapezoidal microchannels offer better fluid-dynamic performance than
rectangular or circular microchannels because they have a larger surface area,
which leads to a higher thermal exchange capability. Elliptic cross-sectional
area provides lower pressure drop compared to circular microchannels, and
that leads to higher heat transfer rates. There are many software programs
used to simulate the flow and heat transfer in all types of channels. The overall
behavior of fluid flow inside the channel and microchannel is not similar. Case
in point: the hydrodynamic and thermal entrance regions in microchannels are
smaller than in channels. The other conclusion that can be reached from the
currently available data is that water is the best medium for heat exchangers in
microchannels, while ethanol has many limitations. The highest heat transfer
occurs in the entrance region of microchannels, and it decreases as the flow
moves away from the entrance because the thickness of the boundary layer is
as small as possible from the beginning of the inlet of the microchannel and
then increases with the direction of flow.
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