

AL-KUNOOZE SCIENTIFIC JOURNAL ISSN: 2706-6231 E ,2706-6223 P

Vol.11 No.4 (2025)

Study Of The Concentration Of Gaseous Pollutants And Assessment Of Air Quality In Some Selected Urban Areas Of Anbar Governorate

Omar Khalil Jumaa¹ Mohammed Fadhil Abood²

^{1,2} Department of Biology, College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq.

Corresponding Author Email Address: oma23u1011@uoanbar.edu.iq

ORCID ID: https://orcid.org/0009-0000-1379-7328

Abstract

This study evaluated the air quality in some areas of Anbar Governorate based on the concentrations of air pollutants such as carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and ozone (O₃). The study results showed varying concentrations of some air pollutants (SO₂ and NO₂) exceeded the national and international standards at 0.36 ppm and 0.0193 ppm, respectively. The concentrations of CO and NO₂ were below the permissible limits. The results of the study revealed regional differences in the concentrations of pollutants. The industrial areas had the highest NO₂ concentrations, while the commercial areas had the highest CO and SO₂ concentrations, and the residential areas had the highest O₃ concentrations. The study evaluated the health effects of air pollutants in the examined area by utilizing the Air Quality Index (AQI), which is a standardized numerical scale designed to indicate air pollution levels and their implications for public health. Pollutants within the study were categorized on a scale ranging from 0 to 350. Findings revealed differences in pollution levels across the sites, with nitrogen dioxide falling under the "good" category, while sulfur dioxide reached the "hazardous" category.

Keywords: Include air pollution, Air pollutant gases, Air quality.

Introduction

Air pollutants are one of the environmental issues that have received wide attention from researchers and specialists in countries around the world because of their direct impact on the stability of ecosystems and human health, especially in urban areas that are witnessing industrial

expansion, economic growth, and population density, becoming one of the most prominent environmental and health challenges in the modern era. [1].

Gaseous pollutants such as carbon monoxide, sulfur dioxide, nitrogen dioxide, and ozone are among the most widespread and dangerous pollutants to the environment. Their increased concentrations affect the quality of air in the environment, as statistics indicate that approximately 6.5 - 7 million deaths occur annually in the world due to their significant contribution to the increased incidence of heart, blood vessel, and respiratory diseases. [2] In addition to its role in climate change, the phenomenon of global warming is significant [3].

This field study was launched to understand the reality of gaseous pollution in some selected areas (industrial, residential, commercial) in Anbar Governorate. It relied on a descriptive approach that focuses on studying the spatial and temporal variation of pollutant levels and comparing them with national and international determinants, converting them into qualitative indicators using the air quality index standards to contribute to classifying air quality in each region in a scientific and simplified manner. Based on that, this study aimed to:-

- 1- Analyzing the concentration of gaseous pollutants (CO, O₃, NO₂, SO₂) in different areas of Anbar Governorate and comparing them with national and international standards.
- 2- Study of Air Quality Index standards to help improve local air quality

Working Methods

Research Duration

The study covered four months, starting in November 2024 and continuing through January, March, and April 2025.

Study Site:-

The study was conducted in Anbar Governorate, located in western Iraq. Twentyone air pollutant monitoring stations were selected, distributed as follows: 10 industrial, 6 residential, 4 commercial, and 1 control station within the districts of Anbar Governorate, as shown in **Table 1**.

Region	Station number	Station Description	Region	Station number	Station Description
	A9	Haditha		A4	Residential complex in Kubisa district
	A5	Inside the Haditha refinery, at its center		A8	Haditha Refinery Residential Complex K3
	A6	Outside the Haditha refinery, upwind	Residential	A11	Haditha
1	A7	Outside the Haditha refinery, downwind		A14	Hit
stria	A12	Hit		A17	Ramadi
Industrial	A1	Inside the Kubisa Cement Factory at its center		A20	Fallujah
	A2	Outside the Kubisa cement factory, upwind		A10	Haditha
	A3	Outside the Kubisa cement factory, downwind	Commercial	A13	Hit
	A15	A15 Ramadi		A16	Ramadi
	A18	Fallujah		A19	Fallujah

*Control station (A21) was selected in a rural location far from pollution sources

Air Gas Concentration Measurement

Pollutant concentrations were measured, and readings were collected using specialized devices. A German-made Dräger 6500 and a Chinese-made Air Quality Detector were used to measure the concentration of gaseous air pollutants, including CO, SO₂, NO₂, and O₃, which were measured in parts per million.

Number of Recorded Readings

To ensure accurate measurements, pollutants were measured at the same time each month for all stations. Three readings were taken per week, or 12 readings per month for each pollutant. The average of these readings was then calculated to represent the monthly

average. This applied to all 21 stations throughout the study period.

Evaluating Air Pollutants Using the Air Quality Index

It is well known that air pollutants have a direct impact on human health, increasing the risk of heart and respiratory diseases. Acute, short-term inhalation of pollutants can lead to changes in lung function and the cardiovascular system, potentially leading to The measured concentrations of death. pollutants at the study sites do not provide a complete picture of the nature and severity of pollution. To provide an accurate and comprehensive picture of pollution levels, the

Air Quality Index (AQI) was used as a pollution assessment tool.

The Air Quality Index (AQI) is a standardized measure of air quality that uses numbers to describe the air quality in a given location and to express the level of health risks associated with gaseous and particulate air pollutants. **Table 2,** according to the US Environmental Protection Agency (EPA), shows the AQI values based on the concentrations of major pollutants (carbon monoxide, nitrogen dioxide, ozone, and sulfur dioxide) [4].

Table (2) Air Quality Index values and corresponding concentrations of each pollutant [4]

Value	The category to which each pollutant corresponds in units of measurement parts per million (ppm)							
AQI	SO ₂	O ₃	NO ₂	CO				
0-50	0-0.035	0-0.058	0-0.035	0 -4.4				
51-100	0.036-0.075	0.059-0.074	0.036-0.1	4.5-9.4				
101-150	0.076-0.185	0.075-0.094	0.101-0.360	9.5 -12.4				
151-200	0.186-0.304	0.095-0.114	0.361-0.649	12.5- 15.4				
201-300	0. 305-0.604	0.115-0.373	0.650-1.244	15.5- 30.4				
301-500	0.605-1.004	0. 374 واكثر	1.245-2.049	30.5-50.4				

To distinguish between air quality and poor air quality, **Table (3)** sets the agency's six categories for AQI values (good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, and hazardous) and for each

category (green, yellow, orange, red, purple, and dark red) respectively, to provide a description of that region and its effects on human health [5].

Table (3) Values and description of the air quality index and health effects of air pollutants [5]

Value AQI	Air Pollution Level	Health Implications
0 -50	Good	Poses little or no risk human health.
51-100	Moderate	Very few symptoms in people at high risk of allergies.
101-150	Unhealthy for sensitive groups	Minor symptoms may occur in people with allergies, and some healthy people may develop symptom
151-200	unhealthy	members of sensitive groups may experience more serious health effects
201-300	Very unhealthy	Exacerbation of symptoms in people most and decreased tolerance in healthy members of the population, which may require taking emergency measures for and members of sensitive.
301-500	Hazardous	Healthy people suffer from decreased endurance and negative symptoms that affect normal activity. In addition, patients must stay at home.

Calculating the Air Quality Index Value

The recorded concentrations of each pollutant are converted to index values by limiting them between two values, as shown in Table

10. Then, the Air Quality Index value is calculated by applying the following linear equation [6]:-

$$IP = \frac{(I_{\text{Hi}}\text{-}I_{\text{LO}})}{(BP_{\text{Hi}}\text{-}BP_{\text{Lo}})} + I_{\text{Lo}}$$

Whereas:

IP = Pollutant Index

CP = Approximate Pollutant Measurement Concentration

I_{Hi} = AQI value corresponding to

 $I_{Lo} = AQI$ value corresponding to BP_{Lo}

BP_{Hi}

 BP_{Hi} = Breakpoint value above CP

 BP_{Lo} = Breakpoint value above CP

AQI = Maximum (IP)

Based on the linear equation, the concentration data of each pollutant is calculated to obtain the value of the air quality index at that location separately. The highest value of the index during the study months for that location becomes the final value of the air quality index.

Statistical Analysis

SPSS [7] was used to conduct appropriate statistical tests on the recorded pollutant concentrations. Some descriptive statistics were used to calculate the overall mean and standard deviation, the one-way variance test, and the (Tukey) test. To calculate the quality index value, a linear equation was used to determine the index value for each pollutant.

Results and Discussion.

1-Environmental Assessment of Pollutants by Concentrations

Carbon Monoxide Concentration

The findings presented in Table (4) indicate that the average concentration of carbon

monoxide (CO) was 2.74 ppm, with a standard deviation of 1.35. The maximum and minimum values for the recorded gas concentrations were 0.28 and 7.63 ppm, respectively, indicating a relative dispersion between the concentrations.

As noted in the same table, there is a temporal variation in gas concentrations and study months. The highest concentration was recorded in January at 7.63 ppm at station (A16 Ramadi Residential), followed by the months of March and November. With concentrations of (6 and 5.88) ppm, respectively, at (A19 Ramadi Commercial). The lowest concentration was recorded in April at 2.82 ppm at station (A16 Ramadi Residential). Conversely, the highest temporal average for the study months was recorded in

January at (3.477) ppm, while the lowest monthly average was recorded in April at (2.134) ppm. As a result of the decrease in temperatures this month, along with the relative stability of wind movement and the occurrence of the phenomenon of thermal inversion, it contributed to the accumulation of gas close to the Earth's surface and its non-dispersal. This consistent with the results of the study [8], which indicated the role of climatic factors in increasing the concentration of CO gas during climate change. While April recorded the lowest monthly average, the gradual rise in temperatures, along with the increase in wind speed, led to the dispersion of gas

concentrations, and this is consistent with [9].

Table (4) shows carbon monoxide concentration in the study regions and months.

Region	Station number	Nov.	Jan		Mar.		Apr.	Spatial Average
	A9	1.83	2.18	3	1.58		0.9	1.623
	A5	1.75	3.18	3	2.68		2.66	2.568
	A6	1.5	2.68	3	2.25	1.85		2.07
1	A7	1.58	3.35	5	3.18		1.07	2.295
stria	A12	4.16	2.6		2.75		1.13	2.66
Industrial	A1	1.49	3.68	3	2.17		2.28	2.405
Ι	A2	1.46	3.1		1.66		2.48	2.175
	A3	1.81	2.43	3	2.75		1.05	2.01
	A15	2.83	4.73	3	3.83		3.93	3.83
	A18	2.68	4.38	3	4.85		2.28	3.548
	A4	1.58	3.05	5	2.08		0.28	1.748
al	A8	0.75	2.88	3	3.08		0.71	1.855
Residential	A11	0.41	2.13	3	4.25		1.95	2.185
esid	A14	1.25	3.08		2.08		2.02	2.108
R	A17	2.14	4.3		3.92	2.26		3.155
	A20	2.54	3.48	3	3.92		2.62	3.14
ial	A10	5.83	2.9'	7	2.25		1.93	3.245
nerc	A13	1.83	3.9′	7	3.33		1.82	2.738
Commercial	A16	4.75	7.63	3	4.91		2.82	5.028
C	A19	5.88	3.75	5	6		2.79	4.605
	Average	2.402	3.47		3.027		2.134	2.762
Cont	rol (A21)	0.21	0.4		0.85	40 41	0.96	0.21
Local En	<mark>vironmental</mark>	Determinar	nt		om According th and Enviro			mstry of
Global E	Environmenta	l Determina	int	35pp Envi	m Global s ronmental Pro			ording to the (2024)
Minim	um Max	ximum	Mean				ariance	
0.28	7	7.63	2.74		1.35			1.84

According to the results of the statistical analysis shown in **Table 5** for the one-way variance test between carbon monoxide concentration and study months, the value of P = 0.005, indicating the presence of

statistical significance. The Tukey test for pairwise comparison between months showed a value of (p < 0.05) between November - January, January - April, indicating the presence of a statistically significant

difference between those months. While the probability values of (P > 0.05) were recorded for the pairwise comparison of the remaining

months to indicate the absence of statistical significance between them .

Table (5) Results of statistical analysis of CO concentration for study areas and months

	Month	Mean	Comparison Between Two Months	Mean Difference	Std. Error	p-value
			Nov Jan.	-1.07500*	.40235	0.045
Monthly	November	2.402	2.402 Nov Mar.		.40761	0.423
Concentration	January	3.477	NovApr.	.26774	.39753	0.907
	March	3.027	Jan Mar.	.45013	.40761	0.688
	April	2.134	Jan_Apr.	1.34274*	.39753	0.006
			Mar Apr	.89261	.40285	0.128
	A	NOVA p =	0.005 F = 4	.615		
Region	Region	Mean	Comparison Between Two Regions	Mean Difference	Std. Error	p-value
Concentration	Residential	74.75	Ind Com.	39.088*	6.116	0.001
	Commercial	83.56	IndRes.	47.900*	7.007	0.001
	Industrial	122.65	Com Ind.	-8.813	7.646	0.485
		ANOVA	p=0.001 F=8.7	778		

Regarding spatial variation, Table (4) showed a disparity between CO concentration and the study areas, where the highest concentration was recorded in industrial areas at 4.85 ppm in April for station (A18 Ramadi). In residential areas, the highest recorded concentration was 4.3 parts per million in (A17 Hit) for January, while in commercial areas, station (A16 Fallujah) recorded the highest concentration at 7.63 ppm in January. The highest spatial rate of CO was recorded in commercial areas at 3.903 ppm, while the lowest spatial rate was recorded in residential areas at 2.365 ppm. Commercial areas witness heavy traffic and obvious vehicle congestion.

As a result of incomplete fuel combustion in their engines, carbon monoxide gas is emitted from their exhausts. With the presence of tall buildings, ventilation is impeded, and the gas is dispersed, contributing to high concentrations being recorded in those areas. This is consistent with the study [10], which concluded that commercial areas with high traffic density record high concentrations similar to those in industrial areas.

The results of the statistical analysis in **Table**5 showed that there is a significant statistical relationship between the concentration of carbon monoxide gas and the study areas. The

probability value is P = 0.001 for the one-way variance test. When conducting a pairwise comparison of the average differences between the areas, the two areas (industrialresidential, commercial-residential) showed a probability value of (P < 0.05), which confirms the existence of significant statistical differences between them, while (industrialcommercial) had a value of (P > 0.05), indicating that despite the existence of differences between the averages of the two areas, they are not considered statistically significant differences. Based on the results of the CO concentration recorded in Table 4, all levels in the study stations and their spatial and temporal rates were above the rate of the control station (A21). When comparing the recorded concentrations with the national gas limit of 35 parts per million according to [11], and the global limit of 35 parts per million according to [12]. It was shown that all stations did not exceed the permissible national and global limits.

Sulfur Dioxide Gas Concentration

The results in **Table 6** showed that the overall average for sulfur dioxide gas was 0.18 ppm, with a standard deviation of 0.07. The minimum and maximum values recorded were 0.06 and 0.36 ppm, respectively, indicating a relative dispersion between values due to the combined influence of climatic factors and various human activities.

Table (6) noted a temporal variation between sulfur dioxide gas concentrations and the study months. The highest concentration was recorded in January, at 0.36 ppm, in A15 (Commercial Ramadi), followed by March and April, at 0.32 ppm, in A12 (Haditha Industrial) and A15 (Commercial Ramadi), respectively. The lowest gas concentration was recorded in April, at 1.18 ppm, in the A10 (Haditha Commercial) station. While the highest temporal average was recorded in January, with an average of 0.255 ppm, the lowest monthly average was recorded in April, with an average of 0.120 ppm.

In January, the highest median value was recorded, with a wide variation between the values of the upper and lower limits. Naturally, the decrease in temperatures in this month led to a lack of dispersion of the gas, which contributed to the increase in its recorded concentrations [13]. Meanwhile, April recorded the lowest rate as a result of the decrease in the median rate value and its proximity to the upper and lower limits. This decrease is explained by the increase in the average wind speed with the rise temperatures, which contributed to dispersion of the gas and the reduction of its rates. This is consistent with what was concluded by [14]. Who confirmed that climatic factors have a clear role in recording an increase or decrease in the concentrations of sulfur dioxide gas?

Table (6) Concentration of sulfur dioxide in the study areas and months

			Lir	mit		L	imit		L	imit		Li	mit	Spatia
Region	Station number	Nov.	National	Global	Jan.	National	Global	Mar.	National	Global	Apr.	National	Global	l Avera ge
	A9	0.17			0.32			0.27			0.14			0.225
	A5	0.15			0.31			0.26			0.17			0.223
	A6 A7	0.17			0.34			0.15			0.11			0.193
_	A12	0.23			0.3			0.32			0.16			0.253
Industrial	A1	0.14			0.28			0.29			0.12			0.208
Indu	A2	0.09			0.19			0.15			0.06			0.123
	A3	0.13			0.24			0.22			0.11			0.175
	A15	0.32			0.3			0.27			0.12			0.253
	A18	0.31			0.2			0.31			0.1			0.23
	A4	0.11			0.12			0.19			0.08			0.125
=	A8	0.08			0.11			0.18			0.12			0.123
Residential	A11	0.1			0.2			0.25			0.07			0.155
Resid	A14	0.14			0.26			0.19			0.14			0.183
	A17	0.11			0.23			0.17			0.14			0.163
	A20	0.13			0.27			0.11			0.09			0.15
Te Te	A10	0.19			0.22			0.16			0.18			0.188
ommercial	A13	0.23			0.27			0.11			0.09			0.175
Omn	A16	0.21			0.36			0.14			0.15			0.215
Ŭ	A19	0.09			0.27			0.07			0.17			0.15
Time A	verage	0.16 4			0.25 5			0.208			0.12			0.187
Contro	1 (A21)	0.04			0.08			0.04			0.02			0.045
Local En	vironmental	Determ	inant											at (2018)
Glo	bal Enviror Determina				m Globa ncy (202		ndard a	ecording	to th	e Enviro	onmenta	l Pro	tection	
	olor indicate ne national a	es that th		centrat	ion	,	_	en color the natio						
	Varianc	e		Std	. Devia	tion		Mean		Maxi	mum		Minir	num
	0.06				0.36			0.18		0.0	78		0.0	06

The results of the statistical analysis in Table

(7) showed that there is a significant statistical

relationship between the concentration of sulfur dioxide gas and the months of the

study, as the probability value P=0.001 was recorded for the one-way analysis of variance test. When conducting a pairwise comparison of the average differences between the months, (November - January, January - April, March - April) showed a probability value of (P < 0.05), which confirms the

existence of significant statistical differences between them, while the rest of the months showed (P > 0.05), indicating that despite the existence of differences between the averages of the two regions, they are not considered statistically significant differences.

Table (7) Results of statistical analysis of SO₂ gas concentration for the study areas and months

	Month	Mean	Comparison Between Two Months	Mean Difference	Std. Error	p-value					
M (11			Nov Jan.	-0.09050*	0.0191	0.001					
Monthly Concentration	November	0.1645	Nov Mar.	-0.04392	0.0193	0.115					
	January	0.2550	NovApr.	0.04450	0.0188	0.095					
	March	0.2084	Jan Mar.	0.04658	0.0193	0.085					
	April	0.1200	Jan_ Apr.	0.13500*	0.0188	0.001					
			Mar Apr	0.08842*	0.0191	0.001					
	ANOVA p = 0.001 F = 18.736										
	Region	Mean	Comparison Between Two Regions	Mean Difference	Std. Error	p-value					
Region Concentration	Residential	0.1496	Ind Com.	0.15325	0.3202	0.882					
	Commercial	0.1819	Ind. Res.	-1.38550*	0.3668	0.001					
	Commercial		_								
	Industrial	0.2093	Com Ind.	-1.38550*	0.3668	0.001					

The results in **Table (6)** show that there is a spatial variation between the concentration of SO₂ gas and the study areas, where the highest concentration of 0.36 ppm was recorded in the commercial areas of station A16 (Fallujah), followed by the industrial areas with 0.28 ppm for station A1 (Kubisa Cement Factory Center), and then the residential areas, where the highest recorded concentration was 0.27 ppm in A20 (Residential Fallujah) for the month of January. While the highest spatial rate of SO₂ gas was recorded in the industrial areas, reaching 0.2093 ppm, the lowest spatial rate

was recorded in the residential areas with a concentration of 0.1496 ppm. The reason for the high concentrations of SO₂ in industrial areas may be due to industrial processes and fuel combustion, similar to the study by [15]. Commercial areas recorded higher concentrations than residential areas due to vehicle emissions. This study is consistent with the findings of [16]. The results of the statistical analysis in Table (7) showed a significant relationship between the concentration of sulfur dioxide and the study areas, as the probability value was recorded at P = 0.04 for the one-way variance analysis of

variance test. When conducting a pairwise comparison of the mean differences between the areas, the two areas (industrial-residential, commercial-residential) showed a probability value of P < 0.05, confirming the presence of significant statistical differences between them. Meanwhile, the industrial-commercial comparison showed a probability value of P > 0.05, indicating that despite the existence of differences between the averages of the two areas, they are not considered statistically significant differences. When comparing SO₂ gas concentrations between the stations selected for the study and the monitoring it station. was found that all concentrations recorded in the selected stations were higher than the values recorded for the control station during the study months. Most of the study stations showed that they exceeded the [17]. except for A2 outside Kubisa Cement Factory, A11 Haditha Residential, and A19 Fallujah Commercial. A comparison with the local limit showed varying exceedances according to the regions and months, as the red color in Table (6) indicates that the concentration exceeded the nationally and globally permissible limit, while the green color indicates that the concentration did not exceed the nationally and globally permissible limit.

Nitrogen Dioxide Concentration

The results in **Table (8)** showed that the overall average for nitrogen dioxide gas was (0.007318) ppm, with a standard deviation of

0.003399, while the minimum and maximum values for the recorded concentrations were (0.0014 and 0.0193)ppm, respectively. The discrepancy between the recorded values is explained by the overlapping influence of climatic factors and various human activities. While the results of the study in Table (8) showed the presence of temporal variation between the concentration of nitrogen dioxide gas and the study months, the highest concentration was recorded in January with a concentration of (0.0193) ppm at the station (A18 Fallujah Industrial), followed by the of (November, months April) with concentrations of (0.0124, 0.0089ppm at (A18 Fallujah Industrial, A13 Hit Commercial), respectively. Meanwhile, the lowest concentration of (0.0088) ppm was recorded in March at the station (A16 Ramadi Commercial). On the other hand, the highest temporal average for the study months was recorded in January with (0.01101) ppm, while the lowest monthly average was recorded in April with (0.01101) ppm. The increase in NO₂ concentration in January is attributed to increased human activities, fossil fuel consumption, and climatic conditions that hinder the dispersal of the pollutant, such as thermal inversion, which contributes to the trapping of the pollutant in the lower atmosphere. Furthermore, the decrease in wind movement reduces the dispersal of the pollutant. A study by [17]. Confirmed that the winter months are more polluted with NO₂

due to increased gas emissions from activities and poor ventilation. Conversely, a relative rise in temperatures, coupled with increased wind movement in April, enhanced the dispersal of the gas in the atmosphere, while a decrease in fuel consumption reduced NO₂ emissions. This is consistent with a study by [18] that found increased temperatures lead to a decrease in NO₂ concentration due to the influence of climatic and human factors.

Table (8) Nitrogen dioxide concentration in the study areas and months

Region	Station numbe	NAT.	Jan.	Mar.	Apr.	Spatial Average	
	A9	0.0086	0.0115	0.004	0.0061	0.00755	
	A5	0.0045	0.0156	0.0055	0.0057	0.007825	
	A6	0.0054	0.0151	0.0067	0.0049	0.008025	
_	A7	0.0084	0.011	0.0036	0.0057	0.007175	
stria	A12	0.0065	0.0133	0.0068	0.0071	0.008425	
Industrial	A1	0.0097	0.0161	0.009	0.0046	0.00985	
I	A2	0.0072	0.0113	0.0041	0.005	0.0069	
	A3	0.007	0.0157	0.0042	0.0048	0.007925	
	A15	0.0059	0.0118	0.0051	0.0052	0.007	
	A18	0.0124	0.0193	0.0081	0.006	0.01145	
	A4	0.0073	0.0089	0.0043	0.0041	0.00615	
=	A8	0.0082	0.0114	0.004	0.0018	0.00635	
Residential	A11	0.0069	0.0074	0.0059	0.0028	0.00575	
esid	A14	0.0072	0.0091	0.0051	0.0023	0.005925	
R	A17	0.0065	0.0079	0.0014	0.0044	0.00505	
	A20	0.0065	0.0093	0.0064	0.0035	0.006425	
ial	A10	0.009	0.0096	0.0068	0.0059	0.007825	
Commercial	A13	0.0089	0.004	0.0074	0.0089	0.0073	
omn	A16	0.0083	0.0066	0.0088	0.0079	0.0079	
ŭ	A19	0.0045	0.0052	0.0064	0.0061	0.00555	
Time .	Average	0.0074	5 0.01101	0.00564	0.0052	0.00732	
Contr	ol (A21)	0.0015	0.0015	0.0017	0.0019	0.00165	
Loca	ıl Enviro	<mark>imental Dete</mark>	rminant			e Iraqi Ministry nment (2018)	
Glob	al Enviro	nmental Dete	erminant	0.1ppm Global standard according to the Environmental Protection Agency (2024)			
Minin	num	Maximum	Mean	Std. Dev	Variance		
0.00	14	0.0193	0.007318	0.0033	399	0.0001	

The results of the statistical analysis in **Table** (9) showed that there is a significant statistical relationship between the concentration of nitrogen dioxide gas and the months of the study, as the probability value P = 0.004 was recorded for the one-way analysis of variance test. When conducting a pairwise comparison of the average differences between the months, (November - January, November - April) as well as (January - March, January -

April) showed a probability value of (P < 0.05), which confirms the existence of significant statistical differences between those months. Meanwhile, it showed insignificant differences for the pairwise comparison between the rest of the months, as it was (P > 0.05), indicating that despite the existence of differences between the averages of the two regions, they are not considered statistically significant differences.

Table (9) Results of statistical analysis of NO₂ gas concentration for the study areas and months

	Month	Mean	Comparison Between Two Months	Mean Difference	Std. Error	p-value
Monthly Concentration			Nov Jan.	003560*	.0008058	0.001
	November	0.00744	Nov Mar.	.0018029	.0008163	0.130
	January	0.01100	NovApr.	.0022450*	.0007961	0.031
	March	0.00564	Jan Mar.	.0053629*	.0008163	0.001
	April	0.00520	Jan_ Apr.	.0058050*	.0007961	0.001
			Mar Apr	.0004421	.0008068	0.947
		ANOVA p	=0.004 $F=21$.552		
Region	Region	Mean	Comparison Between Two Regions	Mean Difference	Std. Error	p-value
Concentration	Residential	0.00594	Ind Com.	.0022708*	0.00085	0.025
	Commercial	0.00714	Ind. Res.	0.00107	0.00097	0.519
	Industrial	0.00821	Com Ind.	0.001202	0.498	0.498
	A	NOVA p=	=0.032 F=3.	593		

The results in **Table (8)** show that there is a spatial variation between the concentration of SO₂ gas and the study areas, where the highest concentration of 0.0193 ppm was recorded in the industrial areas of the station (A18 Fallujah), followed by the residential areas with 0.0114 ppm for the station (A8 residential neighborhood for employees of the K3 refinery), and then the commercial areas

(0.0096 ppm) in (A10 Haditha). While the highest spatial rate of SO₂ gas was recorded in the industrial areas, reaching 0.008213 ppm, the lowest spatial rate was recorded in the residential areas with a concentration of 0.005942 ppm.

Industrial human activities that rely heavily on fossil fuels, especially large vehicles (trucks, machinery), lead to increased

pollution levels. A study by [19]. Indicates that industrial emissions represent one of the primary sources of NO₂ pollutants in the air. Residential areas recorded the lowest concentrations of the gas due to reduced human activities, which are limited to the use of private vehicles. According to a study by [20]. Residential areas recorded lower levels of NO₂ compared to areas with high industrial or commercial density.

The results of the statistical analysis in Table (9) showed the existence of a significant statistical relationship between the concentration of nitrogen dioxide gas and the study areas, as the probability value was recorded at P = 0.032 for the one-way analysis of variance test. When conducting a comparison of pairwise the differences between the areas, the two areas (industrial - residential) showed a probability value of (P < 0.05), which confirms the existence of significant statistical differences between them, while (industrial - commercial, residential commercial) showed probability value of (P > 0.05), indicating that despite the existence of differences between the averages of the two areas, they are not considered statistically significant differences.

Ozone Gas Concentration

The results in **Table (10)** showed that the overall average ozone gas level was 0.045790 ppm, with a standard deviation of 0.003399. The values ranged between 0.021 and 0.0891 ppm. The dispersion of values is explained by

the combined influence of climatic factors and various human activities.

The results of the study in **Table (10)** showed temporal variation between nitrogen dioxide concentrations and the study months. The highest concentration was recorded in April, at 0.0705 ppm, at Station A5 inside the Haditha Refinery. This was followed by March, January, and November, with concentrations reaching 0.0586, 0.0479, and 0.0446 ppm in A17 Ramadi Residential, A4 Kubisa Residential Complex, and A16 Ramadi Commercial, respectively. On the other hand, the highest temporal average for the study months was recorded in April, with a concentration of 0.0891 ppm, while the lowest monthly average was recorded in January, with a concentration of 0.03481 ppm.

Temperature and solar radiation intensity activate photochemical reactions between nitrogen volatile oxides and organic compounds in the nearby atmosphere, contributing formation to ozone [21]. Therefore, high temperatures April contribute to increased activity of these reactions, leading to a gradual increase in ozone concentration in the atmosphere with increasing temperature [22]. Meanwhile, low temperatures coupled with decreased solar radiation intensity in January photochemical reactions, contributing to a decrease in ozone concentration in the atmosphere, consistent with the study by [23].

Table (10) Ozone gas concentration in the study areas and months

Region	Station number	NAV		Jan.	Mar.	Apr.	Spatial Average
	A9	0.0289		0.0291	0.0322	0.0393	0.03237
	A5	0.0342		0.0293	0.0519	0.070	0.04647
	A6	0.0359		0.03	0.0397	0.0471	0.03817
la al	A7	0.0253		0.0319	0.0506	0.0607	0.04212
Industrial	A12	0.0384		0.0288	0.0516	0.0552	0.0435
npı	A1	0.0243		0.0351	0.0449	0.0605	0.0412
In	A2	0.0376		0.0263	0.045	0.0531	0.0405
	A3	0.0299		0.0227	0.0512	0.0685	0.04307
	A15	0.0352		0.0312	0.0582	0.0557	0.04507
	A18	0.043		0.0285	0.0503	0.0675	0.04732
	A4	0.0431		0.0474	0.0576	0.0634	0.05287
ial	A8	0.041		0.041	0.0483	0.0773	0.0519
Residential	A11	0.0438		0.0452	0.0422	0.0617	0.0482
sid	A14	0.0437		0.0434	0.0565	0.0651	0.05217
Re	A17	0.0414		0.0436	0.0586	0.0682	0.05295
	A20	0.038		0.0452	0.0397	0.0891	0.053
ial	A10	0.0326		0.0313	0.0551	0.0535	0.04312
Commercial	A13	0.0437		0.0353	0.0506	0.075	0.05115
mm	A16	0.0446		0.029	0.0483	0.0599	0.04545
Co	A19	0.021		0.0419	0.0523	0.0653	0.04512
Time	Average	0.03628	3	0.03481	0.04907	0.06232	0.04562
Conti	rol (A21)	0.0025		0.0020	0.0264	0.0464	0.01932
Loc	al Environ	mental Deter	minant		0.1 ppm Accord Health and	ding to the Irac d Environment	
Glok	Global Environmental Determinant			0.070ppm Global standard according to the Environmental Protection Agency (2024)			
Minii	num	Maximum	Mean		Std. Deviation		ariance
0.00)21	0.0891	0.045790		0.0140316	5	0.001

The results in **Table (11)** showed that the probability value of the one-way variance test was recorded (P = 0.001), indicating the existence of a significant relationship with statistical significance between the concentration of ozone gas and the study months. Meanwhile, all pairwise comparisons of the Tukey test between the study months

recorded a probability value of (P < 0.05), confirming the existence of significant differences with statistical significance between those months. However, the comparison between November and January showed a non-statistical significance, as it was (P > 0.05).

Table (11) Results of statistical analysis of O₃ gas concentration for the study areas and months

	Month	Mean	Comparison Between Two Months	Mean Difference	Std. Error	p-value
Monthly			Nov Jan.	0.0014700	0.002661	0.946
Monthly Concentration	November	0.03628	Nov Mar.	-0.0127989*	0.002696	0.001
	January	0.03481	NovApr.	-0.0260486*	0.002629	0.001
	March	0.04907	Jan Mar.	-0.0142689*	0.002696	0.001
	April	0.06232	Jan_ Apr.	-0.0275186*	0.002629	0.001
			Mar Apr	-0.0132496*	0.002665	0.001
	A	NOVA p	=0.001 F $=4$	17.846		
Dogion	Region	Mean	Comparison Between	Mean Difference	Std. Error	p-value
Region	·		Two Regions			
Region Concentration	Residential	0.05185	Ind. Com.	-0.0098717*	0.003492	0.016
_	Residential Commercial	0.05185 0.04621		-0.0098717* -0.0042300	0.003492 0.004001	0.016 0.543
_			Ind. Com.			

In contrast, the results in Table (10) noted a spatial variation between the concentration of O₃ gas and the study areas, where the highest concentration of 0.0891ppm was recorded in the residential areas of the station (A20 Fallujah), followed by the industrial areas with 0.0705 ppm at the station (A5 inside the Haditha refinery), and then the commercial areas with 0.0653 ppm in (A19 Fallujah). While the highest spatial rate of O₃ gas was recorded in the residential areas, reaching 0.051854 ppm, the lowest spatial rate was recorded in the industrial areas, with a rate of 0.041983 ppm. This is due to the nature of the interactions and emission levels of primary pollutants that control ozone formation. Although industrial areas are the main source of nitrogen oxides (NO_x) emissions as a result of increased industrial activities or vehicle movement in them, the concentration of (NO)

interacts with ozone, which contributes to a decrease in its concentration in industrial areas. This was confirmed by a study[24].In contrast, residential areas record the highest concentration of ozone gas as a result of decreased industrial activities and vehicle movement, which leads to a decrease in the concentration of (NO) and thus results in an increase in the concentration of ozone gas in these areas, which is what was concluded by [25].

The results in **Table** (11) showed a significant, statistically significant relationship between NO_2 concentration and the study areas. The probability value (P) = 0.032 for the one-way variance test was recorded. When pairwise comparisons were made of the mean differences between the areas, (Industrial - Residential) showed a probability value of (P < 0.05), confirming

the presence of statistically statistically significant differences between them. Meanwhile, (Industrial-Commercial, Residential-Commercial) showed a probability value of (P > 0.05), indicating that despite the presence of differences between the averages of the two areas, these differences are not considered statistically significant.

Although the residential areas recorded the highest values of ozone gas concentration, the study results for all study areas did not exceed the nationally permissible limit. However, they exceeded the global standard at two stations (A5 inside the Haditha refinery with a concentration of 0.0705ppm and A20 Fallujah a residential with concentration 0.0891ppm), while the concentration of the station control was lower than concentrations of all the stations selected for the study.

2- Environmental Assessment of Pollutants by Air Quality Index Values Air Quality Assessment for Carbon Monoxide

Table (12) shows that the results of calculating the Air Quality Index (AQI) in the study areas and months vary temporally and spatially. Based on the Air Quality Index (AQI) classification, it was noted that the pollutant index (IP) ranged in November from 5 to 65, in January from 24 to 82, while in March it ranged from 18 to 65, and in April it ranged from 3 to 45. This means that all study

months, based on the pollutant index values, were recorded as moderate. This indicates that carbon monoxide gas (CO) can be considered moderate, with little impact on human health. In contrast, spatial variation showed that the industrial areas for the months of November and April had pollutant values ranging between 17-30 and 10-45 according to the air quality index, which falls within the good category. In April, site A15 Ramadi recorded the highest index value of 53, followed by March with a value of 54 at site A18 Fallujah, which falls within the moderate category. Meanwhile, in residential areas, the pollutant index values for all study areas ranged between 3-48 during the study months, which falls within the good category. As for commercial areas, their stations showed pollutant index values between 26-82 in the months of November, January, and March, which places them within the moderate value of the air quality index. In April, commercial areas showed a value between 21-32, which falls within the good category.

Based on the above results, carbon monoxide, according to the Air Quality Index, falls between the "good" and "moderate" categories. Therefore, it can be considered to have no direct impact on human health in all study areas and stations. This result is consistent with the study by [26], who concluded that carbon monoxide falls within the "moderate" category and is the least harmful to human health in the study areas.

Table (12) Results of air quality index values for CO gas in the study areas and months based on the linear equation

n ·	Station	IP	IP	IP	IP	Indicator	Impact on public
Region	number	Nov.	Mar.	Mar.	Apr.	Description	health
	A9	21	25	18	10	Good	
	A5	20	36	30	30	Good	
	A6	17	30	26	21	Good	
_	A7	18	38	36	12	Good	Poses little or no
Industrial	A12	47	30	31	13	Good	risk human health.
dust	A1	17	42	25	26	Good	
Inc	A2	17	35	19	28	Good	
	A3	21	28	31	12	Good	
	A15	32	53	44	45	Moderate	Very few symptoms
	A18	30	50	54	26	Moderate	in people at high risk of Allergies.
	A4	18	35	24	3	Good	
al	A8	9	33	35	8	Good	
enti	A11	5	24	48	22	Good	
Residential	A14	14	35	24	23	Good	
×	A17	24	49	45	26	Good	
	A20	29	40	45	30	Good	
ial	A10	64	34	26	22	Moderate	
nerc	A13	21	45	38	21	Good	
Commercial	A16	54	82	55	32	Moderate	
Ŭ	A19	65	43	66	32	Moderate	
Time A	verage	Moderate	Moderate	Moderate	Good	Moderate	

Air Quality Assessment of Sulfur Dioxide

Table (13) indicates variations in the Air Quality Index (AQI) calculation results across the study regions and months. Based on the AQI classification for the study months, the values in November ranged between 103-206, and in January between 117-219, both falling within the (unhealthy, sensitive, and hazardous) category. The values in March were 94-206, which fall within the (moderate-hazardous) category, while the values in April

fall 81-148, which within the were (moderate-unhealthy) category, according to the AQI. On the other hand, it was noted that the highest value of the gas index in industrial areas was recorded at Station A6, Haditha Refinery, upwind, with the highest value of 214 for the air quality index (hazardous), which affects people, especially the respiratory system, particularly asthma. The lowest value was recorded at Station A2, Cement Factory, upwind, with 82, which falls

within the moderate quality index. In residential areas, the highest index value was 186 at station A20 in Fallujah, which is considered unhealthy, while the lowest value was recorded at station A11 in Haditha, with 94, which falls within the moderate category. In commercial areas, the highest value was recorded at station A16 in Ramadi, with 219, which falls within the dangerous category, while the lowest index value was recorded at 94 at station A11 in Fallujah, which falls within the moderate category. Based on the above air quality calculation results, SO₂ can be considered in the study areas, which means it has a direct impact on the health of

residents (children, adults, and the elderly) as it has a direct impact on the health of residents (children, adults, and the elderly) as well as workers in those areas, especially regarding respiratory diseases

especially regarding respiratory diseases (asthma). This is consistent with the study [27], where the results of their study of Brazilian urban areas showed a high rate of children suffering from acute respiratory diseases due to the high quality index and the recorded risk ratio for those areas.

Table (13) Results of air quality index values for SO₂ gas in the study areas and months based on the linear equation

Region	Station number	IP Nov.	IP Mar.	IP Mar.	IP Apr.	Indicator Description	Impact on Public Health	
al	A9	143	206	186	130	Very unhealthy	Exacerbation of symptoms in peop	
	A5	134	203	182	143	Very unhealthy	most and decreased tolerance in healthy members of the population,	
	A6	143	214	134	117	Very unhealthy	which may require taking emergency	
	A7	153	203	165	126	Very unhealthy	measures for and members of	
stri	A12	170	198	206	139	Very unhealthy	sensitive.	
Industrial	A1	130	190	194	121	Unhealthy	Members of sensitive groups experience more serious health effects	
Ir	A2	108	153	134	81	Unhealthy		
	A3	126	174	165	117	Unhealthy		
	A15	206	198	186	121	Very unhealthy		
	A18	203	157	203	112	Very unhealthy		
Residential	A4	117	121	153	103	Unhealthy		
	A8	103	117	148	121	Unhealthy for sensitive groups	Minor symptoms may occur in people with allergies, and some healthy people may develop symptom.	
	A11	112	157	178	94	Unhealthy		
Re	A14	130	180	153	130	Unhealthy		
	A17	117	170	143	130	Unhealthy		
	A20	126	186	117	107	Unhealthy		
lai	A10	153	165	139	148	Unhealthy		
Commercial	A13	170	186	117	108	Unhealthy		
	A16	161	219	130	134	Very unhealthy		
	A19	108	186	94	143	Unhealthy		
Time A	Time Average							

Air Quality Assessment of Nitrogen Dioxide

Table (14) indicates that the results obtained show that the pollutant index values for nitrogen dioxide for all stations and study months did not exceed the (0-50) category

according to the air quality classification. Accordingly, the air quality index value for NO₂ can be considered to fall within the good category, indicating the absence of any health effects on humans within the study areas.

AL-KUNOOZE SCIENTIFIC JOURNAL ISSN: 2706-6231 E ,2706-6223 P

Vol.11 No.4 (2025)

Table (14) Results of the air quality index values of NO₂ gas in the study areas and months based on the linear equation

AL-KUNOOZE SCIENTIFIC JOURNAL ISSN: 2706-6231 E ,2706-6223 P

المالية المالي

Vol.11 No.4 (2025)

Region	Station number	IP Nov.	IP Mar.	IP Mar.	IP Apr.	Indicator Description	Impact on public health	gas
la	A9	8	11	4	6	Good	public ficultif	inde
	A5	4	15	5	5	Good		X
	A6	5	14	6	5	Good		valu
	A7	8	10	3	5	Good	Poses little or no risk human health.	es
stri	A12	6	13	6	7	Good		(21-
Industrial	A1	9	15	8	4	Good		99)
Ī	A2	7	11	4	5	Good		for
	A3	7	15	4	5	Good		the
	A15	6	11	5	5	Good		
	A18	12	18	8	6	Good		air
	A4	7	8	4	4	Good		quali
ial	A8	8	11	4	2	Good		ty
Residential	A11	7	7	6	3	Good		inde
esid	A14	7	9	5	2	Good		X
R	A17	6	7	1	4	Good		(goo
	A20	6	9	6	3	Good		d -
Commercial	A10	8	9	6	6	Good		
	A13	8	4	7	8	Good		mod
	A16	8	6	8	7	Good		erate
	A19	4	5	6	6	Good).
-	ne Average		Good	Good	Good	Good		Ther

Air Quality Assessment of Ozone

Table (15) shows that the pollutant index (IP) ranged between 19-41 in November and 21-44 in January. In both cases, according to the quality index, the IP value was within the good category. Meanwhile, the IP value in March was 30-63, which falls within the moderate category, while April showed 36-159, which falls within the unhealthy category according to the air quality index.

Based on the classification of the air quality index, we note that all industrial areas have

efore, it was considered that the air quality of ozone gas in most industrial areas does not affect human health or affect very sensitive individuals. As for residential areas, the quality index recorded between (good - unhealthy) for gas index values ranging from (35 - 159), where the station (A8, the residential complex of the refinery) recorded an index value of (123), which falls within the category (100-150) for unhealthy sensitive air quality that affects children, adults, and

people suffering from asthma. In the station (A20 Fallujah), the index value was recorded as (159), and according to the quality index, it falls within (150-200), which is unhealthy and affects people with cardiovascular diseases \mathfrak{z} in addition to those with asthma. Meanwhile,

in commercial areas, it showed index values between (17-115), falling within the category (good - unhealthy sensitive).

Based on the above results and the Air Quality Index, it can be considered that ozone concentration has a clear impact on people in residential areas more than in other areas.

Table (15) Results of the air quality index values for O₃ gas in the study areas and months based on the linear equation

Region	Station number	IP Nov.	IP Mar.	IP Mar.	IP Apr.	Indicator Description	Impact on public health	
	A9	27	27	30	36	Good	Poses little or no risk human health.	
	A5	32	27	48	99	Moderate		
	A6	33	28	37	44	Good		
al	A7	23	30	47	70	Moderate		
stri	A12	36	27	48	52	Moderate	Very few symptoms in people at high risk of allergies.	
Industrial	A1	22	32	42	69	Moderate		
I	A2	35	24	42	49	Good		
	A3	28	21	47	95	Moderate		
	A15	33	29	61	53	Moderate		
	A18	40	26	47	92	Moderate		
	A4	40	44	59	78	Moderate		
Residential	A8	38	38	45	123	Unhealthy for sensitive groups	Minor symptoms may occur in people with allergies, and some healthy people may develop symptom	
den	A11	41	42	39	73	Moderate		
esia	A14	40	40	56	84	Moderate		
R	A17	38	40	63	94	Moderate		
	A20	35	42	37	159	Unhealthy	members of sensitive groups may experience more serious health effects	
=	A10	30	29	51	50	Good		
Commercial	A13	40	33	47	115	Unhealthy for sensitive groups		
Con	A16	41	27	45	67	Good		
)	A19	19	39	30	36	Good		
Time Average Conclusions The main conclusion of the state of the sta			ain conclusion of this work is as					

Conclusions

The main conclusion of this work is as follows:

- 1. The selected industrial sites recorded the highest concentrations of pollutants (SO₂, NO₂), exceeding national limits.
- 2. Commercial areas recorded average concentrations of most pollutants, although some exceeded permissible limits.
- 3. Despite the distance of residential areas from industrial activities, they showed high concentrations of some

- pollutants, attributed to the presence of some commercial establishments (bakeries) and the random spread of private generators.
- 4. Air quality indicators showed that sulfur dioxide gas was classified as the highest in the (unhealthy-hazardous) category in most of the study areas, indicating its potential health effects on humans.

AL-KUNOOZE SCIENTIFIC JOURNAL ISSN: 2706-6231 E ,2706-6223 P

Vol.11 No.4 (2025)

References

- 1. Maji S, Ahmed S, Kaur-Sidhu M, Mor S, Ravindra K. Health risks of major air pollutants, their drivers and mitigation strategies: a review. Air Soil Water Res. 2023;16:11786221231154659.
- Roser M. Data review: how many people die from air pollution? Our World in Data. 2021.
- 3. Karimi MS, Arif S, Noori B. Greenhouse gases and their role in air pollution and global warming. Int J Biol Phys Chem Stud. 2025;7(1):6–13.
- 4. United States Environmental Protection Agency. Technical assistance document for the reporting of daily air quality the Air Quality Index (AQI). EPA-454/B-18-007, 2018.
- 5. United States Environmental Protection Agency. Air Quality Index: a guide to air quality and your health. Washington, DC: US EPA; 2003.
- 6. Lemeš S. Air Quality Index (AQI)—comparative study and assessment of an appropriate model for B&H. In: 2nd Scientific/Research Symposium

- with International Participation 'Metallic and Nonmetallic Materials'; 2018. p. 282–291.
- 7. IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp; 2017.
- 8. Kadhim HR. Measuring the concentrations of some gaseous air pollutants and dust particles in the western city of Hamzah in Iraq. IOP Conf Ser Earth Environ Sci. 2024;1325(1):012006.
- 9. Salati H, Khamooshi M, Vahaji S, Christo FC, Fletcher DF, Inthavong K. N95 respirator mask breathing leads to excessive carbon dioxide inhalation and reduced heat transfer in a human nasal cavity. Phys Fluids. 2021;33(8).
- 10. Sgobba F. Sampaolo A, Patimisco P, Giglio M, Menduni G, Ranieri AC, et al. Compact and portable quartz-enhanced photoacoustic spectroscopy sensor monoxide for carbon environmental monitoring Photoacoustics. urban areas. 2022:25:100318.
- 11. Environmental Protection

 Agency. National Ambient Air

- Quality Standards (NAAQS)
 Table [Internet]. 2024 [cited 2025
 Jul 23]. Available from:
 https://www.epa.gov/criteria-airpollutants/naaqs-table
- 12. Ministry of Health and Environment (Iraq). National ambient air quality standards: Regulation No. 2 of 2018. Baghdad: Republic of Iraq; 2018.
- 13. Handhayani T. An integrated analysis of air pollution and meteorological conditions in Jakarta. Sci Rep. 2023;13(1):5798.
- 14. Wu H, Hong S, Hu M, Li Y, Yun W. Assessment of the factors influencing sulfur dioxide emissions in Shandong, China. Atmosphere. 2022;13(1):142.
- 15. Mohammedamin JK, Shekha YA. Indoor sulfur dioxide prediction through air quality modeling and assessment of sulfur dioxide and nitrogen dioxide levels in industrial and non-industrial areas. Environ Monit Assess. 2024;196(5):463.
- 16. Ajayi SA, Adams CA, Dumedah G, Nnene OA, Ibili F. On-road vehicular traffic emissions inventory and air quality on major roadways in Lagos City. Afr Transp Stud. 2025;3:100034.
- 17. Goldberg DL, Anenberg SC,

- Kerr GH, Mohegh A, Lu Z, Streets DG. TROPOMI NO2 in the United States: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations. Earth's Future. 2021;9(4):e2020EF001665.
- 18. Suthar G, Singhal RP, Khandelwal S. Kaul N. Spatiotemporal variation of air pollutants and their relationship with land surface temperature in Bengaluru, India. Remote Sens Soc Environ. Appl 2023;32:101011.
- 19. Munsif R, Zubair M, Aziz A,
 Zafar MN. Industrial air emission
 pollution: potential sources and
 sustainable mitigation. In:
 Environmental Emissions.
 London: IntechOpen; 2021.
- 20. Zahra SI, Iqbal MJ, Ashraf S, Aslam A, Ibrahim M, Yamin M. Comparison of ambient air quality among industrial and residential areas of a typical south Asian city. Atmosphere. 2022;13(8):1168
- 21. Ma, W., Feng, Z., Zhan, J., Liu, Y., Liu, P., Liu, C., ... & Liu, J. Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism. Atmos Chem Phys.

2022;22(7):4841–4851.

- 22. Kawichai, S., Kliengchuay, W., Aung, H. W., Niampradit, S., Mingkhwan, R., Niemmanee, T., ... & Tantrakarnapa, K.. The influence of meteorological conditions and seasons on surface ozone in Chonburi, Thailand. Toxics. 2025;13(3):226.
- 23. Al-Hamdani, H. J. M., & Al-Asadi, K. A. W. The effect of ozone gas change of temperature change over Iraq. J Ecohumanism. 2025;4(1):2556–2563.
- 24. An T, Li J, Lin Q, Li G. Ozone formation potential related to the release of volatile organic compounds (VOCs) and nitrogen oxide (NOx) from a typical industrial park in the Pearl River Delta. Environ Sci Atmos.

- 2024;4(11):1229–1238.
- 25. Petrus M, Popa C, Bratu AM.

 Determination of ozone
 concentration levels in urban
 environments using a laser
 spectroscopy system.
 Environments. 2024;11(1):9.
- 26. Hassan R, Rahman M, Hamdan A. Assessment of air quality index (AQI) in Riyadh, Saudi Arabia. IOP Conf Ser Earth Environ Sci. 2022;1026(1):012003.
- 27. Nascimento AP, Santos JM, Mill JG, de Almeida Albuquerque TT, Júnior NCR, Reisen VA, et al. Association between the incidence of acute respiratory diseases in children and ambient concentrations of SO2, PM10 and chemical elements in fine particles. Environ Res. 2020;188:109619.

دراسة تراكيز الملوثات الغازية وتقييم جوده الهواء في بعض المناطق الحضرية المختارة من محافظه الانبار

عمر خلیل جمعه 1 محمد فاضل عبود2

قسم علوم الأحياء، كلية التربية للعلوم الصرفة، جامعة الأنبار، الرمادي، العراق 112

الخلاصة

تناولت الدراسة الحالية الى تقييم البيئي لنوعيه الهواء لبعض المناطق المختارة من محافظة الانبار من خلال قياس تراكيز الملوثات الهوائية شملت غازات (اول أكسيد الكربون CO، ثاني أكسيد الكبريت SO₂، ثاني أكسيد النتروجين NO₂، NO₂، الأوزون (O₃). توصلت نتائج الدراسة الى تجاوز بعض تراكيز الملوثات الهوائية والتي هي (NO₂، SO₂) الحدود الوطنية والعالمية المسموح بها والتي سجلت تراكيز بلغت (0.0193، 0.36) جزء بالمليون على التوالي في حين لم تتجاوز تراكيز غازات (NO₂، CO) الحدود المسموح بها. أظهرت نتائج الدارسة تباين لمستويات تراكيز الملوثات في المناطق المسلطة المسلطة المسلطة العلى تراكيز للملوثات (NO₂) في حين سجلت (SO₂، CO) اعلى التراكيز في المناطق السكنية. تم تقييم الاثار الصحية لملوثات الهواء في منطقة الدراسة بالاعتماد على مؤشر جودة الهواء (AQI) وهو مقياس رقمي يستعمل لتحديد مستوى تلوث الهواء وتأثيره على الصحة العامة، من خلال تصنيف كل ملوث ضمن فئة تتراوح ما بين (0-350) فأظهرت النتائج وجود تباين في مستويات التلوث في مواقع الدراسة تراوحت بين فئة (جيد) غاز ثاني أكسيد النتروجين الى فئة (خطر) غاز ثاني أكسيد الكبريت.

الكلمات المفتاحية: تلوث الهواء، الغازات الملوثة للهواء، جوده الهواء