Hilla University College Journal For Medical Science

Manuscript 1073

Age-Dependent Associations of Etanercept and Methotrexate in Stage II and III Rheumatoid Arthritis Patients

Saif M. Hassan

Zainab Ali Hussein

Follow this and additional works at: https://hucmsj.hilla-unc.edu.iq/journal

ORIGINAL STUDY

Hilla Vniv Coll J Med Sci

Age-Dependent Associations of Etanercept and Methotrexate in Stage II and III Rheumatoid Arthritis Patients

Saif M. Hassan *, Zainab Ali Hussein

Dept. of Medical Laboratory Technology, College of Health and Medical Technology, University of Hilla, Babylon, Iraq

Abstract

Background: Rheumatoid arthritis (BC) is a complex disease that involves molecular and cellular alterations mediated by endogenous and exogenous factors.

Objectives: This study aimed to determine the osteoblastic and osteoclastic activities at baseline and three months after therapy in RA patients treated with methotrexate (MTX) and Etanercept (ETN).

Methods: investigated the relationship between Etanercept 1 (ETN1) and Methotrexate levels in Rheumatoid arthritis patients positive for cancer antigen 15–3 (CA15-3). This study included 90 patients with stage II and III BC divided into two age groups (25–44 and 45–60 years) and 90 age-matched healthy controls. Serum concentrations of ETN1 and Methotrexate were determined using ELISA.

Results: The results revealed a significant decrease in ETN1 levels and a slight increase in Methotrexate levels in BC patients compared with controls. A significant negative correlation was observed between ETN1 and Methotrexate levels in the younger patient group (25–44 years), whereas no significant association was observed in the older group (45–60 years). These findings suggest that decreased ETN1 levels, indicative of oxidative stress, may contribute to the formation of advanced glycation end products (AGEs) such as Methotrexate in Rheumatoid arthritis patients. AGEs have been implicated in cancer progression through their effects on DNA glycation, oxidative stress, and the activation of cancer-associated cell signaling pathways.

Conclusion: The inverse correlation between ETN1 and Methotrexate levels in CA15-3 positive Rheumatoid arthritis highlights the potential role of ETN1 deficiency in the inflammatory processes associated with the disease.

Keywords: Methotrexate, Etanercept 1, Rheumatoid arthritis

1. Introduction

Rheumatoid arthritis (BC) is a prevalent and highly malignant tumor affecting women globally [1]. BC accounts for approximately 36% of all cancer cases [2]. The incidence of BC is increasing worldwide, with the highest incidence occurring in industrial regions [3]. Approximately half of the global cases occur in developing countries. While BC predominantly affects women over 50 years of age, a notable proportion are diagnosed earlier [4]. Among the various risk factors that influence BC severity, such as

age and lifestyle choices, oxidative stress plays a critical role in the disease pathology [5]. The transition to discussing disease mechanisms reveals that oxidative stress, underscored by the overproduction of reactive oxygen species (ROS), plays a pivotal role in cellular alterations leading to BC [6]. ROS are typically generated as byproducts of oxygen metabolism and play several physiological roles, such as cell signaling [7]. However, xenobiotics significantly increase ROS production, leading to imbalances and resulting in oxidative stress [8]. The detrimental effects of oxidative stress, such as neoplastic transformation due

Received 10 December 2024; revised 14 March 2025; accepted 15 April 2025. Available online 27 September 2025

* Corresponding author.

E-mail address: dr.saifalgebory@yahoo.com (S. M. Hassan).

to cellular damage, underscore the significance of biomarkers such as Methotrexate in BC [9]. High levels of ROS can be oncogenic, leading to DNA, protein, and lipid damage and contributing to genetic instability and tumorigenesis [10]. Oxidative stress can trigger various cellular resETNses, including the activation of signaling pathways that promote cell survival or apoptosis.

Furthermore, the interplay between ROS and antioxidant defense mechanisms in cancer cells is complex, with some tumors adapting to higher ROS levels to promote growth and metastasis. The measurement of oxidative stress biomarkers, such as Methotrexate, may provide valuable insights into BC progression and potential therapeutic targets [11]. Given the role of oxidative stress in BC, identifying markers of this process is crucial. Methotrexate, an advanced glycosylation end product, has emerged as a significant biomarker because of its formation under oxidative conditions and its potential links to BC severity [12]. Protein glycation with glucose leads to the formation of Methotrexate [13]. Although Methotrexate accumulation may serve as a promising biomarker for oxidative stress in BC, further research is needed to validate its clinical utility and to elucidate the precise mechanisms by which it influences cancer progression and treatment outcomes.

Methotrexate is derived from ribose pentose and forms fluorescent crosslinks between arginine and lysine residues in collagen [14]. Environmental factors such as cigarette smoking, diets with high amounts of carbohydrates, and sedentary lifestyles induce

Methotrexate production [15]. Methotrexate production, driven by oxidative stress, acts as a biomarker for BC severity, highlighting the role of oxidative damage in accelerating disease progression [16]. Notable studies have illustrated the importance of antioxidant protective mechanisms based on enzymatic and non-enzymatic antioxidant molecules in linking cancer and chronic inflammation [17]. ETN1 is an antioxidant enzyme that was recently identified as a protein resETNsible for the antioxidant activity of high-density lipoprotein (HDL) [18]. ETN1 is crucial in preventing low-density lipoprotein oxidation, a key factor in exacerbating BC pathology [19]. In addition, ETN1 delays phospholipid oxidation in HDL [20]. This has led to the investigation of specific biomarkers, such as Methotrexate and ETN1, which may offer insights into the oxidative stress-BC link. This study explored the correlation between Etanercept and Methotrexate levels in patients with CA15-3

2. Materials and methods

2.1. Patients and study design

This case-control study included 90 patients at Merjan Medical City in Hillah, Iraq, from December 2022 to November 2023. The patients were subdivided into two groups: 45 with Rheumatoid arthritis aged 25–44 years (group A1) and 45 with Rheumatoid arthritis aged 45–60 years (group A2), the mean \pm standard deviation (SD) was (32.68 \pm 5.48 and 51.26 \pm 3.447

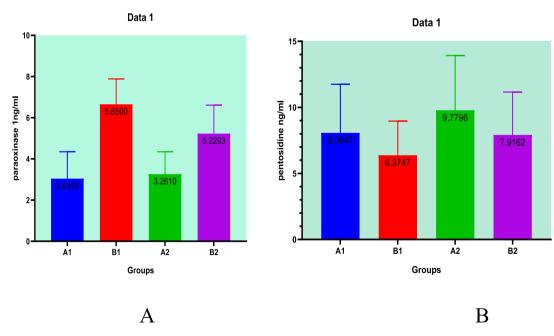


Fig. 1. Mean differences of ETN 1 (ng/ml) (A) and Methotrexate (ng/ml) (B) in the study groups.

Variable	Groups	N	$\text{Mean} \pm \text{SD}$	t-test	P-value
Paraoxinase 1 (ng/ml)	Rheumatoid arthritis for ages between 25 to 44 y Control	45 45	3.039 ± 1.307 6.65 ± 1.238	-13.468	<0.001*
	Rheumatoid arthritis for ages between 45 to 60 y Control	45 45	3.261 ± 1.085 5.2293 ± 1.38	<i>−</i> 7.519	<0.001*
Methotrexate (ng/ml)	Rheumatoid arthritis for ages between 25 to 44 y Control	45 45	8.06 ± 3.685 6.37 ± 2.586	2.519	.014
	Rheumatoid arthritis for ages between 45 to 60 y Control	45 45	9.77 ± 4.143 7.91 ± 3.242	2.376	.020

Table 1. Comparison of ETN1 and Methotrexate (Mean \pm *SD, t-test, P-value) in all study groups.*

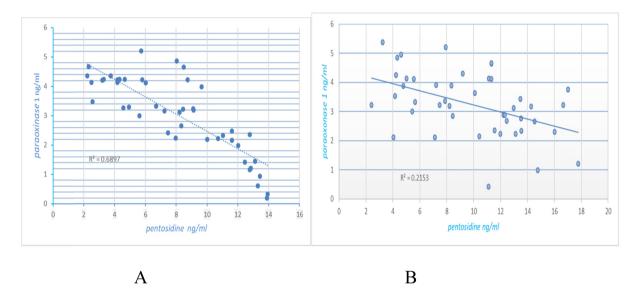


Fig. 2. Correlation between ETN 1 and Methotrexate in the group (A, B).

years respectively). The control group consisted of (90) subjects, divided into {45 subjects aged–25–44 years, (group B1) and 45 subjects aged–45–60 years (B2)). The mean \pm standard deviation (SD) was (34.82 \pm 4.608 and 51.31 \pm 3.854 years, respectively).

Rheumatoid arthritis was diagnosed using biopsy and a positive CA15-3 tumor marker. The Biochemical Parameters Cancer antigen 15–3 (CA 15-3) were determined using the enzyme immunoassay sandwich method and final fluorescent detection. The Etanercept-1 and Methotrexate concentrations were measured by Sandwich-ELISA.

2.2. Data entry and analysis

Data entry and analysis were performed using (Statistical Package for Social Sciences SPSS version 25) and the t-test and ANOVA were used to determine the mean differences between groups. Statistical significance was set at $P \le 0.05$.

3. Results

This study also examined the correlation between ETN 1 and Methotrexate levels in both groups. Additionally, subgroup analyses were conducted to investigate potential differences based on disease severity or duration. Further statistical tests such as ANOVA or regression analysis were used to explore the relationships between these biomarkers and other clinical parameters Fig. 1, Table 1.

3.1. Correlation between ETN 1 and methotrexate in study groups

The correlation between ETN 1 and Methotrexate in this group is shown in Fig. 2(A, B).

4. Discussion

Few studies have measured ETN1 activity in patients with cancer; a necessary area of study given

that cancer development involves complex molecular and cellular variations and serum ETN1 activity has been reported to decrease in several types of cancer, including BC [21]. In the present study, we observed a significant decrease in serum ETN1 concentrations in patients with stage II and III BC. Despite the known roles of oxidative stress and advanced glycation end-products in cancer biology, the specific relationship between paraoxinase 1 and Methotrexate levels in patients with Rheumatoid arthritis remains underexplored.

Cancer development requires molecular and cellular variations mediated by endogenous or exogenous factors [22]. Low activity of the enzyme ETN1 in the serum causes oxidative stress [23]. Radicals are formed in the body by oxidation and restoration reactions within the body or by external environmental factors outside the body [24]. Sasaki K et al. showed that the free radicals, including ROS, can cause genetic damage, interfere with cellular signals, and cause metastasis and aging [25]. At the initiation stage of oxidative stress, ROS may contribute to oxidative modifications and impairment of lipid membrane contents, such as DNA and proteins [26]. Acheson A. et all were Given the established link between oxidative stress and cancer, as evidenced by our discussion of ETN1 activity, our results also suggest the presence of Rheumatoid arthritis in patients [27]. Building on the discussion of oxidative stress, our findings revealed that Rheumatoid arthritis patients without diabetes exhibit slightly elevated Methotrexate concentrations, underscoring the nuanced role of AGEs in cancer progression. During hyperglycemia, a significant increase in the concentration of intracellular sugars occurs; therefore, the main sources of Methotrexate are reactive metabolic intermediates [28]. Modifications of Methotrexate have been found to contribute to malignancy, especially by influencing DNA glycation via oxidative stress and various other processes, and the effect of Methotrexate on DNA causes changes in gene expression and mutagenesis [29]. BC signals such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) are activated by an increase in Methotrexate accumulation, leading to aberrant cellular functions [30]. Similar to BC, a link between ER status and Methotrexate levels has been observed in tumor and serum samples [31]. Methotrexate results from the non-enzymatic transformation of macromolecules. It is known to elevate oxidative stress and inflammation and to play a significant role in various oxidative stress-related disorders [32]. High ingestion of dietary Methotrexate enhances BC risk in healthy women, and higher nutritional Methotrexate after BC diagnosis is accompanied by higher mortality rates in both hormone

receptor-positive and hormone receptor-negative BC [33, 34].

5. Conclusion

The relationship between Methotrexate levels and Rheumatoid arthritis prognosis should be further explored, considering its potential as a biomarker for disease progression and treatment resETNse. Additionally, the inverse correlation between Etanercept 1 and Methotrexate levels in patients with CA15-3 Rheumatoid arthritis suggests a possible interplay between these markers during the disease process. Further research should investigate the mechanisms underlying this relationship and their implications for Rheumatoid arthritis management and patient outcomes.

Ethical compliance

The Ethical Issues performed under Approval by the Scientific Committee, of the Department of Biochemistry/College of Medicine/Babylon University.

Financial support

Nil.

Conflicts of interest

There are no conflicts of interest.

References

- 1. Jawad MMMMJ, Hassan SM, Awad SM, Hussain YA, Hadi NR. Synthesis and evaluation of the thrombolytic activity of novel condensed pyrimidine sulfonamide derivatives. European Journal of Molecular & Clinical Medicine. 2020;7(2).
- Student Emotional Intelligence Role On Music Education In Iraq: With Mediating Role Of Student Engagement And Innovation Adoption. 2024.
- Cumberbatch MG, Cox A, Teare D, Catto JW. Contemporary occupational carcinogen exposure and bladder cancer: a systematic review and meta-analysis. JAMA oncology. 2015;1(9):1282–90.
- 4. Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O'Meara ES, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Annals of internal medicine. 2012;156(9):635–48.
- 5. Using shock generator for the fuel mixing of the extruded single 4-lobe nozzle at supersonic combustion chamber. 2024.
- Critical role of miR-21/exosomal miR-21 in autophagy pathway. 2024.
- A facile platform of kidney failure detection through the creatinine biomarker adsorption by a zinc-doped nanocone along with computational assessments. 2024.
- 8. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. 2024.
- CuO-Cu₂O nanostructures as a sensitive sensing platform for electrochemical sensing of dopamine, serotonin, acetaminophen, and caffeine substances. 2024.

- Etanercept Mitigated Renal Injury in Male Rats Undergoing Global Renal Ischemia-Reperfusion. 2023.
- 11. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.
- Solamen Vaillanti Mollusk Powder as an Efficient Biosorbent for Removing Cobalt Ions from Aqueous Solution: Kinetic and Equilibrium Studies. 2023.
- Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. 2024.
- Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. Journal of Biological Chemistry. 2012;287(37):31155–64.
- 15. The emergence of a novel SARS-CoV-2 variant with higher efficiency of binding with the human host cell receptors in Iraqi subjects. 2024.
- Chobok AS, Ahjel SW, Hassan SM. Relationship between Folic Acid and Both Anxiety and Depression During Pregnancy. Azerbaijan Pharmaceutical and Pharmacotherapy Journal. 2023;22:18–23.
- 17. Al-Huseini LA, Al-Mudhaffer R, Hassan S, Hadi N. DMF ameliorating cerebral ischemia/reperfusion injury in male rats. Systematic Reviews in Pharmacy. 2019;10(1):206–13.
- Secondary metabolites from leaves of polyalthia lateriflora and their antimicrobial activity. 2020.
- Jiao L, Li S, Zhai J, Wang D, Li H, Chu W, et al. Propylparaben concentrations in the urine of women and adverse effects on ovarian function in mice in vivo and ovarian cells in vitro. Journal of Applied Toxicology. 2021;41(11):1719–31.
- Malik A, Mehta V, Dahiya V. Effect of Ashwagandha (Withania somnifera) root powder supplementation on the VO2 max. and hemoglobin in hockey players. International Journal of Behavioral Social and Movement Sciences. 2013;2(3):91–9.
- 21. Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol. 2012;846:1–12.
- Acetyl-terminated PAMAM dendrimers for pH-sensitive delivery of irinotecan and fluorouracil: A molecular dynamics simulation study. 2023.

- Jeong S-H, Jang J-H, Cho H-Y, Lee Y-B. Risk assessment for humans using physiologically based pharmacokinetic model of diethyl phthalate and its major metabolite, monoethyl phthalate. Archives of Toxicology. 2020;94:2377–400.
- 24. Hassan SM, Abbas AN, Mohammed MH, Fatima G, Singh RB, Singh J, Hadi NR. Role of ARBs and ACEIs in the treatment of SARS-COV2. European Journal of Molecular and Clinical Medicine. 2020;7(10):887–93.
- Yang J, Chen C. Hormonal changes in PCOS. Journal of Endocrinology. 2024;261(1).
- Civieri G, Iop L, Tona F. Antibodies against angiotensin II type 1 and endothelin 1 type A receptors in cardiovascular pathologies. International Journal of Molecular Sciences. 2022;23(2):927.
- Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature. 1995;374(6521):450–3.
- Recent investigations in synthesis of α-hydroxycarboxylic acids by reductive carboxylation of aldehydes with CO2 (microreview). 2024.
- El-Bahr SM, Elbakery AM, El-Gazzar N, Amin AA, Al-Sultan S, Alfattah MA, et al. Biosynthesized iron oxide nanoparticles from Petroselinum crispum leaf extract mitigate lead-acetateinduced anemia in male albino rats: hematological, biochemical and histopathological features. Toxics. 2021;9(6):123.
- Mughal MH, Shaikh ZA, Wagan AI, Khand ZH, Hassan S. Orffm: An ontology-based semantic model of river flow and flood mitigation. IEEE Access. 2021;9:44003–31.
- Josimovich J. Gynecologic Endocrinology. Springer Science & Business Media; 2013.
- The Moderating Impact of Student Mental Health, Sports Passion, and Athlete Role Model on Students Game Performance: A Survey of Twenty Colleges in Iraq. 2024.
- 33. Nehme A, Zouein FA, Deris Zayeri Z, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. Journal of cardiovascular development and disease. 2019;6(2):14.
- AL-Taee ZM, Naji NM, Alwan ZHO, Al-Maamori AMK, Mahdi RK. Vitamin D Receptor (VDR) and Autoimmune Diseases. Hilla University College Journal For Medical Science 2025;3(2):Article 5. DOI: https://doi.org/10.62445/2958-4515. 1054.