

ISSN: 2957-7675 (Print)

Journal of Al-Farabi for Medical Sciences

The Promise of Minimally Invasive Dentistry for dental caries: A Review

Saif Saad Kamil1, Rusul Saad Ahmed2, Ali Saad Ahmed3, Ahmed Amer Ibrahim4

- 1 Department of Conservative dentistry, College of dentistry, Tikrit University, Tikrit, Iraq
 - 2 Department of Pedodontics, College of dentistry, Tikrit University, Tikrit, Iraq
- 3 Department of Prosthodontics, College of dentistry, Tikrit University, Tikrit, Iraq
- 4 Department of Surgery, College of dentistry, Tikrit University, Tikrit, Iraq

*Corresponding Author: saif1990@tu.edu.iq التدخل المحافظ لعلاج التسوس في الاسنان: مراجعة

سيف سعد كامل ١، رسل سعد أحمد ٢، علي سعد أحمد ٣، أحمد عامر إبراهيم ٤ ١ قسم علاج الأسنان التحفظي، كلية طب الأسنان، جامعة تكريت، تكريت، العراق ٢ قسم طب الأسنان للأطفال، كلية طب الأسنان، جامعة تكريت، تكريت، العراق ٣ قسم صناعة الأسنان، كلية طب الأسنان، جامعة تكريت، تكريت، العراق

٤ قسم الجراحة، كلية طب الأسنان، جامعة تكريت، تكريت، العراق

الخااصة

تنطوي رعاية الأسنان غير الجراحية التي تتسم بالحد الأدنى من التدخل على "احترام منهجي للأنسجة الأصلية". وهذا يشير إلى أن مجتمع طب الأسنان يدرك أن الأنسجة الصحية الأصلية لها أهمية بيولوجية أكبر من الأداة الصناعية. يمكن تطبيق فكرة طب الأسنان الحد الأدنى من التدخل على كل جانب من جوانب هذا المجال. يعد الحفاظ على الأنسجة، من الناحية المثالية عن طريق تجنب المرض وإيقاف تقدمه، ولكن أيضًا عن طريق الإزالة والاستبدال مع الحد أدنى من فقدان الأنسجة، هو العنصر المشترك. لا يُوصى بإزالة الأضراس الثالثة المدفونة التي لا تظهر أعراض جراحيًا أو إجراء حشوات صغيرة لإصلاح الأفات البادئة كأعمال قياسية. لقد زادت الاهتمامات بطب الأسنان الحد الأدنى من التدخل بشكل كبير منذ ظهور تقنيات اللصق الموثوقة. تملأ هذه الفكرة الفجوة بين العمليات الجراحية والوقاية، وهو ما يحتاجه طب الأسنان في العصر الحديث إن البحث الذي يدعم قابلية بقاء الترميمات يُظهر بوضوح أن ترميم الأسنان هو حل مسكن قصير الأمد سيفشل إذا لم يتم علاج المرض الأساسي بشكل كافي. على الرغم من وجود إمكانيات ودوافع وموارد لطب الأسنان الأقل تدخلاً اليوم، إلا أنه لا توجد حوافز كافية بلا شك. يبدو أن الأطراف الثالثة والمرضى مقتنعون بأن البدائل هي العوامل الوحيدة التي تهم. بعبارة أخرى، هم مستعدون للدفع مقابل حشو، ولكنه ليس لعملية تمنع الحاجة إلى واحد

Abstract

Dental care that is minimally invasive involves "a systematic respect for the original tissue." This suggests that the dentistry community understands that the original healthy tissue has greater biological significance than an artifact. The idea of minimally invasive dentistry may be applied to every facet of the field. Tissue preservation,

ideally by avoiding illness and halting its progression, but also by removing and replacing with little tissue loss, is the common delineator. It does not recommend that we remove impacted third molars that are symptomless surgically or do little fillings to repair incipient lesions as standard practices. Interest in minimally invasive dentistry has skyrocketed since the advent of reliable adhesive technology. The idea fills the gap between surgical operations and prevention, which is exactly what dentistry needs in the modern day. The research supporting the survivability of restorations makes it abundantly evident that tooth restoration is a short-term palliative solution that will fail if the underlying illness is not adequately treated. Although there are possibilities, motivations, and resources for minimally invasive dentistry today, there are unquestionably insufficient incentives. Third parties and patients appear to be persuaded that replacements are the only factors that matter. In other words, they are willing to pay for a filing but not for a process that precludes the need for one.

Journal of Al-Farabi University College Keywords: Dentistry, Dental caries, Restoration, Laser

- .\Introduction In dentistry, the use of diamine silver fluoride in the early 1970s marked the beginning of minimally invasive treatment (Alyahya, 2024, Kalra, R., 2022). The invention of the atraumatic restorative therapy (ART) (Convissar, 2022) in the 1980s, the preventative resin restoration (PRR) (Choudhary et al., 2022, Convissar, 2022) in 1978, and the chemo-mechanical caries elimination ideas (Leon et al.,, 2016) in the 1990s came next. In order to preserve as much dental tissue as possible and provide better care to patients who are afraid, the ultra-conservative therapy approaches are used .Preparing to achieve cavity access through airabrasion, laser therapy, or sono-abrasion (Ricucci et al., 2020, Frencken, 2017), excavating infected tooth tissue by laser treatment or selective caries removal (Ricucci et al., 2020, Frencken, 2017), and restoring the cavity using different protocols (Choudhary et al., 2022, Convissar, 2022, Ricucci et al., 2020, Ritter, 2017) are some examples of minimally invasive, long-term dental cavity repair. MI restorations are often smaller and their treatments are thought to be more painless, frequently requiring no local anesthetics, as compared to the conventional amalgam treatment technique. However, computer-controlled local anesthetic administration devices can be used to provide local anesthetic less invasively if necessary (Nyvad and Takahashi, 2020). Instead of being replaced, failed restorations are fixed (Fenoll-Palomares et al., 2004) .The terms "minimal intervention," "minimally invasive," and "preservative dentistry," which were once known as "Prophylactic Odontomy," were used by Martin et al. (2000). "A philosophy of professional care concerned with first occurrence, earliest possible cure of disease on micro (molecular) levels, followed by minimally invasive & patient friendly treatment to repair irreversible damage caused by such disease" is how MID is defined (Singh and Garg, 2013). According to MI's viewpoint, dental caries is a multifactorial illness that causes lesions in the hard tissues of the teeth (Fenoll-Palomares et al., 2004). The Extended-Ecological Plaque Hypothesis has provided a good explanation of the disease process.
- . The objectives and goals of minimal intervention

The main objectives of MID are the following:

- .\Avoid dental cavities .\forall A decrease in microorganisms that cause disease .\forall .Early lesions remineralization .
- .4Minimal cavitated lesion surgical intervention .6 .Fixing damaged restorations rather than replacing them. Among the goals are:
- .\Identification .\Prevention .\Control
- .Y, \Identification

Identification involves:

- .\Salivary evaluation As long as the pH of the environment remains constant, saliva's calcium and phosphorus supersaturation relative to the enamel surface inhibits hydroxyapatite from dissolving in the oral environment (Maltz et al., 2020, Havsed et al., 2021). Saliva plays an important role in dental health, and numerous measures are employed to assess its preventive properties. One important measure is salivary flow rate, which normally ranges from 0.10 to 2.0 ml/min (Li et al., 2020, Khan et al., 2020). A flow rate of less than 0.1 ml/min shows xerostomia (dry mouth), which increases the likelihood of acquiring dental caries. This disease reduces the mouth's natural capacity to wash and neutralize acids, making it more susceptible to caries (Schön et al., 2024, Moores et al., 2022). Another important parameter is salivary pH, with a median value of 6.7903 and a range between 5.86 and 7.54. A pH level below 5.5 is concerning, as it makes the oral environment acidic, creating favorable conditions for enamel demineralization and increasing the likelihood of tooth decay. A slightly acidic or neutral pH, on the other hand, is beneficial for maintaining enamel integrity and preventing caries (Fenoll-Palomares et al., 2004, Blancas et al., 2021, Scharfe and Flöter, 2020)
- . The test for caries activity The rate at which a carious lesion progresses is known as caries activity. Various caries activity tests assess the presence of cariogenic bacteria and the risk of tooth decay. The Lactobacillus count

test and Dentocult lactobacilli test categorize caries activity based on bacterial levels, with >10,000 CFU indicating high caries activity. The Snyder test measures pH changes, with pH <4.1 suggesting marked caries activity, while the Streptococcus mutans test indicates high caries risk when >100,000/ml is present in saliva (Elamin., 2021, Cameron and Widmer, 2021). Tests like the Fosdick calcium dissolution test measure calcium loss from teeth, directly correlating to caries activity, with higher dissolution indicating increased caries susceptibility. Other tests like the Albans and Swab tests use color changes to assess caries activity, where a shift to yellow indicates a higher risk of caries (Chen et al., 2020, Lin et al., 2021).

- "Evaluating the occlusion and other dental aspects Decreasing the occurrence and prevalence of caries, which also depends on the morphology, composition, and occlusion of teeth, has been the main focus for several decades. Other elements: Pattern of heredity-Systemic conditions such as xerostomia, protein, and vitamin deficiencies (Su et al., 2021).
- . Dietary counseling and analysis Caries-promoting factors include: those high in sugar and low in starch that are quickly removed from the mouth may be less acidogenic than those high in starch that are retained (Khan et al., 2020, Elamin et al., 2021). Regular snacking in between meals (Ntovas et al., 2023, Cho et al., 2021). Drinking soft drinks slowly in between meals raises the incidence of dental cavities (Chen et al., 2020, Jardim et al., 2020). Plaque levels are also influenced by the order in which foods are ingested. For example, coffee conclusion of a lunchtime is more harmful than unsweetened food consumed after consuming sugared coffee (Lin et al., 2021, Ntovas et al., 2023).
- . The dentistry profession has been focusing more on preventing dental caries by implementing a number of strategies, such as: Tussling bacteria that cause dental caries, changing nutrition, increasing tooth resistance to decay (Ntovas et al., 2023). Table 1: has a detailed discussion of each of these. Table 1: A discussion of the prevention elements (Lin et al., 2021).

	Category	Details
Tussling	Caries-Inducing Microorganisms	- Replacement Therapy: Replacing cariogenic bacteria with
Blocking	g Plaque Build-Up	non-cariogenic bacteria. The develpment of compounds that: 1. Block the activity of glycosyl transferase 2. Prevent bacterial adhesion and coaggregation 3. Serve as potent antimicrobials.
	Modifying Diet	- Avoidance of cariogenic foods - Increase intake of foods that support oral health.
Increasing	Resistance of Teeth to Decay	-Demineralization by Nature Fluorides in drinking water are an example of an inhibitorPolyphenols, which are present in milk, cheese, and oat hulls, are protective food ingredientsThe calcium phosphate complex, which includes the phosphopeptides found in casein in milk.
Sugar Sub	ostitutes (Tooth- Friendly)	- Xylitol: Not fermented by dental plaque microflora Xylitol + Chlorhexidine: Effective adjunct in antimicrobial therapy for caries reduction FDA-Approved Sugar Substitutes: 1. Stevia

		Category						Details
Side	Effects	of Sugar Substitutes	diarrhea)	when	gastrointestinal consumed uring a 55-day	in	large	amounts.

The foundation of minimal intervention involves the following:

.\Prioritizing disease prevention over restoring damaged structure and function is the aim of MI. Present caries risk and caries activity should be determined in order to prevent dental cavities as soon as feasible. Table 2 (Leal et al., 2022) provided by the American Academy of Pediatric Dentistry (AAPD) can be used to evaluate caries risk (Leal et al., 2022). Table 2: American Academy of Pediatric Dentistry (AAPD) for caries risk evaluaton.

```
Carious teeth during the last
               No carious teeth within the - One region of 12 months; many areas of
                                               demineralized demineralized
               last
                            months;
                                          enamel - Gingivitis (white spot lesion); and
               demineralization
                                  of
                                             Carious teeth visible plaque on the front
               enamel; no evident plaque
                                          during the last 24
                                                                                  teeth
       Clinical or
                                gingivitis
                                                     months Radiographic caries of the
    Conditions The ideal level of topical
                                          Optimal
                                                      topical
                                                                                enamel
                                  fluoride
                      systemic
                                                    exposure Elevated
                                          fluoride
                                                                                mutans
                                exposure
                                          combined
                                                         with streptococci
                                                                                  titres
                                                  suboptimal Using orthodontic or dental
                                           systemic exposure
                                                                                devices
                                                             Hypoplasia of the enamel
                                                             Frequent (3
                                                                            or more)
                                                             exposures to simple sweets
                                                             or foods that are highly
               High
                           socioeconomic
                               caregivers;
                                                             linked to dental cavities in
               position
                          of
               frequent use of dental care Periodically (1-2) between
                                                                                    low
               in a recognized dental in between meals, socioeconomic position of
Environmental home; and consumption of exposure to simple caregivers; and no regular
Characteristics simple sweets or meals sweets or foods that
                                                                 provider of dental care
               significantly linked to the are highly linked to
               onset of caries, particularly
                                               dental cavities The mother has active
                        around mealtimes
                                                                                 caries.
                                                             Children
                                                                         who
                                                                                 require
                                                              particular medical attention
                                                  Suboptimal
                                                                  Suboptimal
                                                                                 topical
                                       & systemic
                                                     fluoride
                                                             fluoride
General Health -
                           systemic
                                                                              exposure
                  Optimal
                  topical fluoride exposure exposure
                                                         with
                                                                 Conditions
    Conditions
                                                                              impairing
                                          optimal
                                                      topical
                                                                 saliva composition/flow
                                                    exposure
```

Caries diagnosisThe demineralization of enamel and dentin is not an ongoing, irreversible process. Depending on the microenvironment, the tooth alternately loses and acquires calcium and phosphate ions in a sequence of demineralization and remineralization cycles. Subsurface enamel or dentin will demineralize if the pH falls below 5.5 (Jardim et al., 2020). Fluoride can create fluoroapatite and improve the absorption of calcium and phosphate ions (31). Fluorapatite is more resistant to demineralization following an acid challenge than hydroxyapatite because it demineralizes at a pH lower than 4.5. One must first change the oral environment to tilt the scales in favor of remineralization and away from demineralization in order to benefit from the tooth's ability to remineralize in the noncavitated lesion (Su et al., 2021- Cho et al., 2021). This strategy consists of: - Reducing the frequency of consumption of refined carbs; - Ensuring optimal management of plaque; Facilitating optimal salivary flowPatient education is being carried out (Foros et al., 2021). To promote remineralization, agents such topical fluorides and chlorhexidine might be used (Wang., 2023). By lowering the quantity of cariogenic bacteria, chlorhexidine works (Mohamad Saberi et al., 2022). Particularly in patients exposed to

fluoride, topical fluorides enhance the availability of fluoride ions for remineralization and the production of fluoroapatite, which has a higher resistance to demineralization (Frencken, 2017, Elamin et al., 2021). Table 3 lists many techniques for reducing cariogenic microorganisms (Hund et al., 2024, Abduraxmanovich et al., 2021). Table 3: Various methods used for the reduction of cariogenic bacteria for different patient scenarios.

iole 3. Vallous life	mous	used for the redu	ction of carrogenic bacteri	a for different patient scena	11105.
Patient Sample		Toothpaste	Product	(0.12% Mouthrinse Chlorhexidine)	Fluoride (22,600 ppm)
Low risk	One	thousand ppm two times daily	Not needed	No need	0-1 times annually
Low caries risk & hypersensitivity	1,000		After brushing and/or tray at night, use MI Paste Plus and/or gum many times a day.	Not needed	0-1 times annually
Low caries risk & hypersensitivity due to home bleaching treatment	1,000		Use MI Paste Plus 1-2 times per day on the days when bleaching is taking place, and for two weeks prior to and following bleaching.		0-1 times annually
High risk for dental cavities, frequent consumption of carbohydrates and beverages, gastroesophageal reflux illness, poor oral hygiene due to drug usage, treatment of salivary dysfunction, and prevention of demineralization prior to, during, and following head and neck radiation and chemotherapy	1,000 daily	(morning &	Use MI Paste Plus several times daily, especially after brushing and using trays, to strengthen enamel, neutralize acid, and combat saliva dysfunction; apply a peasized amount to your teeth and let it sit for 2-3 minutes without rinsing. Complement this by chewing sugar-free gum with xylitol multiple times daily, particularly after meals, to stimulate saliva production and maintain oral pH. Consistent use of both can significantly improve oral health by reducing dry mouth and lowering the risk of dental caries.	and allowing it to sit for 2-3 minutes without rinsing. Combine this with chewing sugar-free xylitol gum after meals to stimulate saliva and maintain oral pH. After four weeks, review oral bacteria levels and, if improvements are noted, reduce the frequency of use as advised by your dental professional.	Monthly initially, then reduce to several times annually

Various different mid-techniques for the caries treatment. The initial step in treating caries is to determine the optimum method of treating cavitated or non-cavitated lesions in addition to identifying risk factors and the existence of demineralized regions (Bernabe and Marcenes, 2020). While non-cavitated lesions are treated with

non-invasive techniques, cavitated lesions require an intrusive approach. Table 4 provides an explanation of each of these methods (Foros et al., 2021, Desai et a., 2021). Table 4: various methods used for dental treatment, focusing on techniques like air abrasion, lasers, chemo mechanical agents, pit & fissure sealants, remineralization, and Alternative Restorative Treatment (ART), with their indications and contraindications:

 Technique	tive Restorative Treatment (ART Method	Indications	Contraindications
Air Abrasion	Air abrasion is a minimally invasive dental technique that uses a controlled stream of air mixed with superfine abrasive particles, such as aluminum oxide, to remove tooth structure by brittle microfractures. It operates with particle sizes of 27–50 μm, pressure between 40–160 psi, and an operating distance of 0.5–2 mm from the tooth, providing precision and reducing the need for traditional drilling.		Air abrasion is not recommended for patients who are allergic, asthmatic, or medically compromised, as the airborne particles may exacerbate their conditions. Additionally, it should be avoided in cases where there is a risk of pulp exposure, as the heat generated during the process could damage the pulp tissue.
Lasers	Uses Erbium, Yttrium- Aluminium Garnet (Erand	permanent bicuspids and molars Teeth in question erupted less than 4 years ago Stained pits &	self-cleansable pits & fissures
Chemomechanical Agent	Chemical agents like Caridex, Carisolv, Papacarie are used in combination with mechanical force to remove soft carious tissue.	lesions - Incipient caries - Disabled children	compromised patients - Not recommended in cases of
Pit & Fissure Sealants	Made of plastic resin, these fit into the grooves and depressions of teeth, acting as a barrier to protect against acid and plaque.	that are caries- prone - Stained or	- Not recommended for wide, self- cleaning pits - Not used for caries- free pits for 4 years

	Method	Indications	Contraindications
reeminque	Tylethou	primary molars and permanent	- Not recommended for partially erupted teeth
Remineralization	Fluoride treatments (e.g., 2% NaF, 1.23% APF) and ACP (amorphous calcium phosphate) are used to restore minerals to demineralized enamel and strengthen teeth.	- Children with frequent acidic beverage	- Not effective in severe caries lesions
ART (Alternative Restorative Treatment)	A method using hand instruments and adhesive materials to restore cavities, often used in conjunction with fluoride varnish.	Pit and fissure cariesCaries-active childrenMedically	 Not ideal for patients without previous caries experience Not used for large or deep cavities Not effective if there is advanced

- .4 Fixing faulty restorations rather than replacing them Globally, it is estimated that between 50 and 71 percent of a general dentist's work consists of maintaining pre-existing restorations (Ricucci et al., 2020). Larger restorations with progressively shorter lifespans than their predecessors are created as amalgam and resin restorations are replaced. Concerns regarding bond strength to previously placed materials, residual caries left behind, and recurrent caries around the margin of a restoration that suggests an increased risk of developing caries in other sites, including under existing restorations, are some of the reasons for replacing restorations rather than repairing them (Koç-Vural et al., 2024, Bagheri et al., 2010). For populations that degrade gradually, repairing broken restorations instead of replacing them is a valid and more conservative therapeutic option. Cavity preparations should offer resistant shape and independent retention for the repair (Prathap, 2024, Desai et al., 2021). Given the potential for fluoride leakage and the high adhesion of GICs, GIC repair may be preferred in cervical sites (Elraggal et al., 2024, Azzopardi et al., 2023). When choosing whether to repair rather than replace a restoration, always take into account the patient's caries risk, the professional's evaluation of the benefits and drawbacks, and conservative cavity preparation approaches (Razaghy, 2023).
- . "ControlHealing the caries lesion and controlling the illness must come first in any intervention, whether primary or secondary, such as restoration-replacement. Any replacement will fail due to ongoing disease activity if disease control is not implemented (Rainey, 2002, Prathap, 2024). Treatment for MI begins at the molecular or micro level, such as by preventing bacterial activity and repairing reversible carious lesions. Bacterial activity can be decreased by a variety of treatment methods, including the use of triclosan, diamine silver fluoride, chlorhexidine, or cavity closure by chemical substance adhesion (Prathap, 2024, Maheshwari et al., 2020, Eltahlah, 2021, Tao et al., 2021). Both the loss of minerals from the tooth's hard tissues and the oral balance between the de- and remineralization processes on the tooth surface need to be restored after disease therapy. Both "external remineralization" on the tooth surface and "internal remineralization" in cavity walls can do this (Maheshwari et al., 2020). Water, a pH higher than 6.5, and the presence of minerals like calcium and phosphate are frequently necessary for remineralization (Frencken et al., 2008, Eltahlah, 2021). Increased fluid intake and

the use of sugar-free chewing gum can help enhance saliva flow, which is necessary for the remineralization of the tooth surface. By lowering the availability of substrates for bacterial metabolism, good mouth hygiene and dietary changes aid in lowering acidic environments and bringing the pH down to neutral values. The use of dentifrice that contains fluoride and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) can support mineral availability (Al-Germ et al., 2023, Gürcan and Şişmanoğlu, 2023).

- . MI's advantages Better dental health via disease repair, rather than just symptom treatment, is the advantage for MI patients. Additionally, MI can help lessen common dental anxiety in patients, which is typically brought on by traditional, extremely invasive dental treatments (Gürcan and Şişmanoğlu, 2023, Frencken and van Amerongen, 2008, Eltahlah, 2021, Tao et al., 2021, Hunwin et al., 2024).
- . Conclusion An adept dentist should embrace the principles of Minimally Invasive Dentistry (MID) to manage dental caries in a way that conserves healthy tooth structure. This approach not only prioritizes patient comfort but also aligns with modern dental care philosophies, offering less invasive and more preventive treatments. By focusing on early detection and intervention, dentists can provide patients with more holistic, health-conscious options that promote long-term oral health and reduce the need for extensive restorative procedures. References
- .\Abduraxmanovich, A.A. et al. (2021) 'Possibilities of applying minimally invasive technologies in treatment of severe acute pancreatitis', Central Asian Journal of Medical and Natural Science, 2(3), pp. 246-249. DOI: 10.2478/s11536-013-0283-1.
- "NAl-Germ, H.R., Abdalla, A.I. and Salama, M.M. (2023) 'Marginal integrity of composite resin restoration in class I cavities prepared by hydro-abrasion', Tanta Dental Journal, 20(1), pp. 12-19. DOI: 10.4103/tdj.tdj 47 22.
- "Alyahya, Y. (2024) 'A narrative review of minimally invasive techniques in restorative dentistry', The Saudi Dental Journal, 36(2), pp. 228-233. DOI: 10.1016/j.sdentj.2023.11.005.
- . 4 Azzopardi, L., Zarb, M. and Alzoubi, E.E. (2020) 'Quality of communication between dentists and dental laboratory technicians in Malta', Xjenza Online, 8, pp. 39-46. DOI: 10.7423/XJENZA.2020.1.04.
- •Bagheri, R. et al. (2010) 'The effect of aging on the fracture toughness of esthetic restorative materials', American Journal of Dentistry, 23(3), pp. 142-146. DOI: 10.1016/s0011-8532(01)00011-8.
- Nallester, B. et al. (2021) 'Current strategies for conservative endodontic access cavity preparation techniques—systematic review, meta-analysis, and decision-making protocol', Clinical Oral Investigations, 25(11), pp. 6027-6044. DOI: 10.1007/s00784-021-04080-7.
- . VBernabe, E. and Marcenes, W. (2020) 'Can minimal intervention dentistry help in tackling the global burden of untreated dental caries?', British Dental Journal, 229(7), pp. 487-491. DOI: 10.1038/s41415-020-2155-9.
- .^ABlancas, B., Lanzagorta, M.D., Jiménez-Garcia, L.F., Lara, R., Molinari, J.L. and Fernandez, A.M. (2021) 'Study of the ultrastructure of Enterococcus faecalis and Streptococcus mutans incubated with salivary antimicrobial peptides', Clinical and Experimental Dental Research, 7(3), pp. 365-375. DOI: 10.1002/cre2.430.
- . Cameron, A.C. and Widmer, R.P. (2021) Handbook of Pediatric Dentistry, Elsevier Health Sciences. DOI: 10.1016/B978-0-7020-7985-6.00001-8.
- . \Chen, X. et al. (2020) 'Microbial etiology and prevention of dental caries: exploiting natural products to inhibit cariogenic biofilms', Pathogens, 9(7), p. 569. DOI: 10.3390/pathogens9070569.
- .\'Cho, K.H. et al. (2021) 'The diagnostic efficacy of quantitative light-induced fluorescence in detection of dental caries of primary teeth', Journal of Dentistry, 115, p. 103845. DOI: 10.5114/jos.2021.106499.
- .\ Choudhary, K. et al. (2022) 'Clinical and microbiological evaluation of the chemomechanical caries removal agents in primary molars', Cureus, 14(11). DOI: 10.3390/biomedicines12081735.
- .\rangle*Convissar, R.A. (2022) Principles and Practice of Laser Dentistry, Elsevier Health Sciences. DOI: 10.1016/B978-0-323-81283-2.00001-8.
- .\'Desai, H., Stewart, C.A. and Finer, Y. (2021) 'Minimally invasive therapies for the management of dental caries—A literature review', Dentistry Journal, 9(12), p. 147. DOI: 10.3390/dj9120147.
- .\ Elamin, A., Garemo, M. and Mulder, A. (2021) 'Determinants of dental caries in children in the Middle East and North Africa region: a systematic review based on literature published from 2000 to 2019', BMC Oral Health, 21, pp. 1-30. DOI: 10.1186/s12903-021-01482-7.
- .\TElraggal, A. et al. (2024) 'Bond Strength, Microleakage, Microgaps, and Marginal Adaptation of Self-adhesive Resin Composites to Tooth Substrates with and without Preconditioning with Universal Adhesives', Journal of Adhesive Dentistry, 26(1). DOI: 10.3290/j.jad.b4949691.

- . VEltahlah, D. (2020) 'Reasons of replacement and repair of directly placed dental restorations: A systematic review', Doctoral dissertation, Cardiff University. DOI: 10.1016/j.jdent.2018.03.001.
- .\^Fenoll-Palomares, C. et al. (2004) 'Unstimulated salivary flow rate, pH, & buffer capacity of saliva in healthy volunteers', Rev Esp Enferm Dig, 96, pp. 773-783. DOI: 10.4321/S1130-01082004001100005.
- .\forestarrow\fore
- . Foros, P. et al. (2021) 'Detection methods for early caries diagnosis: a systematic review and meta-analysis', Caries Research, 55(4), pp. 247-259. DOI: 10.1159/000516084.
- . Frencken, J.E. (2017) 'Atraumatic restorative treatment and minimal intervention dentistry', British Dental Journal, 223(3), pp. 183-189. DOI: 10.1038/sj.bdj.2017.664.
- . Frencken, J.E. and van Amerongen, W.E. (2008) 'The atraumatic restorative treatment approach', in Fejerskov, O., Kidd, E. and Bente, N. (eds.) Dental caries: the disease & its clinical management. 2nd edn. Oxford, UK: Blackwell Munksgaard, pp. 427-442. DOI: 10.1007/s00784-012-0783-4.
- . TGürcan, A.T. and Şişmanoğlu, S. (2023) 'Atraumatic restorative treatment (ART) approach in minimally intervention dentistry: background and recent developments', International Studies in Health Sciences, June, p. 31. DOI: 10.1007/s00784-012-0783-4.
- . Havsed, K. et al. (2021) 'Bacterial composition and metabolomics of dental plaque from adolescents', Frontiers in Cellular and Infection Microbiology, 11, p. 716493. DOI: 10.3389/fcimb.2021.716493.
- . Yo Hund, S.M. et al. (2024) 'Polarization-Sensitive Optical Coherence Tomography for Monitoring De-and Remineralization of Bovine Enamel In Vitro', Diagnostics, 14(4), p. 367. DOI: 10.1364/BOE.8.001838.
- . Y Hunwin, K. et al. (2024) 'Physicochemical properties, biological chemistry and mechanisms of action of caries-arresting diammine-silver (I) fluoride and silver (I)-fluoride solutions for clinical use: a critical review', Frontiers in Oral Health, 5, p. 1412751. DOI: 10.3389/froh.2024.1412751.
- . VInchingolo, A.M. et al. (2023) 'Damage from carbonated soft drinks on enamel: a systematic review', Nutrients, 15(7), p. 1785. DOI: 10.3390/nu15071785.
- . AJardim, J.J. et al. (2020) 'Restorations after selective caries removal: 5-Year randomized trial', Journal of Dentistry, 99, p. 103416. DOI: 10.1016/j.jdent.2020.103416.
- . Y Ingarwar, M.M., Bajwa, N.K. and Pathak, A. (2014) 'Minimal intervention dentistry—a new frontier in clinical dentistry', Journal of Clinical and Diagnostic Research, 8(7), pp. ZE04-ZE08. DOI: 10.7860/JCDR/2014/9128.4583.
- . Kalra, R. (2022) 'Dental Value-Based Models and a Proposed Revision of Metrics for New York State's Quality Assurance of Preventive Dental Care', Columbia University. DOI: 10.7916/2tkz-0108.
- . Khan, S. et al. (2020) 'Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice', Science Translational Medicine, 12(567), eaay6218. DOI: 10.1126/scitranslmed.aay6218.
- "Koç-Vural, U., Kerimova-Köse, L. and Kiremitci, A. (2024) 'Long-term clinical comparison of a resin-based composite and resin modified glass ionomer in the treatment of cervical caries lesions', Odontology, 5 June 2024, pp. 1-2. DOI: 10.1007/s10266-024-00958-6.
- . **Leal, S.C. et al. (2022) 'Minimum intervention oral care: defining the future of caries management', Brazilian Oral Research, 36, e135. DOI: 10.1590/1807-3107bor-2022.vol36.0135.
- Lee, C., Jeon, D., Ahn, J.M. and Kwon, O. (2020) 'Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database', Technovation, 96, p. 102140. DOI: 10.1016/j.technovation.2020.102140.
- Leon, A., Ungureanu, L. and Puşcaşu, C. (2016) 'Air abrasion: interdisciplinary modern technologies—approach to minimally invasive treatment of dental caries', Proceedings of the International Conference on Interdisciplinary Studies (ICIS 2016). DOI: 10.5772/62676.
- . TLi, Z., Zhang, C., Li, C., Zhou, J., Xu, X., Peng, X. and Zhou, X. (2020) 'S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogenecity of Streptococcus mutans', PLoS Pathogens, 16(7), e1008774. DOI: 10.1371/journal.ppat.1008774.
- . TVLin, Y., Chen, J., Zhou, X. and Li, Y. (2021) 'Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides', Critical Reviews in Microbiology, 47(5), pp. 667-677. DOI: 10.1080/1040841X.2021.1945678.
- "Magni, E. et al. (2008) 'SEM & microleakage evaluation of the marginal integrity of two types of class V restorations with or without the use of a light-curable coating material & of polishing', Journal of Dentistry, 36, pp. 885-891. DOI: 10.1016/j.jdent.2008.07.005.

- "Maheshwari, S., Jaan, A., Vyaasini, C.S., Yousuf, A., Arora, G. and Chowdhury, C. (2020) 'Laser and its implications in dentistry: A review article', Journal of Current Medical Research and Opinion, 3(08). DOI: 10.15520/jcmro.v3i08.323.
- .4 · Maltz, M. et al. (2020) 'Can we diagnose a patient's caries activity based on lesion activity assessment? Findings from a cohort study', Caries Research, 54(3), pp. 218-225. DOI: 10.1159/000509871.
- .4 Mohamad Saberi, F.N. et al. (2022) 'Assessment of demineralized tooth lesions using optical coherence tomography and other state-of-the-art technologies: a review', BioMedical Engineering OnLine, 21(1), p. 83. DOI: 10.1186/s12938-022-01055-x.
- .4 Moores, C.J., Kelly, S.A. and Moynihan, P.J. (2022) 'Systematic review of the effect on caries of sugars intake: ten-year update', Journal of Dental Research, 101(9), pp. 1034-1045. DOI: 10.1177/00220345221082918.
- . FNtovas, P. et al. (2023) 'Occlusal caries detection on 3D models obtained with an intraoral scanner: A validation study', Journal of Dentistry, 131, p. 104457. DOI: 10.1016/j.jdent.2023.104457.
- . 4 Nyvad, B. and Takahashi, N. (2020) 'Integrated hypothesis of dental caries and periodontal diseases', Journal of Oral Microbiology, 12(1), p. 1710953. DOI: 10.1080/20002297.2019.1710953.
- •• Prathap, A. (2024) 'Micro air abrasion: a novelty unparalleled', Journal of the Indian Society of Pedodontics & Preventive Dentistry, 42. DOI: 10.5005/jp-journals-10024-3200.
- Rainey, J.T. (2002) 'Air abrasion: an emerging standard of care in conservative operative dentistry', Dental Clinics of North America, 46, pp. 185-209. DOI: 10.1016/s0011-8532(01)00011-8.
- . 4 Razaghy, M. (2023) 'A Predictable Approach to Exquisite Anterior Direct Restorations—the Additive Solution', Compendium, 44(9). DOI: 10.2341/14-022-L.
- .4 Ricucci, D. et al. (2020) 'Pulp and dentine responses to selective caries excavation: A histological and histobacteriological human study', Journal of Dentistry, 100, p. 103430. DOI: 10.1016/j.jdent.2020.103430.
- . 4 Ricucci, D. et al. (2020) 'Pulp and dentine responses to selective caries excavation: A histological and histobacteriological human study', Journal of Dentistry, 100, p. 103430. DOI: 10.1016/j.jdent.2020.103430.
- ••Ritter, A.V. (2017) Sturdevant's Art & Science of Operative Dentistry, Elsevier Health Sciences. DOI: 10.1016/B978-0-323-47833-5.00001-8.
- Scharfe, M. and Flöter, E. (2020) 'Oleogelation: From scientific feasibility to applicability in food products', European Journal of Lipid Science and Technology, 122(12), p. 2000213. DOI: 10.1002/ejlt.202000213.
- Schön, A., Switulla, J., Luksch, L., Pesl, J., Kölling, R. and Einfalt, D. (2024) 'Impact of nitrogen supplementation and reduced particle size on alcoholic fermentation and aroma in nitrogen-poor apple and pear mashes', Beverages, 10(4), p. 93. DOI: 10.3390/beverages10040093.
- .° Shefally, S., Mittal, S. and Prabhakar, D. (2021) 'Atraumatic restorative treatment: a review', International Journal of Health Sciences, 5(S1), pp. 230-236. DOI: 10.53730/ijhs.v5nS1.5510.
- •• Singh, S. and Garg, A. (2013) 'Comparison of the pain levels of computer controlled and conventional anesthesia techniques in supraperiosteal injections: a randomized controlled clinical trial', Acta Odontologica Scandinavica, 71(3-4), pp. 740-743. DOI: 10.3109/00016357.2012.715200.
- .ººSu, N., Lagerweij, M.D. and van der Heijden, G.J. (2021) 'Assessment of predictive performance of caries risk assessment models based on a systematic review and meta-analysis', Journal of Dentistry, 110, p. 103664. DOI: 10.1371/journal.pone.0264945.
- Tao, S. et al. (2021) 'A novel anticaries agent, honokiol-loaded poly (amido amine) dendrimer, for simultaneous long-term antibacterial treatment and remineralization of demineralized enamel', Dental Materials, 37(9), pp. 1337-1349. DOI: 10.1016/j.dental.2021.06.003.
- . Wang, D., Han, S. and Yang, M. (2023) 'Tooth diversity underpins future biomimetic replications', Biomimetics, 8(1), p. 42. DOI: 10.3390/biomimetics8010042.