

Available at https://www.iasj.net/iasj

Iraqi Academic Scientific Journals

Journal homepage: https://journals.uokerbala.edu.iq/index.php/UOKJ

Research Article

Molecular diagnosis of Candida species isolates from skin diseases in Karbala Governorate

- ^{1,} Rugia Fadhel AL-Shemary
- ^{2,} Maysaa Taqi AL-Khazali
- ^{1,2} Unvirsity of Karbala College of Sciences Biology Department Research is taken from the researcher's master's thesis.

Article Info

Article history: Received 9 -6-2025 Received in revised form 25-9-2025 Accepted 30-9-2025 Available online 30 -9 -2025

Keywords: Candida albicans, CALB1, CGL1, CTR1.

Abstract:

The present work was designed to identify Candida species associated with skin infections in patients from Karbala Governorate, Iraq, through the application of molecular approaches. Out of one hundred clinical specimens examined, seventy-seven fungal isolates were confirmed as belonging to the genus Candida. For molecular identification, the Internal Transcribed Spacer (ITS) region was targeted using three species-specific primers: CALB1 for Candida albicans, CGL1 for C. glabrata, and CTR1 for C. tropicalis. Polymerase chain reaction (PCR) analysis generated reproducible bands of 273 bp for C. albicans, 423 bp for C. glabrata, and 357 bp for C. tropicalis, confirming the efficiency of the primers in species recognition. Among the isolates, C. albicans was the most frequent species, followed by C. glabrata and C. tropicalis. The predominance of C. albicans emphasizes its epidemiological significance as a leading cause of skin mycoses in the studied population. The findings of this investigation provide useful baseline data on the distribution of *Candida* species in Iraq and demonstrate the value of PCR-based methods for achieving accurate and rapid diagnosis. Such information may assist in guiding appropriate antifungal therapy and improving patient management in clinical practice.

Corresponding Author E-mail: ruqia.f@s.uokerbala.edu.iq , maysaa.alkazale@uokerbala.edu.iq Peer review under responsibility of Iraqi Academic Scientific Journal and University of Kerbala.

Introduction

temperature changes, injury, inflammation. It also contains a large number of bacteria and fungi that live as natural flora on the skin [1]. Under the influence of a number of external and internal factors, these organisms transform into pathogens and cause skin diseases [2]. Fungal infections of the skin are a common health problem throughout the world, and their prevalence is expected to reach 20-25% of the world's population, and their incidence continues to rise [3]. There are many types of fungi that cause skin infections humans, including dermatophytes in (Trichophyton, Microsporum, Epidermophyton), Malassezia forfur, Candida, less commonly, Aspergillus, Cladosporium, and Fusarium species [4]. The genus Candida is a type of fungus that causes an infection called candidiasis. It typically lives on the skin and inside the body, in the mouth, digestive tract, and vagina, without causing any disease [5]. Under conditions including AIDS, cancer, treatment broad-spectrum antibiotics corticosteroids, immune suppression, diabetes, and malnutrition, these fungi transform from a yeast state to a pathogenic state, causing various infections ranging from infections of the superficial mucous membranes and skin to systemic infections affecting any organ within the body [6]. The genus Candida includes approximately 30 species, 20 of which cause disease in humans. The most important of these species medically are C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, and C. krusei [7]. Many studies have indicated that morphological characteristics cannot be relied upon in the diagnosis of fungi, including Candida, because they require sufficient experience in the field of fungal classification, especially when working with closely similar fungal groups, in addition to requiring a lot of time and effort. Also, the sizes, shapes, and colors of fungal spores and colonies can be affected by different environmental factors, and therefore many researchers do not rely on them, although they sometimes give accurate results. The accuracy and sensitivity of many

The skin is the largest organ of the body, and

its primary function is to protect against

classification techniques based on molecular biology have contributed to the detection and study of genetic differences among many organisms, including Candida, in addition to eliminating the disadvantages of traditional methods. Polymerase chain reaction (PCR) is one of the molecular techniques based on targeting and amplifying a specific region of the organism's genome to reveal the different genetic relationships between fungal species, through which the results of the phenotypic diagnosis of fungi can be supported. Given the importance of accurate diagnosis of Candida, this study aimed to diagnose different fungal isolates using polymerase chain reaction (PCR) [8].

Materials and Methods Pathogenic Specimens Collection

One hundred skin samples were collected from patients with various skin diseases following clinical diagnosis by a specialist physician. The patients were patients of both sexes and varying ages, attending **Teaching** Hospital, Children's the Dermatology Consultation Clinic, and the Burns Center at Imam Hussein Hospital and Imam Hassan Hospital in the holy city of Karbala. The samples were collected over a period of five months, from September 8, 2024, to February 2, 2025. Cotton swabs containing the carrier medium were used to collect the samples after sterilizing the affected with 70% ethanol to eliminate contaminating fungi and bacteria.

Culture and Isolation

The study samples were cultured directly using the stromal method on saproidium dextrose agar medium supplemented with amoxicillin, with two replicates for each sample. The plates were then incubated at 27°C for 24–48 hours, after which fungal growth was observed and diagnosed [9].

Identification Morphology examination

After fungal growth appeared on the surface of Sabouraud dextrose agar medium supplemented with amoxicillin, the external appearance of the growing colonies was

examined, including their shape, color, diameter, and height. [11], [10]

Microscopic examination

A sample of the fungal growth was taken and transferred to a glass slide containing a drop of lactophenol blue stain. The slide was covered with a coverslip and examined under a microscope at 40x magnification to observe the shape, size, and buds. [12], [11], [10]

Molecular Identification of *Candida* **Isolates**

PCR testing was performed to confirm the morphological, microscopic, biochemical, and physiological identification of *Candida* species isolated from various skin lesions, as follows:

1 - Cultivation of *Candida* Isolates

Candida isolates were activated by culturing them on Saproid agar medium supplemented with amoxicillin. The plates were incubated at 27°C for 24-48 hours.

2 - Extraction of Deoxyribonucleic Acid (DNA)

DNA was extracted using the GENOMIC DNA mini kit provided by the Korean company Macrogen, following the steps described by the manufacturer.

3- PCR reaction

The PCR test was performed using a master mix prepared by the Korean company Interon to amplify the ITS1 and ITS2 regions, with a total volume of 25 microliters, including 2 microliters of DNA, 1 microliter of forward primer, and 1 microliter of reverse primer, as shown in Tables (1) and (2).

Table (1):PCR Master Mix				
Component	Amount (µI)			
DNA sample	2			
Primer (F)	1			
Primer (R)	1			
Nuclease free water	16			
Master Mix tube	5			
Total volume	25			

Table (2): Primers used to diagnose <i>Candida</i> isolates [13].								
Reference	Candida	Primer name	Primer sequence 5 3	PCR reaction product (bp)				
[14] [15] [16]	C.albicans	CALB1 CALB2	TTT ATC AAC TTG TCA CAC CAG A ATC CCG CCT TAC CAC TAC CG	273				
[17] [18] [13]	C. glabrata	CGL1 CGL2	TTA TCA CAC GAC TCG ACA CT CCC ACA TAC TGA TAT GGC CTA CAA	423				
	C.tropicalis	CTR1 CTR2	CAA TCC TAC CGC CAG AGG TTA TTGG CCA CTA GCA AAA TAA GCGT	357				

4- PCR Conditions

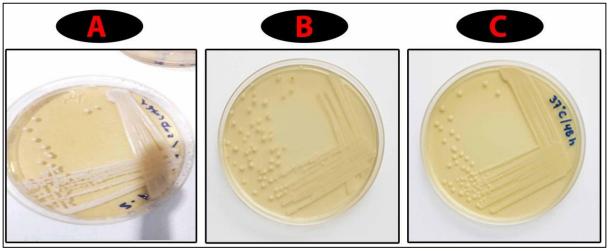
The isolated DNA was amplified using the PCR reaction conditions shown in Table (3).

Table (3): PCR reaction conditions for identifying isolated Candida species.							
Primer		Temperature (c) / Time					
Name	Initial		Cycling Condition				
	Denaturation /	Denaturation	Annealing	Extension	extension /		
	Time				Time		
CALB1	94c/5min	94c/1min	56c/ 1min	72c/2min	72c/7min		
	1 cycle	35 cycle	35 cycle	35 cycle	1cycle		
CGL1	94c/5min	94c/1min	56c/ 1min	72c/2min	72c/7min		
	1 cycle	35 cycle	35 cycle	35 cycle	1cycle		
CTR1	94c/5min	94c/1min	56c/ 1min	72c/2min	72c/7min		
	1 cycle	35 cycle	35 cycle	35 cycle	1cycle		

5- Analysis of PCR Results

DNA content was assessed using 1.5% agarose gel electrophoresis. Ultraviolet light was used to detect DNA content. PCR products were then analyzed according to the agarose gel electrophoresis protocol [14].

Results and Discussion Isolation and Diagnosis


One hundred samples were collected from various clinical cases of individuals suffering from various skin diseases. Laboratory examination results showed growth in 77 samples (77%), while 23 samples (23%) showed no significant growth. This indicates that clinical diagnosis does not provide significant accuracy in identifying the pathogen, as some diseases have similar clinical manifestations to other skin diseases. Therefore, laboratory confirmation using direct microscopic examination, culture, or molecular techniques is necessary to obtain an

accurate diagnosis and appropriate treatment [19].

Diagnosis of isolated Candida.

The results of morphological examination of yeast colonies growing on SDA medium showed the appearance of white, discoid or oval colonies with a smooth surface, elevated, and creamy at the base (Figure (1)). These characteristics were consistent with those reported by [20], [21], and [22]. SDA medium is an ideal medium for isolating *Candida* because the low pH of this medium promotes its growth and inhibits the growth of many types of bacteria, and the addition of an antibacterial increases its selectivity [23].

With regard to microscopic diagnosis, all isolates showed single, spherical to oval, or elongated cells with budded cells, and the results were consistent with those reported by [24].

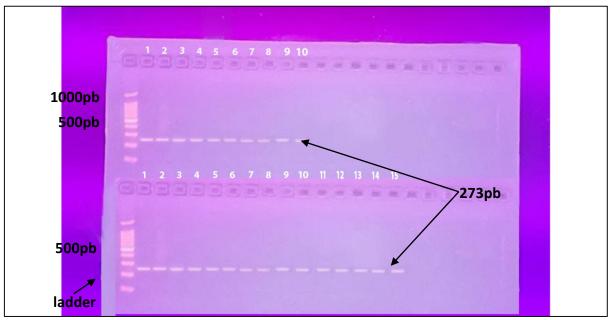


Figure (1): A- *C.albicans* colonies on SDA medium after incubation at 37°C for 48 hours. B- *C.tropicalis* colonies on SDA medium after incubation at 37°C for 48 hours. C- *C.glabrata* colonies on SDA medium after incubation at 37°C for 48 hours.


Molecular Identification of Isolated Candida Species

Molecular identification of isolated Candida species, identified using conventional methods, was performed within three species: C. tropicalis, C. glabrata, and C. albicans. This was accomplished using three ITS regionspecific primers: CALB1, CTR1, and CGL1. [25] indicated that ITS regions are important for studying the relative origins of various understanding fungal species and evolutionary relationship between species. The results of using these primers were characterized by success and high accuracy in molecular identification of the isolated species, as PCR results were obtained with a size of 273bp for 58 isolates. This confirms that all isolates belong to the C. albicans species (Figure 2: a, b, c). This result confirms what was identified using conventional methods, and the current result is

consistent with the findings of numerous researchers, including [27], [26], [17], [15], and [14]. The polymerase chain reaction (Figure (3)) also showed that 11 isolates had a molecular weight of 423 bp, confirming that the isolates belong to the C. glabrata species. This result is consistent with the findings of [26], [17], and [16]. Eight isolates isolated during the current study were confirmed as belonging to the C. tropicalis species, as molecular diagnosis results showed amplification product of 357 bp (Figure (4)). result was confirmed by researchers, including [27], [26], and [17]. [25] indicated that there are significant differences and variations in the ITS regions of fungal DNA, and these differences help in identifying fungi at the level of species, strains, and other taxonomic groups. They also help understanding and studying evolutionary relationships and how new species and strains arise.

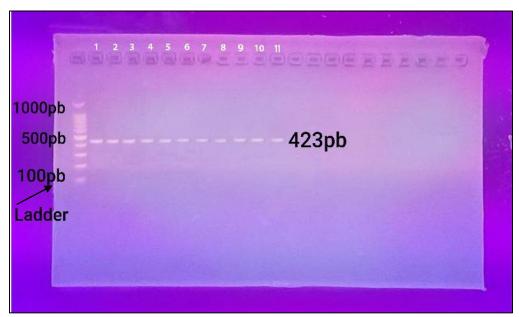

Figure (2): A- Electrophoresis of the PCR reaction product of *C. albicans* isolates using the specific primer *CALB1* (273bp) at a gel concentration of 1.5%.

Figure (2): B- Electrophoresis of the PCR reaction product of *C. albicans* isolates using the specific primer *CALB1* (273bp) at a gel concentration of 1.5%.

Figure (2): C- Electrophoresis of the PCR reaction product of *C. albicans* isolates using the specific primer *CALB1* (273bp) at a gel concentration of 1.5%.

Figure (3): Electrophoresis of the PCR reaction product of *C. glabrata* isolates using the specific primer *CGL1*(423bp) at a gel concentration of 1.5%.

Figure (4) :Electrophoresis of the PCR reaction product of *C.tropicalis* isolates using the specific primer *CTR1*(357bp) at a gel concentration of 1.5%.

Conclusion

The results of the study demonstrated that the use of the ITS region as a molecular marker is an effective and sensitive tool for diagnosing *Candida* species, given the high level of variability between different species. Furthermore, the use of three specific primers

(CALB1, CGL1, and CTR1) enabled accurate discrimination between the studied strains, helping to account for the potential for cross-contamination with other morphologically similar fungi. This contributes to improving therapeutic strategies and selecting the most appropriate antifungal.

References

- **1-Hernandez**, V.M.; Pineda, V.M. and Herrera, E.M. (2020) Skin infections caused by emerging Candida species. Current Fungal infectionReports. 14 (2): 1-8.
- **2-Boxberger,** M.; Cenizo, V.; Cassir, N. andScola,B.L. (2021). Challenges in exploring and manipulating the human microbiome. Microbiome. 9(1): Skin2-14.
- **3-Dos** Santos, M.; Amaral, S. and Harmen, Sp. (2010). The prevalence of common skin infections. in four districts in Tomor-Leste, a cross sectional Survey. BMC Infectious Disease. 10(61): 1–6.
- **4-Gupta, S. and Gupta**, BL. (2013). Evaluation of the incidences of dermatophilic infection in Raja stahan, India. Global Journal of Anesthesiology and plastic Surgery-2(2): 16-19.
- **5-Khaleefa**, R.H; Ahmed, L.T. and Hameed, D.S. (2020). Oral and Dermal Candidiasis

- Among infants in al-Battal teaching hospital. Diyala Journal of Medicine. 19 (2):147-156.
- **6-Saeed,A.S. and Saadullah**, A. M. (2019). Isolation and Identification and antifungal susceptibility testing of Candida species from dermatologic specimens. in Duhok province. Journal of pure and Applied Sciences. 31(4): 1-8.
- **7- Farzeen**, I.; Muzammil S.; Rafique, A.; Noreen, R.; Waseem, M. And leeb, R. Ijaz, M. and Ashraf, A-(2022). Cutaneous Candidiasis. Candida and Candidiasis. Tu lin As Kun Ed. Pp1-18.
- 8-Al-Abadi, Aqeel Nazal; Abu Dakka, Ahmed Barir; Al-Ghazali, Nour Ali; Ali, Amal Ajil. (2018). Molecular identification of isolates belonging to the fungi Rhizoctonia solani, Fusarium Pencillium tardochrysogenum, Fusarium solani, and verticilliodes isolated from the roots of

- some tomato plants (Solanum lycopersicum L.). Karbala Journal of Agricultural Sciences. Volume 5 Issue 2.
- **9-Sarhan**, Abdul-Ridha Taha, (2012). Practical Mycology. Ministry of Higher Education and Scientific Research, City of Science University College, 1st ed., Baghdad.
- 10-Al-Khafaji, Karima Amin Hussein and Al-Maamouri Zidan Khalifa Imran. (2019). The Most Important Medicinal Fungi and Their Diseases, Methods of Isolation, Diagnosis and Treatment. Beirut, Lebanon.
- **11Zafar**,A.;Kauser,J.&Joveria,F.(2017).Pract ical guide and atlas for the diagnosis of fungal infections.United states.
- **12-Phargava**,B.(2019).Standard operating procedures for fungal identification and detection of antifungal resistance . 2nd. Edn..icm2.New Delhi,India.
- 13- Guizhen Luo and Thomas G. Mitchell .(2002).Rapid Identification of Pathogenic Fungi Directly from Cultures byUsing Multiplex PCR.JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2002, p. 2860–2865 Vol. 40, No. 8.
- 14-Khudhair, Ali .Y .Taiban, Zahraa. K; AL-Huchaimi, Sarah .Hasan. Kadhum; Khatlan, Saif al deen. M.(2024). DNA Sequencing Detection of Candida albicans Gene Isolated CALB1 from Oral Candidiasis **Patients** in Al-Najaf Governorate. Journal of Science in Volume: 2 Issue: 11 .Medicine and Life ISSN: 2992-9202.
- 15-SAVO,Orçun, and ÖZTÜRK2,Dilek.(2022).Determination of Virulence Factors in Candida albicans Isolated from Cattles with Mastitis.MAKU J. Health Sci. Inst. 10(1): 91-99.
- 16-Maleka, Marianna; Paluchowskaa, Paulina; Bo. Zena Bogusz. b; Budaka. Alicja. (2017). Molecular characterization of Candida isolates from intensive care unit patients, Krakow, Poland. Rev Iberoam Micol. 2017; 34(1):10–16.
- **17-Taira**, Cleison; Almeida, Margarete . Teresa . Gottardo. ; Okay, Thelma . Suely .

- Ceccon,Ma. E.(2014). A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients .BMC Infectious Diseases , 14:406.
- **18-Macedo** 'Jefferson .Lessa Soares de ; Santos.João Barberino . (2005).Bacterial and fungal colonization of burn wounds.Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 100(5): 535-539.
- **19-Hay**, R. J., Johns, N. E., Williams, H. C., Bolliger, I. W., Dellavalle, R. P., Margolis, D. J., ... & Michaud, C. (2014). The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. Journal of Investigative Dermatology, 134(6), 1527-1534.
- **20-Al-Khazaali**, Maysaa Taqi. (2023). Study of the inhibitory activity of Sage Saliva leaf extract and its nanocomposite against some types of Candida in children in Karbala Governorate. Thesis. College of Education for Pure Sciences / University of Karbala L.officinalis.
- 21-Al-Mayahi, Rand Sajid Abdul-Khader. (2023). The Effect of One of the Nano-Prepared Compounds in Inhibiting Some Pathogenic Fungi Isolated from Different Clinical Sources. Master's Thesis, College of Science, University of Karbala.
- **22-Al-Amri**, Sarab Fadhel Hussein. (2024). A Study of the Effect of Extracts of Some Medicinal Plants in Their Natural and Nanoforms on Inhibiting the Growth of Some Candida. Thesis. University of Karbala. College of Education for Pure Sciences.
- **23-Raju** 'S. B. and Rajappa 'S. (2011). Isolation and identification of Candida from the oral cavity. Int. Scholarly Res. Network.
- **24-Sudbery** 'P. 'Gow 'N. 'Berman 'J. '(2004). The distinct morphogenic states of Candida albicans. Trends Microbiol, 12(7):317-324.supplements. Marcel Dekker, New York, pp 603–622.
- **25-Mohammed.** Maher Naeem.; Eidan. Alaa Hassan. (2016). Genotyping of some fungal isolates based on the variation in the ITS region (Internal transcribed

- spacer) as a universal genetic code in fungal diagnosis. Journal of the University of Babylon / Pure and Applied Sciences / Issue (1) / Volume (24).
- **26-Luo** 'Guizhen and Mitchell 'Thomas. G.(2002). Rapid Identification of Pathogenic Fungi Directly from Cultures by Using Multiplex PCR.JOURNAL OF CLINICAL MICROBIOLOGY, p. 2860–2865 Vol. 40, No. 8: /JCM.40.8.2860–2865.
- 27-Gonçalves, Vidigal. Pedrina ;Santos, Simone. Aparecida; Maria, Aparecida .Fernandez; Patrícia ,de. Souza .Bonfim; Hilton ,Vizi .Martinez; and Terezinha. Inez .Estivalet Svidzinski. (2011). Candiduria by Candida tropicalis evolves to fatal candidemia. Medical Case Studies Vol. 2(2), pp. 22-25.