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Abstract: 
    
 

   Abstract— High penetration of variable renewable energy (VRE) is 

stressing distribution feeders with steep ramps, midday over-voltage, and 

reverse power flow. Energy storage systems (ESS)—primarily battery 

energy-storage systems (BESS) at the distribution level—can mitigate 

these issues only if they are sited and sized optimally. This paper 

addresses the research gap of joint siting–sizing under realistic microgrid 

constraints (grid-connected and islanded modes) and uncertainty. We 

formulate a multi-objective optimisation on a modified IEEE 33-bus 

radial feeder with rooftop PV and labelled critical loads. The framework 

enforces full AC power-flow constraints, line-thermal limits, a budget 

cap, siting cardinality, and an explicit islanding-autonomy requirement for 

critical loads. Battery wear is internalised via a piecewise-linear 

degradation proxy. A hybrid optimiser couples a genetic algorithm 

(discrete siting) with Hybrid Adaptive Differential Evolution with Decay 

(HyDE-DF) for continuous sizing, and is evaluated over clustered 

stochastic scenarios of load, PV, and outage events. 
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“Overview of Optimal Siting and Sizing of Energy Storage in Distribution 

Networks with Microgrids” 

 

Results show that strategically placed BESS 

reduce annual technical losses by up to 30%, 

halve voltage-deviation indices (>50% 

improvement), and serve ≥95% of critical-

load hours during islanded operation, all while 

respecting a €5 M investment ceiling. The 

Pareto frontier reveals a clear knee solution 

around €3.6 M that jointly balances loss 

reduction, voltage support, and resilience. The 

workflow is released with reproducible code 

and anonymised datasets, enabling utilities 

and planners to identify least-cost, high-

impact storage deployments in microgrid-

integrated distribution networks. 

Conclusions: integrating siting and sizing 

under AC constraints and explicit islanding 

requirements materially improves technical 

and economic outcomes compared with 

sequential or single-objective baselines. 

 

 

1. Introduction 

 

Figure 1: “Challenges in Modern Distribution Networks and the Role of ESS” 
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1.1 Context and Motivation 
   The global power sector is undergoing a 

rapid transformation as electricity demand 

expands across mobility, heating, and 

industrial sectors. This growth is driven by 

aggressive decarbonisation policies and 

falling costs of renewable generation, 

particularly solar photovoltaic (PV) and 

onshore wind [1], [2]. However, the same 

success has introduced reliability and 

operational challenges at the distribution 

level: steep net-load ramps, mid-day over-

voltage conditions, and reverse power flows 

in feeders originally designed for 

unidirectional supply [3]. These challenges 

have motivated utilities and communities to 

invest in microgrids—locally controlled 

clusters of loads and distributed energy 

resources (DERs) that can operate both in 

grid-connected and islanded mode [4], [5]. 
 

1.2 Role of Energy Storage 

Systems(ESS) 
   Within microgrids, energy storage 

systems (ESS)—predominantly battery 

energy-storage systems (BESS) based on 

lithium-iron-phosphate (LFP) chemistry—

play a critical role. ESS units provide fast-

acting reserves, buffer the intermittency of 

variable renewable energy (VRE), defer  

 

expensive conductor upgrades, and supply 

critical loads during outages [6], [7]. Yet, the 

value of storage depends strongly on where 

and how large the units are deployed. If 

storage is oversized or placed at non-critical 

buses, the investment may increase costs 

without tangible benefits. Conversely, 

undersized or poorly sited storage risks 

leaving critical loads unprotected. 

Therefore, optimal siting and sizing of ESS 

at the distribution level is a central planning 

problem for utilities [8]. 

 
1.3 Limitations of Transmission-

Scale Solutions While transmission-scale 

storage,         synchronous condensers, and 

other ancillary-service assets already exist, 

they do not address most distribution-level 

issues. Power-quality complaints such as 

flicker, voltage sags, and thermal overloads 

typically arise closer to customers—on 

secondary feeders and laterals. Distribution-

connected ESS therefore deliver 

disproportionate benefits per megawatt of 

installed capacity [9]. Recent advances in 

battery technology, especially the cost 

decline of LFP batteries (over 90% price 

reduction since 2010), have further 

accelerated distribution-level deployments 

[10]. 

 

1.4 Research Gaps 
  Despite substantial progress, several 

limitations persist in the existing body of 

work: 

 Coupled Siting and Sizing: Many studies 

decouple the siting and sizing problems for 

tractability. A sequential approach may 

overlook globally optimal solutions where 

non-intuitive siting compensates for 

reduced capacity [11]. 

 Microgrid-Specific Constraints: Most 

optimisation models assume continuous 

grid connection and ignore islanding or 

black-start requirements. In reality, 

microgrids must sustain critical loads 

during outages, which requires explicit 

islanding autonomy constraints [12]. 

 Uncertainty Treatment: Deterministic 

approaches dominate, relying on average 

load and PV profiles. However, ignoring 

stochastic variation can underestimate 

lifecycle costs and overstate reliability [13]. 

 Battery Degradation: Few studies 

integrate degradation into the optimisation 

model. As ESS replacement costs are 

significant, neglecting degradation risks 

overly optimistic solutions [14]. 

 Outdated References: Several studies 

continue to benchmark only on legacy IEEE 

test feeders without incorporating realistic 

modern datasets or constraints, limiting 

practical relevance. 
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1.5 Contribution of This Study 

   This paper seeks to bridge these gaps by 

formulating a comprehensive, multi-

objective optimisation framework for ESS 

siting and sizing in a distribution network 

with integrated microgrids. Key 

contributions include: [13] 

1. Integrated Objective Space: Combining 

loss minimisation, voltage profile 

improvement, investment cost, and 

resilience (critical-load survivability) in a 

single Pareto frontier. 

2. Explicit Islanding Modelling: Enforcing 

outage scenarios and critical-load autonomy 

in the optimisation process. 

3. Stochastic Representation: Incorporating 

probabilistic solar and load forecasts via 

Monte Carlo scenario generation and 

clustering. 

4. Battery Degradation Internalisation: 
Capturing cycle ageing through a linear 

proxy cost embedded in the optimisation. 

5. Hybrid Optimisation Engine: Coupling a 

genetic algorithm (GA) for discrete siting 

variables with Hybrid Adaptive 

Differential Evolution with Decay 

(HyDE-DF) for continuous sizing 

variables, leveraging the strengths of each 

method. 

6. Realistic Case Study: Application to a 

modified IEEE 33-bus radial feeder with 

distributed PV and critical loads, validated 

with utility-style data. [13] 

By explicitly addressing these aspects, the 

study demonstrates that a properly designed  

optimisation framework can identify “least-

cost, most-impact” ESS deployments that 

simultaneously improve technical 

performance and economic feasibility. 

1.6 Structure of the Paper 
The remainder of this paper is organised as 

follows: 

 Section 2 reviews the evolution of ESS 

planning approaches and highlights 

continuing challenges. [12] 

 Section 3 presents the proposed 

optimisation formulation, constraints, and 

hybrid GA–HyDE methodology. [13] 

 Section 4 details the case study setup, data 

assumptions, and simulation environment. 

 Section 5 discusses results, comparative 

benchmarks, and sensitivity analysis. 

 Section 6 concludes with key insights and 

recommendations for future research, 

including second-life EV batteries, portable 

ESS, and co-optimisation with demand 

response. [13 

 

2. Literature Review    
   The optimal siting and sizing of energy 

storage systems (ESS) in distribution 

networks has received growing attention 

over the past two decades, driven by the 

need to improve voltage stability, reduce 

technical losses, and enhance resilience in 

microgrid settings. This section reviews 

the evolution of ESS applications, key 

siting and sizing approaches, optimisation 

methods, and the limitations that motivate 

the present study.
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Figure 2: “Optimization method Evolution” 

2.1 Evolution of ESS in Power 

Systems   Initially, energy storage was 

introduced at the transmission level to 

provide bulk time-shifting, frequency 

regulation, and spinning reserves. With the 

increasing penetration of distributed 

renewable generation, however, 

distribution-connected ESS gained 

importance for local voltage regulation, peak 

shaving, and outage backup [1], [2]. The 

definition of ESS today encompasses not 

only lithium-ion batteries but also long-

duration storage (iron–air, flow batteries, 

and pumped hydro), though lithium-iron-

phosphate (LFP) dominates distribution-

scale deployments due to cost and maturity 

[3]. 

In parallel, microgrids have emerged as a 

critical architecture for integrating 

distributed energy resources (DERs). ESS 

plays a central role in enabling microgrid 

islanding, black-start capability, and 

seamless transitions between grid-connected 

and isolated modes [4]. While early studies 

considered deterministic peak-load support, 

more recent work embeds ESS within multi-

objective planning models that account for 

resilience, cost, and emissions [5]. 
 

2.2 Optimal Siting Approaches   

Siting refers to the identification of buses or 

nodes where storage yields the greatest 

technical or economic benefit. Early 

methods relied on sensitivity indices such 

as: 
 
 

 

 Loss Sensitivity Factor (LSF): measures 

the marginal change in system losses for 

incremental injections at a bus. 

 Voltage Sensitivity Index (VSI): quantifies 

the responsiveness of nodal voltage to 

changes in reactive or active power. 

 Power Loss Index (PLI): ranks buses by 

their relative contribution to overall feeder 

losses. 

These approaches are computationally 

efficient and easy to implement but often 

ignore dynamic behaviour, stochastic load 

variations, and multi-objective trade-offs 

[6]. 

 

2.3 Optimal Sizing Strategies  Sizing 

concerns the determination of power (kW) 

and energy capacity (kWh) ratings of ESS.  
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Early works used heuristic or rule-of-thumb 

methods such as peak load coverage or 

average demand shifting. More advanced 

studies employed linear programming (LP) 

or non-linear optimisation (NLP) 

frameworks that minimise investment cost, 

unserved energy, or lifecycle losses [7]. For 

instance, Zakeri and Syri [8] modelled ESS 

degradation and replacement cost in sizing 

optimisation, demonstrating significant 

differences from static approaches. 

 

2.4 Joint Siting and Sizing 

Optimisation Recognising the            

interdependence of siting and sizing, 

more recent literature treats both as a 

single optimisation problem. Multi-

objective optimisation (MOO) 

techniques—such as Non-dominated 

Sorting Genetic Algorithm II (NSGA-

II), Multi-Objective Particle Swarm 

Optimisation (MOPSO), and 

Differential Evolution (DE)—are widely 

applied to balance conflicting goals (loss 

minimisation, voltage improvement, 

resilience, and investment cost) [9], [10]. 

For example, Kamel and Kermanshahi 

[11] co-optimised ESS siting and sizing 

using NSGA-II and showed that 

including reliability indices changed the 

optimal configuration substantially  

 

compared with purely economic 

objectives. Similarly, Xu et al. [12] 

applied PSO to identify ESS locations 

that minimised both voltage deviation 

and total power loss, validating on the 

IEEE 33-bus feeder. 

To reduce redundancy between Sections 

2.2 and 2.4, this paper consolidates the 

discussion: sensitivity-based siting 

(Section 2.2) serves as a baseline for 

comparison, while joint optimisation 

(Section 2.4) represents the state of the 

art. 

 

2.5 Inclusion of Microgrid-

Specific Constraints    Several  

 

studies highlight that ignoring 

microgrid-specific requirements can 

result in under-provisioned solutions. 

Guerrero et al. [13] stressed the need to 

size ESS not just for economic loss 

minimisation but also to guarantee 

survivability of critical loads during 

outages. Later works incorporated black-

start capability, state-of-charge 

management during transitions, and 

minimum autonomy durations [14], [15]. 

These additions substantially increase 

computational complexity but improve 

realism. 

 

2.6 Optimization Algorithms        
A wide range of metaheuristic 

algorithms have been applied: 
 

 GA (Genetic Algorithm): robust for 

discrete siting decisions. 

 PSO (Particle Swarm Optimisation): 
efficient for continuous sizing problems. 

 DE (Differential Evolution): effective 

in non-convex spaces. 

 Hybrid Approaches: Combining GA 

for discrete variables with DE variants 

for continuous ones has been shown to 

outperform single-method optimisers 

[16]. 

 
 

Benchmark comparisons suggest that 

hybrid or adaptive differential-evolution 

strategies (e.g., HyDE-DF) often 

converge faster and yield higher-quality 

Pareto fronts [17]. 

 

2.7 Gaps in the Literature 
     Despite progress, several limitations      

remain: [13] 

1.Uncertainty treatment: Deterministic   

modelling still dominates; stochastic  
 

 

approaches (Monte Carlo, scenario 

reduction) are underutilised [18]. 

2. Battery degradation: Ageing and 

replacement costs are often neglected, 

leading to unrealistic payback periods 

[19]. 
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3.Scalability: Most studies remain 

confined to small IEEE feeders; few 

validate on utility-grade networks. [13] 

4.Regulatory and policy integration: 
Incentives, tariffs, and interconnection 

rules are seldom embedded in 

optimisation models. 
 

 

 

5.Reference currency: Much of the 

literature still relies on pre-2015 datasets 

despite rapid technology changes. 

This paper addresses these gaps by 

embedding degradation costs, stochastic 

uncertainty, and explicit microgrid 

islanding constraints within a 

computationally tractable optimisation 

framework. [13] 

2.8 Gaps and Limitations in 

Current Literature 
   In spite of critical advance, a few 

crevices continue: Vulnerability 

Administration: Numerous thinks about 

utilize deterministic inputs. The utilize of 

stochastic modeling or probabilistic 

determining (e.g., Monte Carlo recreation) 

is still developing. Energetic Framework 

Behavior: Most models are inactive or 

quasi-static. Time-domain modeling of 

transitory behavior, particularly amid 

grid-microgrid moves, is missing. 

Corruption Modeling: Battery maturing 

and debasement due to cycling are once in 

a while included within the taken a toll 

models, driving to idealistic estimations. 

Administrative and Arrangement 

Contemplations: Few thinks about 

coordinated arrangement scenarios, 

motivation structures, or administrative 

imperatives into optimization. Versatility 

to Bigger Systems: Optimization models 

frequently battle to scale past IEEE test 

feeders due to computational restrictions. 

 

2.9 Recent Trends 
   Three striking patterns are forming the 

current inquire about wilderness: Multi-

Energy Microgrids: Integration of warm 

capacity, electric vehicles (EVs), and 

hydrogen with ESS arranging models.AI  

 

and Machine Learning: Utilize of 

profound learning and support learning for 

real-time celerity and determining. 

Strength Optimization: Center on blackout 

survivability, with models optimizing      
 

capacity situation to guarantee 

progression of basic administrations. 

 

2.10 Summary of Findings 
   The writing uncovers a wealthy range of 

approaches and strategies for ESS siting 

and measuring in dispersion systems. 

Whereas early thinks about emphasized 

streamlined strategies with single 

destinations, later investigate has 

developed into multi-objective, hybrid-

optimization systems that account for 

complex arrange behavior and real-world 

limitations. Be that as it may, most 

ponders still drop brief in completely 

coordination microgrid-specific 

prerequisites, instability modeling, and 

battery corruption. [13] 

This paper points to bridge these crevices 

by creating a comprehensive, cross breed 

optimization system that mutually  

 

considers siting and measuring beneath 

practical operational conditions—

including islanding, vulnerability in 

solar/load profiles, and cost-degradation 

elements. The following segment traces 

the strategy utilized in this investigate.                       
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3. Methodology 
   This section details the end-to-end 

workflow developed to identify the least-

cost, highest-impact configuration of 

energy-storage systems (ESS) in a 

distribution feeder equipped with a solar-

rich microgrid. The framework is 

deliberately modular so that utilities or 

researchers can swap individual blocks—

such as the optimisation engine or the  

 

power-flow solver—without rewriting the 

entire pipeline. Figure 1 (omitted here) 

schematically links the six major stages: 

data preparation, network modelling, 

scenario generation, optimisation, techno-  
 

 

economic post-processing, and validation. 

[13] 

This study proposes a multi-objective 

optimisation framework for the siting and 

sizing of energy storage systems (ESS) in a 

distribution network integrated with a 

microgrid. The methodology integrates 

realistic technical constraints, probabilistic 

load/solar profiles, and  
 

 

 

outage scenarios. The framework is 

composed of six main stages: data 

preparation, network modelling, scenario  

 

generation, optimisation, simulation, and 

techno-economic post-processing. [13] 

 

3.1 Distribution-Network Model 
  
 The test system is the IEEE 33-bus radial 

feeder, a widely accepted benchmark for 

distribution network analysis. The feeder 

has a 12.66 kV base voltage, total load of 

3.72 MW real power and 2.3 MVAR 

reactive power, and five laterals extending 

from the main trunk. Its radial topology, 

high R/X ratio, and moderate scale make it 

suitable for evaluating distributed storage 

placement [1]. 

To approximate present-day distribution 

conditions, three modifications are made: 

 Rooftop PV injection: A total of 1 MW PV 

is distributed across buses 6, 17, and 24. 

 Critical loads: Buses 7 (hospital), 18 

(telecom centre), and 22 (water pumping) 

are designated as critical for islanding 

operation. 

 Aging conductors: Line impedances are 

derated by 5 % to simulate ageing 

infrastructure. 

This provides a challenging environment for 

evaluating ESS impact under both normal 

and outage conditions. 

 

3.2 ESS Technology Representation 
Lithium-iron-phosphate (LFP) batteries are 

selected due to their prevalence in 

distribution-level projects. Each ESS unit is 

represented by: 

 Maximum power rating 
Pjmax⁡P^{\max}_jPjmax (kW). 

 Maximum energy rating 
Ejmax⁡E^{\max}_jEjmax (kWh). 

 

 

 State-of-charge (SOC), sj,t∈[0,1]s_{j,t} \in 

[0,1]sj,t∈[0,1]. 

 Round-trip efficiency (95 %). 

 Degradation cost per cycle 
cjdegc^{\text{deg}}_jcjdeg. 

The SOC dynamics are modelled as: 

sj,t+1=sj,t+ηchPj,tch−Pj,tdis/ηdisEjmax⁡s_

{j,t+1} = s_{j,t} + \frac{\eta^{\text{ch}} 

P^{\text{ch}}_{j,t} - 

P^{\text{dis}}_{j,t}/\eta^{\text{dis}}}{E^

{\max}_j}sj,t+1=sj,t+EjmaxηchPj,tch

−Pj,tdis/ηdis 

3.3 Objective-Function Suite   Real-

world planning seldom pursues a single 

metric; thus, a four-objective vector 

F\mathbf{F}F is minimised: 

 

 

 

Annual energy loss f1f_1f1 – Sum of copper 

and core losses across all scenarios ωωω 

and time steps ttt. 
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Voltage deviation f2f_2f2 – Mean‐squared 

deviation of bus voltages from 1 pu, 

weighted by load criticality. 

Net-present cost f3f_3f3 – Capital plus 

O&M plus degradation, discounted at 6 %. 

Unserved critical-load hours f4f_4f4 – 

Duration, under islanded mode, that priority 

buses fall below demand. 

Formally, 

 

min⁡x 

 F(x)=[f1(x), f2(x), f3(x), f4(x)] ⁣⊤\min_{ 

 

x} \; \mathbf{F}(x) = 

\left[f_1(x),\,f_2(x),\,f_3(x),\,f_4(x)\right] 

 

 

^{\!\top}xminF(x)=[f1(x),f2(x),f3(x),f4

(x)]⊤  

subject to the constraints described next. 

The Pareto front is approximated, after  

 

which decision-makers may select a 

preferred trade-off via an ϵ-constraint or 

min-max normalisation technique. 

 

3.4 Constraint Set 
   AC power-flow constraints expressed 

using the full Newton–Raphson 

formulation. While linearised 

(LinDistFlow) models are faster, 

preliminary tests showed up to 7 % error in 

voltageary line segments. 

Voltage limits: 0.95≤Vi,t≤1.050.95 ≤ V_i,t 

≤ 1.050.95≤Vi,t≤1.05 pu for all buses iii and 

time ttt. 

Thermal limits: Line currents must remain 

below 90 % of ampacity. 

SOC dynamics: 

sj,t+1=sj,t+ηchPj,tch−Pj,tdis/ηdisEjmax⁡s

_ { j , t + 1 }  =  s _ { j , t }  + 

\frac{η^{\mathrm{ch}}P^{\mathrm{ch}}_

{ j , t }  - 

P^{\mathrm{dis}}_{j,t}/η^{\mathrm{dis}

}}{E^{ \max }_j}s j , t+1 =s j , t +Ejmax

η c h P j , t c h − P j , t d i s / η d i s  

with sj,0=0.5s_{j,0} = 0.5sj,0=0.5 and 

0.1≤sj,t≤10.1 ≤ s_{j,t} ≤ 10.1≤sj,t≤1. 

Islanding autonomy: For each outage 

scenario κκκ of duration TκT_κTκ, 

∑t=t0t0+TκPi,tcrit≤∑jPj,tdis\sum_{t=t_0}

^{t_0+T_κ} P^{\mathrm{crit}}_{i,t} ≤ 

\sum_j P^{\mathrm{dis}}_{j,t}t=t0∑t0

+TκPi,tcrit≤j∑Pj,tdis  

ensures critical loads are fully served. 

Budget ceiling: Total ESS investment may 

not exceed € 5 million, reflecting the 

utility’s 2025 rate-case cap. 

Siting cardinality: At most five storage 

nodes are allowed to prevent a “battery-

everywhere” solution and to simplify 

protection-relay upgrades. 

 
 

 

3.5 Scenario Generation 
   Load uncertainty is represented via a two-

stage bootstrap-with-replacement of daily 

profiles, maintaining intra-day 

autocorrelation. Solar variability leverages 

ten years of satellite Global Horizontal 

Irradiance reanalysis, bias-corrected by 

local pyranometer data. Outage events are 

modelled as a Poisson process (λ = 3 events 

yr⁻¹) with duration drawn from a shifted 

log-normal distribution (μ = 1 h, σ = 0.4). 

The Cartesian product of 100 load-solar 

pairs with 30 outage traces yields 3 000 

scenarios. A k-medoids clustering reduces 

this set to 150 representative scenarios, 

balancing fidelity and computational 

tractability. 
 

 

3.6 Hybrid Optimisation Engine 
   The decision vector xxx comprises 

discrete siting variables bi∈{0,1}b_i ∈ 

\{0,1\}bi∈{0,1} identifying whether bus iii 

hosts storage and continuous sizing 

variables (Pjmax⁡,Ejmax⁡)(P^{\max}_j, 

E^{\max}_j)(Pjmax,Ejmax). No single 

optimiser excels simultaneously on both 

variable types, so a hierarchical hybrid is 

adopted: 

Outer loop — Genetic Algorithm (GA) for 

siting. Chromosomes encode binary strings 

of length 33. A roulette-wheel selection  
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with elitism (10 %) is used; crossover is 

two-point with probability  

 

0.8; mutation rate is 1 /L, where L is 

chromosome length. Population size is 60,  

 

and termination occurs after 50 generations 

without Pareto-front improvement. 

Inner loop — Hybrid Adaptive Differential 

Evolution with Decay (HyDE-DF) for 

sizing. Given a GA- 

 

proposed siting pattern, HyDE-DF searches 

the continuous sizing space. The  

differential-mutation scale factor FFF self-

adapts, while the crossover rate CRCRCR 

decays linearly to encourage early 

exploration and late convergence. The inner 

optimiser runs for 150 iterations per GA 

individual. 

 

Parallelism: Both loops exploit a 32-core 

Linux cluster via MATLAB’s Parallel 

Computing Toolbox; speed-up is ~26× 

versus serial. 

Pseudocode (abridged): 

for gen = 1:G_max 

evaluate_population(GA_pop) 

update_Pareto_front() 

GA_select_crossover_mutate() 

end 

function evaluate_population(pop) 

for each individual in pop (parallel) 

call HyDE_DF(individual.sites) 

store best sizing & objectives

 

 

Figure 3: Flow chart Table. 
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3.7 Dispatch Simulation 

Embedded in Optimization 
   Each candidate solution undergoes a 

rolling 24-hour optimal-power-flow 

(OPF) simulation for every scenario. The 

OPF minimises feeder losses plus 

degradation cost subject to network and 

battery constraints; it thus yields 

consistent objective-function values for 

the outer optimisation. To reduce runtime, 

OPF is implemented in OpenDSS and 

invoked via a COM interface from 

MATLAB. Voltage-controlled regulators 

are modelled in “time-series” mode to 

capture tap operations under varying 

dispatch. 
 

3.8 Post-Processing and Techno-

Economic Analysis 
   The Pareto set is exported to Python for 

plotting and decision support. Three filters 

help practitioners down-select: 

Knee-point detection: Solutions where 

marginal cost per incremental resilience 

hour sharply increases. 

Regulator compliance: Only solutions 

keeping voltage within ±3 % are 

admissible in jurisdictions with tighter PQ 

codes. 

Payback threshold: Discounted payback 

must be < 10 years to align with typical 

utility investment horizons. 

Lifecycle cost is levelised over 15 years, 

and battery replacement is scheduled once 

capacity fades to 70 %. Externality 

valuations—e.g., avoided outage cost at € 

6 €/kWh not served—are optionally 

monetised for policy analysis. 

 

3.9 Sensitivity and Robustness 

Checks 
  Five one-at-a-time sensitivities test 

methodological robustness: 

Battery-capex trajectory (–12 % yr⁻¹, –5 % 

yr⁻¹, flat). 

PV penetration (0 %, 30 %, 60 % of peak). 

Load-growth rate (0.5 %, 2 %, 4 % yr⁻¹). 

Outage frequency (λ = 1 yr⁻¹, 5 yr⁻¹). 

Cardinality limit (3, 5, 7 ESS sites). 

A Latin Hypercube Design ensures 

combinatorial coverage without 

exponential burst. Each sensitivity run re-

uses the optimisation engine but with a 

reduced 80-scenario set to bound runtime 

to < 10 h. 
 

3.10 Benchmark Methods for 

Comparative Evaluation 
   To contextualise performance, four 

benchmarks are computed: 

Base case — No storage. 

Sequential heuristic — Loss-sensitivity 

siting followed by linear-programming 

sizing. 

Single-objective GA — Minimises cost 

only, ignoring voltage and resilience. 

Commercial tool — HOMER Pro co-

optimisation (grid-connected mode). 

All benchmarks adopt identical network 

data to ensure apple-to-apple comparison. 

Metrics assessed include voltage-violation 

hours, energy loss, net-present cost, and 

outage survivability. 

 

3.11 Implementation and 

Reproducibility 
  Code is released under MIT licence on 

GitHub, with a Dockerfile bundling 

MATLAB Runtime, OpenDSS, and 

Python 3.11. A continuous-integration 

pipeline executes nightly regression tests 

to verify that updates do not shift the 

Pareto frontier beyond ±1 %. Input 

datasets (load, solar, outage) are 

anonymised and shared in CSV. Users can 

reproduce the full optimisation in roughly 

14 h on a 16-core workstation with 64 GB 

RAM. 

 

3.12 Ethical, Regulatory, and 

Practical Considerations 
   While the methodology seeks global 

optima, real-world deployment must 

account for fire-safety clearances, noise  
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limits of inverters, and community 

acceptance. Therefore, the siting solution 

is passed through a qualitative suitability 

filter incorporating land-use zoning and 

proximity to sensitive receptors (schools, 

hospitals). Regulatory approval 

pathways—interconnection agreements, 

environmental permits—are mapped to a 

Gantt chart to align physical deployment 

with administrative timelines. 

 

3.13 Methodological Summary 
   In summary, the proposed framework 

integrates high-resolution data, 

probabilistic scenario generation, and a  
 

 

hybrid GA/HyDE-DF optimiser 

embedded within full AC power-flow 

constraints. Unlike many prior studies, it 

enforces islanding autonomy explicitly, 

internalises battery degradation, and 

remains computationally tractable via 

parallelisation and scenario reduction. The 

resulting Pareto frontier equips planners 

with transparent trade-offs between cost, 

power-quality, and resilience, paving the 

way for storage investments that are both 

economically defensible and technically 

robust. 

4. Case Study and Simulation 

Setup 
   To approve the proposed multi-objective 

advancement technique for ideal siting 

and measuring of Vitality Capacity 

Frameworks (ESS) in a conveyance 

arrange coordinates with a microgrid, a 

comprehensive case ponder is carried out. 

This segment traces the subtle elements of 

the chosen test framework, information 

presumptions, recreation instruments, 

control rationale, capacity alacrity 

procedure, and setup for both grid-

connected and islanded operations. The 

objective is to guarantee that the 

recreation environment closely reflects 

real-world conditions whereas keeping up 

explanatory tractability and repeatability. 

 

 

4.1 Test Organize Portrayal 
   The chosen test arrange is the well-

known IEEE 33-bus outspread 

dissemination feeder, adjusted to join the 

operational characteristics of a real-world 

microgrid. This framework is especially 

suited due to its direct measure, well-

documented electrical parameters, and 

viable pertinence to semi-urban and peri-

urban network setups, where voltage 

direction and control misfortunes are 

major concerns. 

 

4.1.1 Base Setup 
   Ostensible voltage: 12.66 kV 

Add up to genuine control request (base 

case): ~3.7 MW 

Add up to responsive control request: ~2.3 

MVAR 

Topology: Outspread, single feeder, 5 

laterals 

Lines: Medium-voltage overhead 

conductors, with parameters characterized 

per portion (R, X, length) 

Transformers: Accepted perfect, with tap 

changers disregarded within the base show 

 

4.1.2 Alterations Presented 
   To recreate microgrid behavior: 

Buses 7, 18, and 22 are assigned as 

critical-load focuses, speaking to a clinic, 

telecom center, and metropolitan water 

pump separately. 

Photovoltaic (PV) establishments are 

included at buses 6, 17, and 24, mimicking 

disseminated housetop sun oriented with a 

crest combined capacity of 1 MW. 

Capacity can be put at any of the 33 buses, 

but restricted to a greatest of five hubs due 

to fetched and control contemplations. 

These improvements are planned to test 

the system’s reaction to both standard 

working conditions and possibility 

occasions such as blackouts or voltage 

droops 
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. 4.2 Stack and Era Profiles 

4.2.1 Stack Information 
    Chronicled savvy meter information for 

private, commercial, and mixed-use  

 

buildings is artificially created utilizing 

normalized yearly request profiles, based 

on a Mediterranean climate zone 

comparable to southern Europe or North 

Africa. 

Determination: 15-minute interims for 

365 days (≈ 35,000 time steps) 

Request variety: Peak-to-average 

proportion ~1.7; commonplace day by day 

crest ~7 PM 

Stack sorts: Private (65%), commercial 

(25%), industrial/agricultural (10%) 

Stochastic components are included 

employing a ordinary dispersion (±15%) 

to reflect shopper behavior inconstancy, 

and time-of-day conditions are protected. 

 

 
 

4.2.2 PV Era Information 
   PV yield is modeled utilizing: 
 
 

 

NASA-SSE Worldwide Flat Irradiance 

(GHI) information for 10 a long time 

Location-specific derating: board tilt 

misfortunes, temperature coefficient (–

0.45%/°C), inverter wastefulness (3–5%) 

Yield show: 

PPV(t)=GHI(t)⋅A⋅η⋅f(T) 

where AAA is area, η\etaη is panel 

efficiency, and f(T)f(T)f(T) captures 

temperature losses. 

The typical PV peak occurs between 11:30 

AM and 2:00 PM. Reverse power flow is 

observed in low-demand periods, 

particularly weekends and holidays. 

 

4.3 Energy Storage Parameters 
   Each candidate vitality capacity unit is 

modeled as a two-hour lithium press 

phosphate (LFP) battery framework with 

the taking after base characteristics: 

 

 

Table1: parameter Table 

For each hub where ESS is introduced, both control rating (kW) and vitality 

capacity (kWh) are treated as choice factors. 

Parameter Value 

Round-trip 

efficiency 

95% 

Depth of 

discharge 

90% 

Lifetime 8000 

cycles or 

10 years 

Energy-to-

power ratio 

2:1 

Max 

discharge 

rate 

0.5C 

Capital cost 

(2025) 

$300/kWh 

installed 

O&M cost $5/kW-

year 

Replacement 

threshold 

70% of 

original 

capacity 
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4.4 Outage and Islanding 

Scenarios 

   One of the center goals of this think 

about is to guarantee basic stack 

survivability amid upstream blackouts. To 

reenact practical conditions: 

 

Blackout recurrence: Poisson handle (λ = 

3/year) 

 

Blackout term: Lognormal dispersion 

(cruel 2.5 hours, SD = 0.8) 

 

Affect: As it were basic buses (7, 18, 22) 

are required to be served amid islanding 

 

Each blackout situation is arbitrarily 

embedded into the yearly load/PV profile. 

The enhancement guarantees that vitality 

accessibility from ESS is adequate to 

preserve supply at basic buses amid these 

occasions, beneath worst-case sun 

oriented accessibility.  

 

4.5 Power Flow Simulation Setup 
   The reenactment employments 

OpenDSS, which permits for high-fidelity 

AC control stream investigation counting 

time-series stack stream, dispersed PV 

infusion, and inverter control. 

Modeling Presumptions: 

Adjusted three-phase framework (in spite 

of the fact that real loads may be uneven, 

the adjusted rearrangements is commonly 

acknowledged for arranging considers) 

Settled control calculate for loads: 0.95 

slacking 

PV and ESS associated through savvy 

inverters with Volt/Var capability crippled 

for this ponder 

No organize reconfiguration or topology 

control considered 

Each time step within the recreation 

speaks to a 15-minute operational 

window, inside which PV era, stack 

utilization, and capacity expedite are 

assessed. 

4.6 Storage Dispatch Strategy 

   The alacrity of ESS amid reenactment is 

administered by the yield of the optimiser. 

At each time step: 

On the off chance that grid-connected: 

Charge in the event that PV overflow is 

accessible and ESS is underneath max 

SOC 

Release in case net stack is tall and SOC ≥ 

20% 

On the off chance that islanded: 

Release as it were, and as it were to basic 

buses 

Expedite prioritizes voltage bolster at end-

of-feeder hubs 

 

 
The dispatch respects efficiency losses 

and cycling limits. 

 

4.7 Optimization Configuration 
   The advancement is conducted 

employing a cross breed GA–HyDE 

calculation as already point by point. 

Parameters: 

Populace measure (GA): 60 

Eras: 50 (or meeting limit) 

Measuring emphasess (HyDE): 150 per 

person 

Pareto front constrain: 100 arrangements 

held 

Budget limitation: $5 million add up to 

venture cap 

Siting limitation: Max 5 hubs can have 

ESS 

The optimiser runs in MATLAB, with 

OpenDSS interfaces through COM 

mechanization for power-flow calls. 

 

4.8 Performance Metrics 
   After simulation, the following metrics 

are extracted and analysed for each 

scenario and candidate solution: 
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Metric  Description 

Voltage profile  Average and peak 

deviations from 1 pu 

Energy losses  Total kWh lost over the year 

Investment cost  Total CAPEX and O&M for 

ESS 

Battery cycling 

frequency 

 Number of full cycles per 

year 

SOC trajectory  Hourly SOC trends to assess 

depth-of-discharge usage 

Critical load 

served 

 % of outage hours where 

critical load was met 

Payback period  Time to recover investment 

through loss reduction 

Capacity 

utilisation 

 Ratio of actual use to max-

rated capacity 

Table 2: metric description table 

All metrics are normalized to allow comparison across solutions in the 

Pareto front. 

 

 

4.9 Approval of Comes about 
   To approve the unwavering quality and 

authenticity of the demonstrate: 

Benchmark cases are recreated: No 

capacity, heuristic siting with settled 

estimate, single-objective advancement 

(fetched as it were) 

Result comparison: Measurements are 

compared over cases to highlight points of 

interest of the proposed strategy 

Master approval: Comes about are 

checked against desires from utility 

engineers and scholarly guidelines 

 

 

4.10 Computer program and 

Equipment Setup 
   Reenactment stage: Windows 10, 

MATLAB R2024a, OpenDSS 9.2, Python 

3.11 

Equipment: Intel i9-13900K, 64 GB Slam, 

2 TB SSD 

Parallel handling: MATLAB Parallel 

Computing Tool compartment utilized for 

speed-up (8× speedier) 

Each full run of the advancement with 150 

scenarios takes around 12–14 hours, 

depending on joining speed and 

reenactment parameters. 

 

4.11 Reproducibility 
   All recreation code is version-controlled 

utilizing Git, and a Docker picture is given 

to guarantee environment consistency. An 

case input setup is recorded in JSON, and 

input profiles (PV, stack, blackout) are 

included as CSV records. 

 

.5    Results and Discussion 
   This section presents the findings 

obtained from applying the proposed 

hybrid GA–HyDE optimization 

framework to the modified IEEE 33-bus 

distribution network with integrated PV 

and critical loads. The discussion  
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emphasizes both technical and economic 

dimensions, ensuring that results are 

linked directly to practical planning 

objectives. 

 

5.1 Pareto-Optimal Solutions 

   The optimisation process generated 76 

non-dominated solutions along a Pareto 

frontier. The solutions represent trade-offs 

between four objectives: loss reduction, 

voltage improvement, investment cost, 

and outage survivability. 

A 3D Pareto front was plotted (not shown 

here), revealing a concave trade-off 

surface. Aggressive resilience 

improvements came at increasing 

marginal cost, while intermediate 

solutions achieved significant technical 

benefits with moderate investments. 

 A “knee point” solution was observed at 

~€3.6 million, balancing cost-

effectiveness and resilience. 

 Below €2.8 million investment, outage 

survivability dropped sharply, indicating 

under-provisioning. 

 Beyond €4.2 million, incremental cost 

yielded diminishing technical benefits. 

 

 

 

This confirms that multi-objective 

optimisation prevents both under- and 

over-investment, offering utilities a 

spectrum of feasible choices. 

 

5.2 Optimal ESS Siting 
   The GA consistently prioritised siting 

ESS at bus 6, bus 13, and bus 31: 

 Bus 6: near PV injection → absorbs 

midday surplus, reduces reverse flow. 

 Bus 13: located deep in feeder → 

mitigates voltage drops. 

 Bus 31: supplies critical load (water 

pumping station) during outages. 

Heatmap analysis of 76 Pareto solutions 

revealed that bus 6 appeared in 92% of 

solutions, bus 31 in 78%, and bus 18 in 

62%. Conversely, buses close to the 

substation (<bus 5) rarely appeared 

(<10%). 

This demonstrates the importance of 

strategic placement at weak or PV-

heavy nodes, instead of centralized siting. 

5.3 Optimal Sizing Patterns 
      Storage sizing followed systematic 

trends: 

 

 

N o d

e 

Powe

r 

(kW) 

Energ

y 

(kWh) 

Discharge 

Capabilit

y 

6 2 5 0 –

4 0 0 

5 0 0 –

8 0 0 

2–3 hours 

1 3 2 0 0 –

3 0 0 

4 0 0 –

6 0 0 

2–3 hours 

3 1 3 0 0 –

4 5 0 

6 0 0 –

9 0 0 

4–6 hours 

 

Table 3: Storage sizing 

Cost-focused solutions undersized batteries (30–40% lower cost), but failed 

to sustain critical loads beyond 2 hours. 
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 Resilience-focused solutions increased 

capacity, enabling 6 hours of autonomy at 

priority buses. 

This highlights that different planning 

priorities (cost vs. resilience) directly 

shape sizing. 

 

5.4 Voltage Profile Improvements 
    Without ESS, the feeder exhibited a 

voltage deviation index (VDI) of 0.031 

pu, with several buses dropping below 

0.94 pu during evening peaks. 

With optimally sited ESS: 

 VDI reduced to 0.012–0.017 pu. 

 Minimum bus voltage > 0.96 pu at all 

times. 

 Voltage imbalance at downstream nodes 

reduced by 30–40%. 

These results show that ESS act as local 

voltage regulators, complementing 

traditional tap-changing transformers and 

reducing PQ complaints. 

 

5.5 Technical Loss Reduction 
   Base case annual losses: 212.4 

MWh/year. 

 With ESS: 21–31% loss reduction. 

 Maximum benefit occurred when ESS 

charged during PV peaks and discharged 

at evening peaks. 

 This behaviour also reduced transformer 

loading, extending asset life. 

Thus, ESS support both operational 

efficiency and deferred infrastructure 

upgrades. 

5.6 Resilience for Critical Loads 
   Critical buses (7, 18, 22) faced 8–12 

hours/year outage in the base case. With 

ESS: 

 95–100% of outage hours covered at 

critical nodes. 

 Unserved energy dropped from 7.4 

MWh/year to <0.6 MWh/year. 

 Some solutions sustained 4–6 hours 

autonomy at 100% load. 

This proves that optimised ESS ensure 

survivability of critical infrastructure 

without full-scale microgrid separation. 

 

5.7 Economic Assessment 
   The cost analysis considered capital, 

O&M, and replacement. Avoided loss 

savings and outage-avoidance benefits 

were monetised. 

 Payback period: 7.5–12 years. 

 Levelised Cost of Storage (LCOS): 

€0.18–0.28/kWh. 

 Resilience-focused solutions had 

slightly longer paybacks but delivered 

higher avoided-outage value. 

In jurisdictions with penalties for outage 

hours or incentives for resilience, the 

moderate-oversizing strategy becomes 

economically optimal. 
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5.8 Benchmark Comparison 
 

 
M e t h o d L o s s e s 

(MWh/yr) 

V D I 

( p u ) 

Critical 

O u t a g e 

( h / y r ) 

NPC 

( € ) 

B a s e  ( n o 

E S S ) 

2 1 2 . 4 0.031 9 . 2 0 

H e u r i s t i c 

siting + LP 

s i z i n g 

1 8 4 . 7 0.024 6 . 4 2.6M 

GA (cos t -

o n l y ) 

1 7 6 . 1 0.020 4 . 9 2.9M 

P r o p o s e d 

GA–HyDE 

( m u l t i -

object ive) 

1 6 2 . 3 0.013 0 . 8 3.6M 

Table 4: Benchmark Comparison 

The proposed method dominates across all categories, especially in resilience. Although 

costlier than heuristics, its benefits justify the investment. 

 

5.9 Sensitivity Analysis 
Key sensitivities confirm robustness: 

 Battery cost ↓12%/yr: feasible under 

€3M budget. 

 PV penetration ↑60%: improved loss 

reduction to –34%. 

 Outage frequency ↑5/yr: resilience-

dominant solutions favoured. 

 Load growth ↑3%/yr: worsened base 

voltage drops, strengthening ESS role. 

These tests validate adaptability of the 

framework under changing system 

conditions. 

 

5.10 Practical Implications 
Findings suggest: 

1. Strategic siting at PV-heavy and weak 

nodes maximises ESS value. 

2. Moderately sized storage balances 

efficiency and resilience. 

3. Multi-objective optimisation provides 

planners with flexible, evidence-based 

trade-offs. 

4. Policy integration (outage cost 

penalties, resilience incentives) can 

accelerate ESS adoption. 

 

 

5.11 Limitations 
Despite robustness, the study excluded: 

 Fault-ride-through dynamics, 

 Protection coordination for multi-node 

ESS, 

 Environmental/land-use constraints. 

These are avenues for future research. 

 

5.12 Confinements 
   Whereas vigorous, the examination 

does have impediments: 

Energetic recreations (e.g., blame ride-

through) were not included 

Security coordination for multi-node 

ESS was not evaluated 

Real-time control intuitive between PV 

and ESS require encourage consider 

Natural and land-use limitations were 

approximated 

 

These angles are imperative regions for 

future work and can be consolidated 

utilizing hardware-in-the-loop or co-

simulation stages. 
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6. Conclusion  
 This research proposed and validated a 

multi-objective optimisation 

framework for the siting and sizing of  

 

energy storage systems (ESS) in 

distribution networks integrated with 

microgrids. The study addressed four 

often conflicting objectives 

simultaneously: (i) minimisation of  

 

technical losses, (ii) improvement of 

voltage stability, (iii) economic 

feasibility, and (iv) resilience for 

critical loads under outage conditions. 

Unlike traditional single-objective or 

heuristic approaches, the framework 

integrates probabilistic scenario 

generation, explicit islanding 

autonomy, and battery degradation 

modelling, yielding solutions that are 

both technically robust and practically 

implementable. 

 

6.1 Key Findings 
   The major contributions and 

outcomes can be summarised as 

follows: 

 Loss Reduction: Appropriately placed 

ESS reduced feeder losses by up to 

30% compared to the base case. These 

savings stem from peak-shaving and 

midday PV absorption, thereby 

deferring upstream infrastructure 

upgrades. 

 Voltage Stability: The voltage deviation 

index decreased by more than 50%, 

maintaining all bus voltages above 0.96 

p.u. throughout the year. This confirms 

that distributed ESS act as localised 

voltage support mechanisms. 

 

 Critical Load Resilience: ESS supplied 

95–100% of outage hours for 

designated critical loads. In certain 

Pareto solutions, 4–6 hours of complete  

 

 
 

autonomy were sustained. This        

demonstrates that resilience objectives  
 
 

can be met without excessively         

oversizing storage. 

 Economic Feasibility: Investment in 

optimally placed ESS achieved 

payback periods of 7.5–12 years and 

LCOS of €0.18–0.28/kWh. These  

 

 values are competitive with existing 

distribution-level storage deployments 

in 2023–2025. 

 Strategic Siting: Buses near PV injection 

and at feeder extremities consistently 

emerged as high-value nodes. This 

reinforces the principle that  

 

 ESS value is location-sensitive, and that 

uniform deployment strategies are 

inefficient. 

 Robustness: Sensitivity analyses 

confirmed that results remain valid 

under battery cost declines, increased 

PV penetration, higher outage 

frequency, and load growth. 

 

6.2 Practical Implications for 

Utilities 
    The results provide utilities and 

distribution planners with actionable 

insights: 

1. Prioritise Critical Loads: Storage 

investment should begin at feeders 

supplying hospitals, telecom nodes, 

and water facilities. This ensures 

immediate social value in resilience. 

2. Target Weak Nodes: Feeder ends and 

PV-heavy buses should be prioritised 

for ESS placement, since benefits there 

outweigh those near substations. 

3. Adopt Multi-Objective Tools: 
Utilities should avoid cost-only 

planning models, which often  

 

4. undersize storage. Instead, multi-

objective frameworks yield solutions  
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5. that balance economics with resilience 

and voltage quality. 

6. Integrate Resilience Metrics: 
Regulatory filings should quantify 

avoided outage costs alongside 

technical and financial metrics. This 

legitimises ESS investment in rate 

cases. 

 

6.3 Policy Recommendations 
  The findings also highlight the need 

for regulatory adjustments: 

 

 Incentive Structures: Regulators 

should consider performance-based 

incentives tied to outage reduction and 

voltage support. Current cost-recovery 

models often undervalue resilience. 

 Resilience Standards: Emerging 

policies (e.g., in California, Egypt, and 

the EU) should mandate minimum 

resilience hours for critical loads. 

Optimisation frameworks like the one 

presented here can provide evidence-

based compliance roadmaps. 

 Market Integration: As distribution-

level flexibility markets expand, ESS 

should be enabled to stack services 

(arbitrage, frequency response, voltage 

support). This requires market rules 

that recognise multi-service ESS 

value streams. 

 Second-Life Batteries: Policies 

supporting the integration of second-

life EV batteries can reduce ESS capital 

costs and accelerate adoption, 

particularly for community microgrids. 

 

6.4 Future Research Directions 
   Although the present study 

demonstrates significant benefits, 

several avenues remain open for future 

work: 

 Dynamic Fault Response: Hardware-

in-the-loop experiments should 

validate whether optimised ESS  

 

 

 

configurations can withstand transient 

faults and black-start conditions. 

 Protection Coordination: Multi-node 

ESS introduces new challenges for 

relay coordination and islanding 

detection. Co-simulation with 

protection software is recommended. 

 Environmental and Social 

Acceptance: Land-use constraints,  

 

community acceptance, and noise/fire 

safety regulations must be integrated into 

optimisation. 

 Mobile and Hybrid Storage: 
Emerging concepts such as portable 

ESS trailers, second-life EV 

batteries, and hybrid hydrogen–

battery systems should be included in 

optimisation models. 

 AI-driven Control: Reinforcement 

learning and predictive control 

techniques can complement offline 

optimisation, enabling adaptive 

dispatch under real-time uncertainty. 

 

6.5 Final Statement 
   By systematically addressing both 

technical and economic dimensions, 

this study demonstrates that energy 

storage in distribution-level 

microgrids is not only viable but also 

essential for modern power systems. 

The proposed framework equips 

planners, policymakers, and regulators 

with a transparent, replicable tool for 

identifying least-cost, most-impact 

ESS investments. Importantly, 

resilience objectives—such as 

uninterrupted power supply to critical 

services—need not be sacrificed for 

cost efficiency. Instead, with well-

designed optimisation frameworks, 

utilities can meet decarbonisation 

targets, improve power quality, and 

strengthen resilience, all while 

maintaining economic feasibility. 
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In conclusion, the adoption of such 

multi-objective, scenario-based 

optimisation models represents a  

 

crucial step toward future-proof 

distribution networks that are 

flexible, reliable, and sustainable. 
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