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Abstract:

Abstract— High penetration of variable renewable energy (VRE) is
stressing distribution feeders with steep ramps, midday over-voltage, and
reverse power flow. Energy storage systems (ESS)—primarily battery
energy-storage systems (BESS) at the distribution level—can mitigate
these issues only if they are sited and sized optimally. This paper
addresses the research gap of joint siting—sizing under realistic microgrid
constraints (grid-connected and islanded modes) and uncertainty. We
formulate a multi-objective optimisation on a modified IEEE 33-bus
radial feeder with rooftop PV and labelled critical loads. The framework
enforces full AC power-flow constraints, line-thermal limits, a budget
cap, siting cardinality, and an explicit islanding-autonomy requirement for
critical loads. Battery wear is internalised via a piecewise-linear
degradation proxy. A hybrid optimiser couples a genetic algorithm
(discrete siting) with Hybrid Adaptive Differential Evolution with Decay
(HyDE-DF) for continuous sizing, and is evaluated over clustered
stochastic scenarios of load, PV, and outage events.
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Overview of Optimal Siting and Sizing of Energy
Storage in Distribution Networks with Microgrids

“Overview of Optimal Siting and Sizing of Energy Storage in Distribution
Networks with Microgrids”

Results show that strategically placed BESS
reduce annual technical losses by up to 30%,
halve voltage-deviation indices (>50%
improvement), and serve >95% of critical-
load hours during islanded operation, all while
respecting a €5 M investment ceiling. The
Pareto frontier reveals a clear knee solution
around €3.6 M that jointly balances loss
reduction, voltage support, and resilience. The
workflow is released with reproducible code

1. Introduction

PV

ability [“Loads

and anonymised datasets, enabling utilities
and planners to identify least-cost, high-
impact storage deployments in microgrid-
integrated distribution networks.
Conclusions: integrating siting and sizing
under AC constraints and explicit islanding
requirements materially improves technical
and economic outcomes compared with
sequential or single-objective baselines.

Power flow=p>

ESS
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ESS

Introduction
Radial feeder - feeding on more loads- ESS aidireccts piove-or more loads

Figure 1: “Challenges in Modern Distribution Networks and the Role of ESS”
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1.1 Context and Motivation

The global power sector is undergoing a
rapid transformation as electricity demand
expands across mobility, heating, and
industrial sectors. This growth is driven by
aggressive decarbonisation policies and
falling costs of renewable generation,
particularly solar photovoltaic (PV) and
onshore wind [1], [2]. However, the same
success has introduced reliability and
operational challenges at the distribution
level: steep net-load ramps, mid-day over-
voltage conditions, and reverse power flows
in feeders originally designed for
unidirectional supply [3]. These challenges
have motivated utilities and communities to
invest in microgrids—Ilocally controlled
clusters of loads and distributed energy
resources (DERs) that can operate both in
grid-connected and islanded mode [4], [5].

1.2 Role of Energy Storage
Systems(ESS)

Within ~ microgrids, energy storage
systems (ESS)—predominantly battery

energy-storage systems (BESS) based on
lithium-iron-phosphate (LFP) chemistry—
play a critical role. ESS units provide fast-
acting reserves, buffer the intermittency of
variable renewable energy (VRE), defer

1.4 Research Gaps
Despite substantial progress, several
limitations persist in the existing body of

work:

Coupled Siting and Sizing: Many studies
decouple the siting and sizing problems for
tractability. A sequential approach may
overlook globally optimal solutions where

non-intuitive  siting compensates  for
reduced capacity [11].
Microgrid-Specific Constraints: Most

optimisation models assume continuous
grid connection and ignore islanding or
black-start  requirements. In  reality,
microgrids must sustain critical loads
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expensive conductor upgrades, and supply
critical loads during outages [6], [7]. Yet, the
value of storage depends strongly on where
and how large the units are deployed. If
storage is oversized or placed at non-critical
buses, the investment may increase costs

without tangible benefits. Conversely,
undersized or poorly sited storage risks
leaving  critical  loads  unprotected.

Therefore, optimal siting and sizing of ESS
at the distribution level is a central planning
problem for utilities [8].

1.3 Limitations of Transmission-

Scale Solutions While transmission-scale
storage, synchronous condensers, and
other ancillary-service assets already exist,
they do not address most distribution-level
issues. Power-quality complaints such as
flicker, voltage sags, and thermal overloads
typically arise closer to customers—on
secondary feeders and laterals. Distribution-
connected ESS therefore deliver
disproportionate benefits per megawatt of
installed capacity [9]. Recent advances in
battery technology, especially the cost
decline of LFP batteries (over 90% price
reduction since 2010), have further
accelerated distribution-level deployments
[10].

during outages, which requires explicit
islanding autonomy constraints [12].
e Uncertainty Treatment:

Deterministic

approaches dominate, relying on average
load and PV profiles. However, ignoring
stochastic variation can underestimate
lifecycle costs and overstate reliability [13].
Battery Degradation: Few studies
integrate degradation into the optimisation
model. As ESS replacement costs are
significant, neglecting degradation risks
overly optimistic solutions [14].

Outdated References: Several studies
continue to benchmark only on legacy IEEE
test feeders without incorporating realistic
modern datasets or constraints, limiting
practical relevance.
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1.5 Contribution of This Study

This paper seeks to bridge these gaps by
formulating a comprehensive, multi-
objective optimisation framework for ESS
siting and sizing in a distribution network
with integrated microgrids. Key
contributions include: [13]

Integrated Objective Space: Combining

loss  minimisation, voltage profile

improvement, investment cost, and

resilience (critical-load survivability) in a

single Pareto frontier.

Explicit Islanding Modelling: Enforcing

outage scenarios and critical-load autonomy

in the optimisation process.

. Stochastic Representation: Incorporating

probabilistic solar and load forecasts via

Monte Carlo scenario generation and

clustering.

Battery Degradation Internalisation:

Capturing cycle ageing through a linear

proxy cost embedded in the optimisation.

. Hybrid Optimisation Engine: Coupling a
genetic algorithm (GA) for discrete siting

variables  with  Hybrid  Adaptive
Differential Evolution with Decay
(HyDE-DF) for continuous  sizing

variables, leveraging the strengths of each
method.

Realistic Case Study: Application to a
modified IEEE 33-bus radial feeder with
distributed PV and critical loads, validated
with utility-style data. [13]

By explicitly addressing these aspects, the
study demonstrates that a properly designed
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optimisation framework can identify “least-
cost, most-impact” ESS deployments that
simultaneously improve technical
performance and economic feasibility.

1.6 Structure of the Paper
The remainder of this paper is organised as
follows:

Section 2 reviews the evolution of ESS

planning  approaches and highlights
continuing challenges. [12]
Section 3 presents the proposed

optimisation formulation, constraints, and
hybrid GA-HyDE methodology. [13]
Section 4 details the case study setup, data
assumptions, and simulation environment.
Section 5 discusses results, comparative
benchmarks, and sensitivity analysis.
Section 6 concludes with key insights and
recommendations for future research,
including second-life EV batteries, portable
ESS, and co-optimisation with demand
response. [13

. Literature Review

The optimal siting and sizing of energy
storage systems (ESS) in distribution
networks has received growing attention
over the past two decades, driven by the
need to improve voltage stability, reduce
technical losses, and enhance resilience in
microgrid settings. This section reviews
the evolution of ESS applications, key
siting and sizing approaches, optimisation
methods, and the limitations that motivate
the present study.
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Figure 2: “Optimization method Evolution”

2.1 Evolution of ESS in Power

Systems Initially, energy storage was
introduced at the transmission level to
provide bulk time-shifting, frequency
regulation, and spinning reserves. With the

increasing  penetration  of  distributed
renewable generation, however,
distribution-connected ESS gained

importance for local voltage regulation, peak
shaving, and outage backup [1], [2]. The
definition of ESS today encompasses not
only lithium-ion batteries but also long-
duration storage (iron-air, flow batteries,
and pumped hydro), though lithium-iron-

2.2 Optimal Siting Approaches
Siting refers to the identification of buses or
nodes where storage vyields the greatest
technical or economic benefit. Early
methods relied on sensitivity indices such
as:

Loss Sensitivity Factor (LSF): measures
the marginal change in system losses for
incremental injections at a bus.

Voltage Sensitivity Index (VSI): quantifies
the responsiveness of nodal voltage to
changes in reactive or active power.
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phosphate (LFP) dominates distribution-
scale deployments due to cost and maturity
[3].

In parallel, microgrids have emerged as a
critical  architecture  for  integrating
distributed energy resources (DERs). ESS
plays a central role in enabling microgrid
islanding,  black-start  capability, and
seamless transitions between grid-connected
and isolated modes [4]. While early studies
considered deterministic peak-load support,
more recent work embeds ESS within multi-
objective planning models that account for
resilience, cost, and emissions [5].

Power Loss Index (PLI): ranks buses by
their relative contribution to overall feeder
losses.

These approaches are computationally
efficient and easy to implement but often
ignore dynamic behaviour, stochastic load
variations, and multi-objective trade-offs

[6].

2.3 Optimal Sizing Strategies Sizing
concerns the determination of power (kW)
and energy capacity (kwWh) ratings of ESS.
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Early works used heuristic or rule-of-thumb
methods such as peak load coverage or
average demand shifting. More advanced
studies employed linear programming (LP)
or non-linear  optimisation  (NLP)
frameworks that minimise investment cost,
unserved energy, or lifecycle losses [7]. For
instance, Zakeri and Syri [8] modelled ESS
degradation and replacement cost in sizing
optimisation, demonstrating significant
differences from static approaches.

2.4 Joint Siting and Sizing
Optimisation  Recognising  the
interdependence of siting and sizing,
more recent literature treats both as a
single optimisation problem. Multi-
objective optimisation (MOO)
techniques—such as Non-dominated
Sorting Genetic Algorithm Il (NSGA-
I), Multi-Objective Particle Swarm
Optimisation (MOPSO), and
Differential Evolution (DE)—are widely
applied to balance conflicting goals (loss
minimisation, voltage improvement,
resilience, and investment cost) [9], [10].
For example, Kamel and Kermanshahi
[11] co-optimised ESS siting and sizing
using NSGA-Il and showed that
including reliability indices changed the
optimal configuration substantially

compared with purely economic
objectives. Similarly, Xu et al. [12]
applied PSO to identify ESS locations
that minimised both voltage deviation
and total power loss, validating on the
IEEE 33-bus feeder.

To reduce redundancy between Sections
2.2 and 2.4, this paper consolidates the
discussion:  sensitivity-based  siting
(Section 2.2) serves as a baseline for
comparison, while joint optimisation
(Section 2.4) represents the state of the
art.

2.5 Inclusion of Microgrid-
Specific Constraints Several
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studies  highlight  that  ignoring
microgrid-specific requirements can
result in under-provisioned solutions.
Guerrero et al. [13] stressed the need to
size ESS not just for economic loss
minimisation but also to guarantee
survivability of critical loads during
outages. Later works incorporated black-
start capability, state-of-charge
management during transitions, and
minimum autonomy durations [14], [15].
These additions substantially increase
computational complexity but improve
realism.

2.6 Optimization Algorithms
A wide range of metaheuristic
algorithms have been applied:

e GA (Genetic Algorithm): robust for

discrete siting decisions.

e PSO (Particle Swarm Optimisation):

efficient for continuous sizing problems.

o DE (Differential Evolution): effective

in non-convex Spaces.

o Hybrid Approaches: Combining GA

for discrete variables with DE variants
for continuous ones has been shown to
outperform single-method optimisers
[16].

Benchmark comparisons suggest that
hybrid or adaptive differential-evolution
strategies (e.g.,, HyDE-DF) often
converge faster and yield higher-quality
Pareto fronts [17].

2.7 Gaps in the Literature
Despite progress, several
remain: [13]

1.Uncertainty treatment: Deterministic
modelling still dominates; stochastic

approaches (Monte Carlo, scenario
reduction) are underutilised [18].

2. Battery degradation: Ageing and
replacement costs are often neglected,
leading to unrealistic payback periods
[19].

limitations
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3.Scalability:  Most  studies  remain
confined to small IEEE feeders; few
validate on utility-grade networks. [13]

4.Regulatory and policy integration:
Incentives, tariffs, and interconnection
rules are seldom embedded in
optimisation models.

2.8 Gaps and Limitations in

Current Literature

In spite of critical advance, a few
crevices continue: Vulnerability
Administration: Numerous thinks about
utilize deterministic inputs. The utilize of
stochastic modeling or probabilistic
determining (e.g., Monte Carlo recreation)
is still developing. Energetic Framework
Behavior: Most models are inactive or
quasi-static. Time-domain modeling of
transitory behavior, particularly amid
grid-microgrid  moves, IS  missing.
Corruption Modeling: Battery maturing
and debasement due to cycling are once in
a while included within the taken a toll
models, driving to idealistic estimations.

Administrative and Arrangement
Contemplations: Few thinks about
coordinated  arrangement  scenarios,

motivation structures, or administrative
imperatives into optimization. Versatility
to Bigger Systems: Optimization models
frequently battle to scale past IEEE test
feeders due to computational restrictions.

2.9 Recent Trends

Three striking patterns are forming the
current inquire about wilderness: Multi-
Energy Microgrids: Integration of warm
capacity, electric vehicles (EVs), and
hydrogen with ESS arranging models.Al
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5.Reference currency: Much of the
literature still relies on pre-2015 datasets
despite rapid technology changes.

This paper addresses these gaps by
embedding degradation costs, stochastic
uncertainty, and explicit microgrid
islanding constraints within a
computationally tractable optimisation
framework. [13]

and Machine Learning: Utilize of
profound learning and support learning for
real-time celerity and determining.
Strength Optimization: Center on blackout
survivability, with models optimizing

capacity  situation  to  guarantee
progression of basic administrations.

2.10 Summary of Findings

The writing uncovers a wealthy range of
approaches and strategies for ESS siting
and measuring in dispersion systems.
Whereas early thinks about emphasized
streamlined  strategies  with  single
destinations,  later investigate  has
developed into multi-objective, hybrid-
optimization systems that account for
complex arrange behavior and real-world
limitations. Be that as it may, most
ponders still drop brief in completely
coordination microgrid-specific
prerequisites, instability modeling, and
battery corruption. [13]
This paper points to bridge these crevices
by creating a comprehensive, cross breed
optimization system that mutually

considers siting and measuring beneath
practical operational conditions—
including islanding, wvulnerability in
solar/load profiles, and cost-degradation
elements. The following segment traces
the strategy utilized in this investigate.



Journal of Kerbala University, Vol. 22, Issue 3, September , 2025

3. Methodology

This section details the end-to-end
workflow developed to identify the least-
cost, highest-impact configuration of
energy-storage systems (ESS) in a
distribution feeder equipped with a solar-
rich  microgrid. The framework is
deliberately modular so that utilities or
researchers can swap individual blocks—
such as the optimisation engine or the

power-flow solver—without rewriting the
entire pipeline. Figure 1 (omitted here)
schematically links the six major stages:
data preparation, network modelling,
scenario generation, optimisation, techno-

economic post-processing, and validation.
[13]

This study proposes a multi-objective
optimisation framework for the siting and
sizing of energy storage systems (ESS) in a
distribution network integrated with a
microgrid. The methodology integrates
realistic technical constraints, probabilistic
load/solar profiles, and

outage scenarios. The framework is
composed of six main stages: data
preparation, network modelling, scenario

3.2 ESS Technology Representation

Lithium-iron-phosphate (LFP) batteries are
selected due to their prevalence in
distribution-level projects. Each ESS unit is
represented by:

« Maximum power rating
Pjmaxi/oP*{\max}_jPjmax (KW).
o Maximum energy rating

Ejmax/0E*{\max}_jEjmax (KWh).

3.3 Objective-Function Suite Real-
world planning seldom pursues a single
metric; thus, a four-objective vector
Fimathbf{F}F is minimised:
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generation, optimisation, simulation, and
techno-economic post-processing. [13]

3.1 Distribution-Network Model

The test system is the IEEE 33-bus radial
feeder, a widely accepted benchmark for
distribution network analysis. The feeder
has a 12.66 kV base voltage, total load of
3.72 MW real power and 2.3 MVAR
reactive power, and five laterals extending
from the main trunk. Its radial topology,
high R/X ratio, and moderate scale make it
suitable for evaluating distributed storage
placement [1].

To approximate present-day distribution
conditions, three modifications are made:

« Rooftop PV injection: A total of 1 MW PV
is distributed across buses 6, 17, and 24.

o Critical loads: Buses 7 (hospital), 18
(telecom centre), and 22 (water pumping)
are designated as critical for islanding
operation.

« Aging conductors: Line impedances are
derated by 5 % to simulate ageing
infrastructure.

This provides a challenging environment for
evaluating ESS impact under both normal
and outage conditions.

« State-of-charge (SOC), sj,t€[0,1]s_{j,t}\in
[0,1]sj,t€[0,1].

« Round-trip efficiency (95 %).

« Degradation cost per
cjdegc™{\text{deg}} jcjdeg.

The SOC dynamics are modelled as:
sj,t+1=sj,t+nchPj,tch—Pj,tdis/mdisEjmax /s
{j,t+1} = s_{j,t} + \frac{\eta™{\text{ch}}

PA{\text{ch}} {j.t}-

PA{\text{dis}} {j,t}/\eta{\text{dis}}}H{E"
{\max}_j}sj,t+1=sj,t+EjmaxnchPj,tch
—Pj,tdis/ndis

cycle

Annual energy loss f1f 1f1 — Sum of copper
and core losses across all scenarios ®mw®
and time steps ttt.
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Voltage deviation f2f_2f2 — Mean-squared
deviation of bus voltages from 1 pu,
weighted by load criticality.

Net-present cost f3f 3f3 — Capital plus
O&M plus degradation, discounted at 6 %.
Unserved critical-load hours f4f 4f4 —
Duration, under islanded mode, that priority
buses fall below demand.

Formally,

min{/oix
F(x)=[f1(x), R2(x), £3(x), f4(x)] > T\min_{

3.4 Constraint Set
AC power-flow constraints expressed

using the  full Newton—Raphson
formulation. While linearised
(LinDistFlow)  models are  faster,

preliminary tests showed up to 7 % error in
voltageary line segments.

Voltage limits: 0.95<Vi,t<1.050.95 <V it
<1.050.95<V1,t<1.05 pu for all buses iii and
time ttt.

Thermal limits: Line currents must remain
below 90 % of ampacity.

SOC dynamics:
sj,t+1=sj,t+nchPj,tch—Pj,tdis/mdisEjmaxi/ois
_{j.t+1} = s _{j,t} +
\frac {n" {\mathrm{ch}}P*{\mathrm{ch}}
{ j : t } -
PA{\mathrm{dis}} {j,t}/n"{\mathrm{dis}
HHEMN\max} _j}sj,t+1=sj,t+Ejmax
nchPj,tch—Pj,tdis/ndis
with sj,0=0.5s_{j,0} = 0.5s},0=0.5 and
0.1<5),t<10.1 <s_{j,t} <10.1<sj,t<1.
Islanding autonomy: For each outage
scenario kkk of duration TxT «Tk,

Y t=t0t0+TkPi,terit<y jPj,tdis\sum_{t=t_0}
Mt 0+T ) PM{\mathrm{crit}} {it} <
\sum_j PA{\mathrm{dis}}_{j,t}t=t0>'t0
+T«Pi,terit<jy Pj,tdis

ensures critical loads are fully served.
Budget ceiling: Total ESS investment may
not exceed € 5 million, reflecting the
utility’s 2025 rate-case cap.

Siting cardinality: At most five storage
nodes are allowed to prevent a “battery-
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x} \; \mathbf{F}(x) =
\left[f_1(x),\,f_2(x),\,f_3(x),\,f_4(x)\right]

A \I\top}xminF(x)=[f1(x),f2(x),f3(x),f4
1T

subject to the constraints described next.
The Pareto front is approximated, after

which decision-makers may select a
preferred trade-off via an e-constraint or
min-max normalisation technique.
everywhere” solution and to simplify
protection-relay upgrades.

3.5 Scenario Generation

Load uncertainty is represented via a two-
stage bootstrap-with-replacement of daily
profiles, maintaining intra-day
autocorrelation. Solar variability leverages
ten years of satellite Global Horizontal
Irradiance reanalysis, bias-corrected by
local pyranometer data. Outage events are
modelled as a Poisson process (A = 3 events
yr') with duration drawn from a shifted
log-normal distribution (u =1 h, o = 0.4).
The Cartesian product of 100 load-solar
pairs with 30 outage traces yields 3 000
scenarios. A k-medoids clustering reduces
this set to 150 representative scenarios,
balancing fidelity and computational
tractability.

3.6 Hybrid Optimisation Engine
The decision vector xxx comprises
discrete siting variables bie{0,1}b i €
\{0,1\}bi€{0,1} identifying whether bus iii
hosts storage and continuous sizing
variables (Pjmax(/o, Ejmax{/o})(P"{\max}_j,
Er\max}_j)(Pjmax,Ejmax). No single
optimiser excels simultaneously on both
variable types, so a hierarchical hybrid is
adopted:
Outer loop — Genetic Algorithm (GA) for
siting. Chromosomes encode binary strings
of length 33. A roulette-wheel selection
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with elitism (10 %) is used; crossover is
two-point with probability

0.8; mutation rate is 1 /L, where L is
chromosome length. Population size is 60,

and termination occurs after 50 generations
without Pareto-front improvement.

Inner loop — Hybrid Adaptive Differential
Evolution with Decay (HyDE-DF) for
sizing. Given a GA-

Parallelism: Both loops exploit a 32-core
Linux cluster via MATLAB’s Parallel
Computing Toolbox; speed-up is ~26x%
versus serial.

Pseudocode (abridged):

for gen = 1:G_max
evaluate_population(GA_pop)

proposed siting pattern, HyDE-DF searches
the continuous sizing space. The
differential-mutation scale factor FFF self-
adapts, while the crossover rate CRCRCR
decays linearly to encourage early
exploration and late convergence. The inner
optimiser runs for 150 iterations per GA
individual.

update_Pareto_front()

GA _select_crossover_mutate()

end

function evaluate_population(pop)
for each individual in pop (parallel)
call HyDE_DF(individual.sites)
store best sizing & objectives

-

Input Data: Load,
PV, Outage Scenar-

ios

J/

v

Ve

Network Model (IEE- |
33 feeder with PV,
loads, candidate ESS

buses)

v

'

Inner HyDE-DF Loop:
Optimize ESS Sizes

v

AC Power Flow
(OpenDSS + MALAB
interface)

~\

J

v

Ve

Objective Evaluation
(Loss, Voltage, NPC,
Resilience)

~

/

v

Vs

Pareto Front +
\Techno-Economic Filters

~

Figure 3: Flow chart Table.
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3.7 Dispatch Simulation

Embedded in Optimization

Each candidate solution undergoes a
rolling  24-hour  optimal-power-flow
(OPF) simulation for every scenario. The
OPF  minimises feeder losses plus
degradation cost subject to network and
battery constraints; it thus yields
consistent objective-function values for
the outer optimisation. To reduce runtime,
OPF is implemented in OpenDSS and
invoked via a COM interface from
MATLAB. Voltage-controlled regulators
are modelled in “time-series” mode to
capture tap operations under varying
dispatch.

3.8 Post-Processing and Techno-

Economic Analysis

The Pareto set is exported to Python for
plotting and decision support. Three filters
help practitioners down-select:
Knee-point detection: Solutions where
marginal cost per incremental resilience
hour sharply increases.
Regulator compliance: Only solutions
keeping voltage within +3 % are
admissible in jurisdictions with tighter PQ
codes.
Payback threshold: Discounted payback
must be < 10 years to align with typical
utility investment horizons.
Lifecycle cost is levelised over 15 years,
and battery replacement is scheduled once
capacity fades to 70 %. Externality
valuations—e.g., avoided outage cost at €
6 €/kWh not served—are optionally
monetised for policy analysis.

3.9 Sensitivity and Robustness

Checks

Five one-at-a-time sensitivities test
methodological robustness:
Battery-capex trajectory (—12 % yr!, -5 %
yr!, flat).
PV penetration (0 %, 30 %, 60 % of peak).
Load-growth rate (0.5 %, 2 %, 4 % yr™).
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Outage frequency (A=1 yr', 5 yr).
Cardinality limit (3, 5, 7 ESS sites).

A Latin Hypercube Design ensures
combinatorial coverage without
exponential burst. Each sensitivity run re-
uses the optimisation engine but with a
reduced 80-scenario set to bound runtime
to <10 h.

3.10 Benchmark Methods for

Comparative Evaluation

To contextualise performance,
benchmarks are computed:
Base case — No storage.
Sequential heuristic — Loss-sensitivity
siting followed by linear-programming
sizing.
Single-objective GA — Minimises cost
only, ignoring voltage and resilience.
Commercial tool — HOMER Pro co-
optimisation (grid-connected mode).
All benchmarks adopt identical network
data to ensure apple-to-apple comparison.
Metrics assessed include voltage-violation
hours, energy loss, net-present cost, and
outage survivability.

four

3.11 Implementation and
Reproducibility

Code is released under MIT licence on
GitHub, with a Dockerfile bundling
MATLAB Runtime, OpenDSS, and
Python 3.11. A continuous-integration
pipeline executes nightly regression tests
to verify that updates do not shift the
Pareto frontier beyond *1 %. Input
datasets (load, solar, outage) are
anonymised and shared in CSV. Users can
reproduce the full optimisation in roughly
14 h on a 16-core workstation with 64 GB
RAM.

3.12 Ethical, Regulatory, and
Practical Considerations

While the methodology seeks global
optima, real-world deployment must
account for fire-safety clearances, noise
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limits of inverters, and community
acceptance. Therefore, the siting solution
is passed through a qualitative suitability
filter incorporating land-use zoning and
proximity to sensitive receptors (schools,
hospitals). Regulatory approval
pathways—interconnection agreements,
environmental permits—are mapped to a
Gantt chart to align physical deployment
with administrative timelines.

3.13 Methodological Summary

In summary, the proposed framework
integrates high-resolution data,
probabilistic scenario generation, and a

hybrid GA/HyDE-DF optimiser
embedded within full AC power-flow
constraints. Unlike many prior studies, it
enforces islanding autonomy explicitly,
internalises battery degradation, and
remains computationally tractable via
parallelisation and scenario reduction. The
resulting Pareto frontier equips planners
with transparent trade-offs between cost,
power-quality, and resilience, paving the
way for storage investments that are both
economically defensible and technically
robust.

4. Case Study and Simulation
Setup

To approve the proposed multi-objective
advancement technique for ideal siting
and measuring of Vitality Capacity
Frameworks (ESS) in a conveyance
arrange coordinates with a microgrid, a
comprehensive case ponder is carried out.
This segment traces the subtle elements of
the chosen test framework, information
presumptions, recreation instruments,
control  rationale, capacity alacrity
procedure, and setup for both grid-
connected and islanded operations. The
objective is to guarantee that the
recreation environment closely reflects
real-world conditions whereas keeping up
explanatory tractability and repeatability.
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4.1 Test Organize Portrayal

The chosen test arrange is the well-
known IEEE  33-bus  outspread
dissemination feeder, adjusted to join the
operational characteristics of a real-world
microgrid. This framework is especially
suited due to its direct measure, well-
documented electrical parameters, and
viable pertinence to semi-urban and peri-
urban network setups, where voltage
direction and control misfortunes are
major concerns.

4.1.1 Base Setup

Ostensible voltage: 12.66 kV
Add up to genuine control request (base
case): ~3.7 MW
Add up to responsive control request: ~2.3
MVAR
Topology: Outspread, single feeder, 5
laterals
Lines: Medium-voltage overhead
conductors, with parameters characterized
per portion (R, X, length)
Transformers: Accepted perfect, with tap
changers disregarded within the base show

4.1.2 Alterations Presented

To recreate microgrid behavior:
Buses 7, 18, and 22 are assigned as
critical-load focuses, speaking to a clinic,
telecom center, and metropolitan water
pump separately.
Photovoltaic (PV) establishments are
included at buses 6, 17, and 24, mimicking
disseminated housetop sun oriented with a
crest combined capacity of 1 MW.
Capacity can be put at any of the 33 buses,
but restricted to a greatest of five hubs due
to fetched and control contemplations.
These improvements are planned to test
the system’s reaction to both standard
working conditions and possibility
occasions such as blackouts or voltage
droops
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. 4.2 Stack and Era Profiles

4.2.1 Stack Information
Chronicled savvy meter information for
private, commercial, and mixed-use

buildings is artificially created utilizing
normalized yearly request profiles, based
on a Mediterranean climate zone
comparable to southern Europe or North
Africa.

Determination: 15-minute interims for
365 days (= 35,000 time steps)

Request variety: Peak-to-average
proportion ~1.7; commonplace day by day
crest ~7 PM

Stack sorts: Private (65%), commercial
(25%), industrial/agricultural (10%)
Stochastic components are included
employing a ordinary dispersion (x15%)
to reflect shopper behavior inconstancy,
and time-of-day conditions are protected.

4.2.2 PV Era Information
PV vyield is modeled utilizing:

NASA-SSE Worldwide Flat Irradiance
(GHI) information for 10 a long time
Location-specific derating: board tilt
misfortunes, temperature coefficient (-
0.45%/°C), inverter wastefulness (3-5%)
Yield show:

PPV(t)=GHI(t)-A-n-f(T)

where AAA is area, m\etan is panel
efficiency, and f(T)f(T)f(T) captures
temperature losses.

The typical PV peak occurs between 11:30
AM and 2:00 PM. Reverse power flow is
observed in  low-demand periods,
particularly weekends and holidays.

4.3 Energy Storage Parameters

Each candidate vitality capacity unit is
modeled as a two-hour lithium press
phosphate (LFP) battery framework with
the taking after base characteristics:

Parameter | Value

Round-trip 95%

efficiency

Depth of 90%

discharge

Lifetime 8000
cycles or
10 years

Energy-to- 2:1

power ratio

Max 0.5C

discharge

rate

Capital cost $300/kWh

(2025) installed

O&M cost $5/kW-
year

Replacement 70%  of

threshold original
capacity

Tablel: parameter Table

For each hub where ESS is introduced, both control rating (kW) and vitality
capacity (kwh) are treated as choice factors.
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4.4 Outage and Islanding

Scenarios

One of the center goals of this think
about is to guarantee basic stack
survivability amid upstream blackouts. To
reenact practical conditions:

Blackout recurrence: Poisson handle (A =
3lyear)

Blackout term: Lognormal
(cruel 25 hours, SD =

dispersion
0.8)

Affect: As it were basic buses (7, 18, 22)
are required to be served amid islanding

Each blackout situation is arbitrarily
embedded into the yearly load/PV profile.
The enhancement guarantees that vitality
accessibility from ESS is adequate to
preserve supply at basic buses amid these
occasions, beneath  worst-case  sun
oriented accessibility.

4.5 Power Flow Simulation Setup
The reenactment employments
OpenDSS, which permits for high-fidelity
AC control stream investigation counting
time-series stack stream, dispersed PV
infusion, and inverter control.
Modeling Presumptions:
Adjusted three-phase framework (in spite
of the fact that real loads may be uneven,
the adjusted rearrangements is commonly
acknowledged for arranging considers)
Settled control calculate for loads: 0.95
slacking
PV and ESS associated through savvy
inverters with Volt/Var capability crippled
for this ponder
No organize reconfiguration or topology
control considered
Each time step within the recreation
speaks to a 15-minute operational
window, inside which PV era, stack
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utilization, and capacity expedite are
assessed.
4.6 Storage Dispatch Strategy

The alacrity of ESS amid reenactment is
administered by the yield of the optimiser.
At each time step:
On the off chance that grid-connected:
Charge in the event that PV overflow is
accessible and ESS is underneath max
SOC
Release in case net stack is tall and SOC >
20%
On the off chance that islanded:
Release as it were, and as it were to basic
buses
Expedite prioritizes voltage bolster at end-
of-feeder hubs

Heharge - Peharge — Piischarge,/ Tiischarg
SOC;., = SOC; + lcharge charge discharge / Tldischarge

Ema:‘:

The dispatch respects efficiency losses
and cycling limits.

4.7 Optimization Configuration
The advancement is  conducted

employing a cross breed GA-HyDE

calculation as already point by point.

Parameters:

Populace measure (GA): 60

Eras: 50 (or meeting limit)

Measuring emphasess (HyDE): 150 per

person

Pareto front constrain: 100 arrangements

held

Budget limitation: $5 million add up to

venture cap

Siting limitation: Max 5 hubs can have

ESS

The optimiser runs in MATLAB, with

OpenDSS interfaces through COM

mechanization for power-flow calls.

4.8 Performance Metrics

After simulation, the following metrics
are extracted and analysed for each
scenario and candidate solution:
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Metric
Voltage profile

Description
Average and
deviations from 1 pu

peak

Energy losses

Total KWh lost over the year

Investment cost

Total CAPEX and O&M for
ESS

Battery cycling
frequency

Number of full cycles per
year

SOC trajectory

Hourly SOC trends to assess
depth-of-discharge usage

Critical load

served

% of outage hours where
critical load was met

Payback period

Time to recover investment
through loss reduction

Capacity
utilisation

Ratio of actual use to max-
rated capacity

Table 2: metric description table

All metrics are normalized to allow comparison across solutions in the
Pareto front.

4.9 Approval of Comes about

To approve the unwavering quality and
authenticity of the demonstrate:
Benchmark cases are recreated: No
capacity, heuristic siting with settled
estimate, single-objective advancement
(fetched as it were)
Result comparison: Measurements are
compared over cases to highlight points of
interest of the proposed strategy
Master approval: Comes about are
checked against desires from utility
engineers and scholarly guidelines

4.10 Computer program and

Equipment Setup

Reenactment stage: Windows 10,
MATLAB R2024a, OpenDSS 9.2, Python
3.11
Equipment: Intel i9-13900K, 64 GB Slam,
2TB SSD
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Parallel handling: MATLAB Parallel
Computing Tool compartment utilized for
speed-up (8% speedier)

Each full run of the advancement with 150
scenarios takes around 12-14 hours,
depending on joining speed and
reenactment parameters.

4.11 Reproducibility

All recreation code is version-controlled
utilizing Git, and a Docker picture is given
to guarantee environment consistency. An
case input setup is recorded in JSON, and
input profiles (PV, stack, blackout) are
included as CSV records.

5. Results and Discussion

This section presents the findings
obtained from applying the proposed
hybrid GA-HyDE optimization
framework to the modified IEEE 33-bus
distribution network with integrated PV
and critical loads. The discussion
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emphasizes both technical and economic
dimensions, ensuring that results are
linked directly to practical planning
objectives.

5.1 Pareto-Optimal Solutions

The optimisation process generated 76
non-dominated solutions along a Pareto
frontier. The solutions represent trade-offs
between four objectives: loss reduction,
voltage improvement, investment cost,
and outage survivability.
A 3D Pareto front was plotted (not shown
here), revealing a concave trade-off
surface. Aggressive resilience
improvements came at increasing
marginal  cost, while intermediate
solutions achieved significant technical
benefits with moderate investments.
A “knee point” solution was observed at
~€3.6 million, balancing cost-
effectiveness and resilience.
Below €2.8 million investment, outage
survivability dropped sharply, indicating
under-provisioning.
Beyond €4.2 million, incremental cost
yielded diminishing technical benefits.

This confirms that multi-objective
optimisation prevents both under- and
over-investment, offering utilities a
spectrum of feasible choices.

5.2 Optimal ESS Siting

The GA consistently prioritised siting
ESS at bus 6, bus 13, and bus 31:
Bus 6: near PV injection — absorbs
midday surplus, reduces reverse flow.
Bus 13: located deep in feeder —
mitigates voltage drops.
Bus 31: supplies critical load (water
pumping station) during outages.
Heatmap analysis of 76 Pareto solutions
revealed that bus 6 appeared in 92% of
solutions, bus 31 in 78%, and bus 18 in
62%. Conversely, buses close to the
substation (<bus 5) rarely appeared
(<10%).
This demonstrates the importance of
strategic placement at weak or PV-
heavy nodes, instead of centralized siting.
5.3 Optimal Sizing Patterns

Storage sizing followed systematic

trends:

Discharge
Capabilit
y

6 250 500- 2-3 hours
400 800

1 3 200- 400 - 2-3 hours
300 6 00

3 1 300- 600 - 4-6 hours
450 900

Table 3: Storage sizing

Cost-focused solutions undersized batteries (30—40% lower cost), but failed
to sustain critical loads beyond 2 hours.
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« Resilience-focused solutions increased
capacity, enabling 6 hours of autonomy at
priority buses.

This highlights that different planning
priorities (cost vs. resilience) directly
shape sizing.

5.4 Voltage Profile Improvements

Without ESS, the feeder exhibited a

voltage deviation index (VDI) of 0.031

pu, with several buses dropping below

0.94 pu during evening peaks.

With optimally sited ESS:

e VDI reduced to 0.012-0.017 pu.

e Minimum bus voltage > 0.96 pu at all

times.

« Voltage imbalance at downstream nodes

reduced by 30-40%.

These results show that ESS act as local

voltage  regulators,  complementing

traditional tap-changing transformers and

reducing PQ complaints.

5.5 Technical Loss Reduction
Base case annual losses:

MWh/year.
o With ESS: 21-31% loss reduction.
e Maximum benefit occurred when ESS
charged during PV peaks and discharged
at evening peaks.
« This behaviour also reduced transformer
loading, extending asset life.

212.4
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Thus, ESS support both operational
efficiency and deferred infrastructure
upgrades.

5.6 Resilience for Critical Loads
Critical buses (7, 18, 22) faced 8-12

hours/year outage in the base case. With

ESS:

e 95-100% of outage hours covered at

critical nodes.

o Unserved energy dropped from 7.4

MWh/year to <0.6 MWh/year.

o Some solutions sustained 4-6 hours

autonomy at 100% load.

This proves that optimised ESS ensure

survivability of critical infrastructure

without full-scale microgrid separation.

5.7 Economic Assessment

The cost analysis considered capital,
O&M, and replacement. Avoided loss
savings and outage-avoidance benefits
were monetised.

« Payback period: 7.5-12 years.

o Levelised Cost of Storage (LCOS):
€0.18-0.28/kwWh.
« Resilience-focused  solutions  had
slightly longer paybacks but delivered
higher avoided-outage value.

In jurisdictions with penalties for outage
hours or incentives for resilience, the
moderate-oversizing strategy becomes
economically optimal.
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5.8 Benchmark Comparison

Method Losses Critical

(MWh/yr) Outage

(h/yr)

Base (no 212 .4 0.031 9 . 2 0
E S S)
Heuristic 184 .7 0.024 6 . 4 2.6M
siting + LP
sizing
GA (cost- 176.1 0.020 4 . 9 2.9M
only)
Proposed 162.3 0.013 0o . 8 3.6M
GA-HyDE
(multi-
objective)

Table 4: Benchmark Comparison

The proposed method dominates across all categories, especially in resilience. Although

costlier than heuristics, its benefits justify the investment.

5.9 Sensitivity Analysis

Key sensitivities confirm robustness:
Battery cost |12%/yr: feasible under
€3M budget.

PV penetration 160%: improved loss
reduction to —34%.

Outage frequency 15/yr: resilience-
dominant solutions favoured.

Load growth 13%/yr: worsened base
voltage drops, strengthening ESS role.
These tests validate adaptability of the
framework under changing system
conditions.

5.10 Practical Implications

1.

2.

Findings suggest:

Strategic siting at PV-heavy and weak
nodes maximises ESS value.
Moderately sized storage balances
efficiency and resilience.
Multi-objective optimisation provides
planners with flexible, evidence-based
trade-offs.

Policy integration (outage cost
penalties, resilience incentives) can
accelerate ESS adoption.
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5.11 Limitations

Despite robustness, the study excluded:
Fault-ride-through dynamics,
Protection coordination for multi-node
ESS,

Environmental/land-use constraints.
These are avenues for future research.

5.12 Confinements

Whereas vigorous, the examination
does have impediments:
Energetic recreations (e.g., blame ride-
through) were not included
Security coordination for multi-node
ESS was not evaluated
Real-time control intuitive between PV
and ESS require encourage consider
Natural and land-use limitations were
approximated

These angles are imperative regions for
future work and can be consolidated
utilizing hardware-in-the-loop or co-
simulation stages.
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6. Conclusion

This research proposed and validated a
multi-objective optimisation
framework for the siting and sizing of

energy storage systems (ESS) in
distribution networks integrated with
microgrids. The study addressed four
often conflicting objectives
simultaneously: (i) minimisation of

technical losses, (ii) improvement of
voltage stability, (iii) economic
feasibility, and (iv) resilience for
critical loads under outage conditions.
Unlike traditional single-objective or
heuristic approaches, the framework
integrates  probabilistic ~ scenario
generation, explicit islanding
autonomy, and battery degradation
modelling, yielding solutions that are
both technically robust and practically
implementable.

6.1 Key Findings

The major contributions and
outcomes can be summarised as
follows:

e Loss Reduction: Appropriately placed

ESS reduced feeder losses by up to
30% compared to the base case. These
savings stem from peak-shaving and

midday PV absorption, thereby
deferring  upstream  infrastructure
upgrades.

« Voltage Stability: The voltage deviation

index decreased by more than 50%,
maintaining all bus voltages above 0.96
p.u. throughout the year. This confirms
that distributed ESS act as localised
voltage support mechanisms.

« Critical Load Resilience: ESS supplied

95-100% of outage hours for
designated critical loads. In certain
Pareto solutions, 4-6 hours of complete
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autonomy

were sustained. This

demonstrates that resilience objectives

« Economic Feasibility:

can be met without
oversizing storage.

excessively

Investment in
optimally placed ESS achieved
payback periods of 7.5-12 years and
LCOS of €0.18-0.28/kWh. These

e values are competitive with existing

distribution-level storage deployments
in 2023-2025.

« Strategic Siting: Buses near PV injection

and at feeder extremities consistently
emerged as high-value nodes. This
reinforces the principle that

o ESS value is location-sensitive, and that

¢ Robustness:

6.2 Practical

uniform deployment strategies are
inefficient.

Sensitivity  analyses
confirmed that results remain valid
under battery cost declines, increased
PV  penetration, higher  outage
frequency, and load growth.

Implications for

Utilities

3.

The results provide utilities and
distribution planners with actionable
insights:

Prioritise Critical Loads: Storage
investment should begin at feeders
supplying hospitals, telecom nodes,
and water facilities. This ensures
immediate social value in resilience.
Target Weak Nodes: Feeder ends and
PV-heavy buses should be prioritised
for ESS placement, since benefits there
outweigh those near substations.

Adopt  Multi-Objective  Tools:
Utilities should avoid cost-only
planning models, which often

undersize storage. Instead, multi-

objective frameworks yield solutions
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configurations can withstand transient

5. that balance economics with resilience faults and black-start conditions.

and voltage quality.

Integrate Resilience Metrics:
Regulatory filings should quantify
avoided outage costs alongside

technical and financial metrics. This
legitimises ESS investment in rate
cases.

6.3 Policy Recommendations

The findings also highlight the need
for regulatory adjustments:

Incentive  Structures: Regulators
should consider performance-based
incentives tied to outage reduction and
voltage support. Current cost-recovery
models often undervalue resilience.
Resilience  Standards: Emerging
policies (e.g., in California, Egypt, and
the EU) should mandate minimum
resilience hours for critical loads.
Optimisation frameworks like the one
presented here can provide evidence-
based compliance roadmaps.
Market Integration: As distribution-
level flexibility markets expand, ESS
should be enabled to stack services
(arbitrage, frequency response, voltage
support). This requires market rules

that recognise multi-service ESS
value streams.
Second-L.ife Batteries: Policies

supporting the integration of second-
life EV batteries can reduce ESS capital
costs and accelerate  adoption,
particularly for community microgrids.

6.4 Future Research Directions

Although  the  present  study
demonstrates  significant  benefits,
several avenues remain open for future
work:

Dynamic Fault Response: Hardware-
in-the-loop ~ experiments  should
validate whether optimised ESS
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Protection Coordination: Multi-node
ESS introduces new challenges for
relay coordination and islanding
detection. Co-simulation with
protection software is recommended.
Environmental and Social
Acceptance: Land-use constraints,

community acceptance, and noise/fire
safety regulations must be integrated into
optimisation.

Mobile and Hybrid Storage:
Emerging concepts such as portable
ESS trailers, second-life EV
batteries, and hybrid hydrogen—
battery systems should be included in
optimisation models.

Al-driven Control: Reinforcement
learning and predictive  control
techniques can complement offline
optimisation, enabling  adaptive
dispatch under real-time uncertainty.

6.5 Final Statement

By systematically addressing both
technical and economic dimensions,
this study demonstrates that energy
storage in distribution-level
microgrids is not only viable but also
essential for modern power systems.
The proposed framework equips
planners, policymakers, and regulators
with a transparent, replicable tool for

identifying least-cost, most-impact
ESS  investments. Importantly,
resilience objectives—such as

uninterrupted power supply to critical
services—need not be sacrificed for
cost efficiency. Instead, with well-
designed optimisation frameworks,
utilities can meet decarbonisation
targets, improve power quality, and
strengthen  resilience, all  while
maintaining economic feasibility.
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In conclusion, the adoption of such
multi-objective, scenario-based
optimisation models represents a
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