
Baghdad Science Journal Baghdad Science Journal 

Volume 22 Issue 9 Article 5 

9-16-2025 

An Assessment of Brain Natriuretic Peptide (BNP), Urokinase An Assessment of Brain Natriuretic Peptide (BNP), Urokinase 

Plasminogen Activator (uPA) and Wingless Type 5A (WINT5A) in Plasminogen Activator (uPA) and Wingless Type 5A (WINT5A) in 

Iraqi Patients with Heart Failure Iraqi Patients with Heart Failure 

Raghda Faris Salim 
Department of Applied Chemistry, College of Applied Science, University of Technology, Baghdad, Iraq, 
as.21.34@grad.uotechnology.edu.iq 

Wafaa Raji Alfatlawi 
Department of Applied Chemistry, College of Applied Science, University of Technology, Baghdad, Iraq, 
wafaa.r.mohammed@uotechnology.edu.iq 

Muhammed A.H Aldabagh 
Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq, 
ALdabagh1968@gmail.com 

Follow this and additional works at: https://bsj.uobaghdad.edu.iq/home 

How to Cite this Article How to Cite this Article 
Salim, Raghda Faris; Alfatlawi, Wafaa Raji; and Aldabagh, Muhammed A.H (2025) "An Assessment of 
Brain Natriuretic Peptide (BNP), Urokinase Plasminogen Activator (uPA) and Wingless Type 5A (WINT5A) 
in Iraqi Patients with Heart Failure," Baghdad Science Journal: Vol. 22: Iss. 9, Article 5. 
DOI: https://doi.org/10.21123/2411-7986.5046 

This Article is brought to you for free and open access by Baghdad Science Journal. It has been accepted for 
inclusion in Baghdad Science Journal by an authorized editor of Baghdad Science Journal. 

https://bsj.uobaghdad.edu.iq/home
https://bsj.uobaghdad.edu.iq/home/vol22
https://bsj.uobaghdad.edu.iq/home/vol22/iss9
https://bsj.uobaghdad.edu.iq/home/vol22/iss9/5
https://bsj.uobaghdad.edu.iq/home?utm_source=bsj.uobaghdad.edu.iq%2Fhome%2Fvol22%2Fiss9%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.21123/2411-7986.5046


BAGHDAD SCIENCE JOURNAL 2025;22(9):2875–2885 Scan the QR to view
the full-text article on
the journal website

RESEARCH ARTICLE

An Assessment of Brain Natriuretic Peptide (BNP),
Urokinase Plasminogen Activator (uPA) and
Wingless Type 5A (WINT5A) in Iraqi Patients
with Heart Failure

Raghda Faris Salim 1, Wafaa Raji Alfatlawi 1,*, Muhammed A.H Aldabagh 2

1 Department of Applied Chemistry, College of Applied Science, University of Technology, Baghdad, Iraq
2 Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq

ABSTRACT

Biochemical markers like brain natriuretic peptide (BNP) are being identified in patients with heart failure (HF) to
indicate the severity of the condition. Little is known about Urokinase plasminogen activator (uPa) and wingless type
5A(Wint5a) markers. The study investigates the role of serum BNP concentration in diagnosing HF and its impact on
survival and prognosis in patients with impaired renal function. 150 individuals participated in this study (100 as
patients and 50 as control), patients were classified according to renal dysfunction into two groups 50 patients with HF
and renal dysfunction (RD), 50 patients with HF without RD. According to the area under curve 81 %, indicated BNP
is a good indicator to determine HF with RD p-value <0.05, cutoff value 0.35 at which HF is diagnosed, sensitivity
0.78 and specificity 0.73, CI 95% (0.74–0.88). While uPa and Wint5a revealed fair indicator. BNP and Wint5a showed
significant correlations with urea, creatinine, and uric acid but not with uPa. BNP levels of patients with RD showed a
positive significant correlation with creatinine levels, and the critical point of BNP level for diagnosis of heart failure
was 0.855 ng/mL while in Wint5a was 0.877 ng/ml and fair result with uPa. As the survival rate in patients with BNP
level above the critical point was significantly low, this level was a useful indicator for predicting their prognosis. Care
should be taken in interpreting BNP and Wint5a level because patients with RD may show a high concentration of BNP
with and without heart failure.

Keywords: Brain natriuretic peptide, Heart disease, Heart failure, Urokinase, Wingless

Introduction

Role of b-type natriuretic peptide (BNP) in heart
failure

Natriuretic peptides (NP), particularly B-type
(BNP), have been regarded as biomarkers of volume
overload and instruments to exclude heart failure
(HF) in the general population for a considerable
amount of time. HF is the leading cause of mortality
among patients with renal dysfunction (RD).1 Never-

theless, a limited number of studies have examined
the relationship between increased production of B-
type natriuretic peptide (BNP) in cardiac cells and
lower BNP clearance in the kidney, which may be at-
tributed to the elevated water content in the bodies of
patients with impaired renal function. The objective
of this research was to investigate the diagnostic use
of serum B-type natriuretic peptide (BNP) concentra-
tion in the identification of heart failure as well as
assessing its impact on the survival and prognosis of
individuals with compromised renal function.2
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Wnt5a is elevated in heart failure and affects cardiac
fibroblast function

Dysregulated signalling pathways characterize fail-
ing myocardium. The quiescent wingless (Wnt)
signalling pathway is triggered during cardiac dis-
ease.3 Wnt proteins initiate signalling by binding
to a Frizzled receptor and a low-density lipoprotein
receptor-related protein receptor complex,4 result-
ing in distinct intracellular responses that involve
-catenin (canonical pathway),5 Ca2+ and other sec-
ond messengers Wnt signalling is dysregulated in
heart failure (HF) and may promote cardiac hyper-
trophy, fibrosis, and inflammation.6 Inhibiting Wnt
ligand Wnt5a protects animal models from HF. How-
ever, the role of Wnt5a in human HF and its functions
in cardiac cells is not well understood blocking the
Wnt ligand Wnt5a prevents HF in animal models.
However, the role of Wnt5a in human HF and its func-
tions in cardiac cells remain unclear.7 Serum Wnt5a
was higher in HF patients and related to hemody-
namic, neurohormonal, and clinical disease severity.
Wnt5a protein seems to be linked to IL-6 and TIMP-1
in failing human hearts.8

Urokinase-type plasminogen activator improves risk
prediction in patients with heart failure

A 53-kDa serine protease, uPA activates plasmino-
gen. Like most mammalian proteases, uPA starts
as a catalytically inactive single-chain polypeptide.9

The uPA/uPAR system is crucial for the pathogen-
esis of vascular diseases.10 The pathophysiology of
atherosclerotic lesion formation involves complex
interactions between arterial wall cells, such as en-
dothelial cells, smooth muscle cells, macrophages,
plasma lipoproteins, and molecular systems involved
in thrombosis, fibrinolysis, oxidation, and inflamma-
tion.11 During the beginning stages of atherogenesis,
circulating monocytes adhere to endothelial cells in
the arterial wall, infiltrate the subendothelial space,
and then differentiate into macrophages.12 Due to the
absorption of changed lipoproteins such as oxidized
LDL, macrophages collect cholesterol and oxidized
lipids, resulting in foam cells.13 Atherosclerotic le-
sions are also characterized by accelerated oxidative
stress and the production of reactive oxygen species
(ROS), which attack lipids in lipoproteins and arterial
macrophages.14

Materials and methods

Selection of patients

One hundred and fifty individuals were enrolled
in this study (75 women and 75 men), age ranged

between (40-70) years and the samples collection
started from November 2022 to March 2023. Each
participant was recruited at Shaikh Zayed Hospital
and all patients were diagnosed by consults physi-
cians as HF patients and it was caused by left ventricle
dysfunction. The study protocol and ethical approval
were permitted by Shaikh Zayed Hospital. Informed
consent was obtained from all subjects involved in the
study. Samples classified according to RD (by measur-
ing urea, creatinine, and uric acid) into three groups
G1: 50 patients (25female and 25 male) HF without
RD, G2: 50 patients (25 female and 25 male) HF
with RD, and G3: 50 apparently healthy control (25
females and 25 males). The kits used in the study were
manufactured by Sunlog-China and Roche–Germany.
ELISA and Copas were used for measurements of
parameters.

Statistical analysis

Categorical variables are expressed as Mean ± SD.
The student t-test was used for comparison of means,
and analysis of variance (ANOVA) for comparisons of
multiple groups with the Scheffe test (post hoc). A
Pearson correlation was made for continuous quan-
titative variables. Analysis of ROC curves were also
used. The optimal sensitivity and specificity were es-
timated by the position on the resulting curve of the
minimum distance to the perfect sensitivity and speci-
ficity point (100%, 100%). The area under the curve
indicated the degree of discrimination of the variable
analyzed, ranging from 0.5, or non-discriminative, to
1.0, fully discriminative.

Results and discussion

Table 1 shows a highly significant difference
p-value (<0.001) of BNP and Wint5a between
patients compared with control while there was
non-significant difference (p-value = 0.543) in uPa
between studied groups.

Numerous studies by Tsutsui H et al. indicated that
BNP is a significant marker for the diagnosis and
prognosis of heart failure (HF).15 It is the most de-
pendable biomarker for HF, and its association with
left ventricular (LV) diameter and ejection fraction
is well-established.16 Christopher P. et al. reported
that RD is associated with elevated levels of natri-
uretic peptides and that patients with RD often have
increased BNP(15). Even after accounting for renal
dysfunction, Thanh et al. indicated that BNP likely
reflects early HF pathogenesis in patients with RD,
which is consistent with our findings.17

The first factor that could explain the stimulation
and release of BNP from the myocardium is cardiac
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Table 1. Comparison of biochemical parameters in studied groups (HF patients with control).

HF patients Control P -value

Parameters
BNP (ng/ml) (mean ± SD) 0.45 ± 0.14 0.26 ± 0.06 <0.001
uPa (ng/ml) (mean ± SD) 0.19 ± 0.07 0.21 ± 0.07 0.543
Wint5a (ng/ml) (mean ± SD) 0.75 ± 0.22 0.44 ± 0.09 <0.001

Enzymes
CK (U/L) 46.25 ± 9.54 10.72 ± 3.72 <0.001
LDH (U/L) 315.23 ± 34.47 148.24 ± 25.43 <0.001
AST (U/L) 39.75 ± 9.91 28.9 ± 9.58 0.093

Parameters
RBG (mg/dl) 290.6 ± 45.63 94.74 ± 5.9 <0.001
K (mmole/l) 4.47 ± 1.05 4.07 ± 0.55 0.002
Ca (mg/dl) 9.15 ± 1.35 9.26 ± 0.72 0.028
CRP (mg/dl) 44.96 ± 8.21 0.92 ± 0.22 <0.001
Troponin (ng/l) 20.31 ± 3.75 1.25 ± 0.5 <0.001

Lipid Profile
Cholesterol (mg/dl) 259.67 ± 23.93 172.96 ± 17.96 <0.001
TG (mg/dl) 334.29 ± 28.25 120.3 ± 11.68 <0.001
HDL (mg/dl) 45.66 ± 10.13 48.56 ± 6.17 0.002
LDL (mg/dl) 208.17 ± 31.86 106.26 ± 17.98 <0.001
VLDL (mg/dl) 40.13 ± 22.42 18.14 ± 8.91 <0.001

Renal Function Test:
Urea (mg/dl) 101.37 ± 32.88 25.68 ± 5.95 <0.001
Creatinine (mg/dl) 1.52 ± 0.89 0.67 ± 0.14 <0.001
Uric Acid (mg/dl) 5.62 ± 1.25 3.99 ± 0.62 <0.001

stress,18 another factor contributing to this phe-
nomenon is the heightened levels of sodium and fluid
retention, which afterwards result in elevated vascu-
lar tension. Consequently, this leads to an augmented
preload of the heart. The elevation in ventricular wall
pressure will result in the secretion of B-type natri-
uretic peptide (BNP).19 Finally, the findings of our
investigation elucidated a robust correlation between
B-type natriuretic peptide (BNP) indicators and heart
failure (HF); specifically suggesting that heightened
cardiac stress leads to an elevation in BNP release.20

Elevated uPa concentrations in patients are signif-
icantly linked to heart failure. Endothelial cells, vas-
cular smooth muscle cells, and blood monocytes and
macrophages can generate urokinase plasminogen ac-
tivator (uPA) and its receptor (suPAR), potentially
contributing to their presence in plasma and extra-
cellular fluids.21

Urokinase plasminogen activator receptor (uPAR)
has been shown to form complexes and interact with
vitronectin and integrin family components, modulat-
ing adhesion, migration, and proliferation of various
cell types.22 Chemotaxis can be triggered in cells
that don’t have the glycosyl-phosphatidylinositol-
anchored receptor by fragments of the suPaR protein.
In addition to fibrinolysis, the uPA/uPAR system may
be able to change a number of stages in the inflamma-
tory cascade, which could affect how inflammation
and immune responses develop. These functions of
the uPA/suPAR system probably show up at sites

of vascular disease, like the atherosclerotic plaque,
where these parts may be turned up.9

This study examined Wint5a levels in patients with
HF and found that they were significantly elevated.
Embryonic development and tissue homeostasis are
dependent on the WINT5 signalling pathway. The
abnormal activation of this pathway has been linked
to numerous diseases, including cardiovascular and
renal disorders.23 WNT5A has been associated with
cardiac remodelling processes such as fibrosis, hy-
pertrophy, and inflammation. Its dysregulation may
contribute to the detrimental cardiac remodelling
seen in heart disease.24 Wint5a has a role in the
regulation of vascular smooth muscle cell function
and the development of endothelial dysfunction. The
association between its expression and the develop-
ment of atherosclerosis and vascular calcification the
involvement of Wint5a signalling in the stimulation
of fibroblasts and the deposition of extracellular ma-
trix has been suggested in the context of renal fibrosis.
This mechanism has a role in the development of
chronic renal disease.25 Wint5a’s inflammation has
an impact on renal health. It may contribute to re-
nal disease inflammation. The complex relationship
between cardiac and renal health may entail Wint5a
signalling. Dysregulated Wint5a may worsen car-
diorenal syndrome by affecting cardiac remodelling
and RD. Wint5a may be a cardiorenal impairment
biomarker. Greater levels in renally impaired HF pa-
tients may indicate a greater risk of unfavourable
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Table 2. ANOVA test of studied group.

Parameters M ± SD P value (sig ≤ 0.05)

G1 G2 G3 G1 Vs G2 G1 Vs G3 G2 Vs G3

Marker of Heart Failure
BNP, (ng/ml) 0.36 ± 0.11 0.27 ± 0.04 0.28 ± 0.05 <0.001 <0.001 0.93
uPA, (ng/ml) 0.17 ± 0.06 0.2 ± 0.07 0.19 ± 0.06 0.01 0.03 0.61
Wint5a, (ng/ml) 0.39 ± 0.09 0.43 ± 0.08 0.39 ± 0.10 0.01 0.8 0.02

Enzymes
CK (U/L) 20.92 ± 2.93 28.29 ± 14.44 11.58 ± 4.19 <0.001 <0.001 <0.001
LDH (U/L) 458.31 ± 188.98 228.67 ± 111.04 148.24 ± 25.43 <0.001 <0.001 0.002
AST (U/L) 43.55 ± 16.06 28.71 ± 9.07 28.88 ± 9.56 <0.001 <0.001 0.94

Parameters
RBG (mg/dl) 87.21 ± 12.21 214 ± 85.76 94.62 ± 11.54 0.42 <0.001 <0.001
K (mmole/l) 4.81 ± 0.93 4.19 ± 0.94 4.07 ± 0.55 <0.001 <0.001 0.49
Ca (mg/dl) 9.23 ± 1.44 8.97 ± 1.28 9.26 ± 2.70 0.27 0.89 0.22
CRP (mg/dl) 33.65 ± 12.91 10.59 ± 4.60 1.33 ± 0.39 <0.001 <0.001 <0.001
Troponin (ng/l) 8.33 ± 3.16 7.29 ± 3.38 0.82 ± 0.32 0.05 <0.001 <0.001

Lipid Profile
Cholesterol (mg/dl) 180.61 ± 75.72 177.35 ± 60.86 172.96 ± 17.96 0.77 0.5 0.7
TG (mg/dl) 235 ± 102.19 194.41 ± 84.82 112.14 ± 35.14 0.7 <0.001 <0.001
HDL (mg/dl) 45.96 ± 10.93 45.78 ± 10.02 48.56 ± 6.17 0.92 0.16 0.14
LDL (mg/dl) 96.34 ± 35.45 92.16 ± 40.46 106.26 ± 17.98 0.52 0.13 0.03
VLDL (mg/dl) 40.66 ± 17.14 38.88 ± 15.22 18.14 ± 7.7 0.52 <0.001 <0.001

Renal Function Test:
Urea (mg/dl) 110.47 ± 43.69 33.1 ± 7.28 28.56 ± 5.94 <0.001 <0.001 0.38
Creatinine (mg/dl) 2.22 ± 0.76 0.85 ± 0.23 0.67 ± 0.14 <0.001 <0.001 0.05

G1: HF Patients without RD G2: HF Patients with RD G3: Control group

outcomes. Targeting Wint5a signalling may help RD
heart patients. This pathway modulation may re-
duce cardiac remodelling, vascular problems, and
renal fibrosis. Complex interactions and feedback
mechanisms characterize the non-canonical Wint5a
pathway. Understanding this complexity is essential
to developing targeted medicines without unwanted
side effects.26

Table 2 shows a comparison between all parameters
in studied group by using ANOVA test, Fig. 1 shows

the comparison of BNP, uPa, and Wint5a in patients
and control.

Regarding to ROC curves in Table 3 and Figs. 2
and 3 BNP and Wint5a are considering a good
diagnostic marker for HF patients according to AUC
0.901 and 0.918 respectively. Our findings are in
agreement with Hanan et al.27 who revealed in their
study that levels of cardiac biomarkers NT-proBNP
raise in patients with cardiovascular disease
(CVD).

Fig. 1. BNP, uPa, and Wint5a comparison by ANOVA.



BAGHDAD SCIENCE JOURNAL 2025;22(9):2875–2885 2879

Table 3. Receiver operating characteristics (ROC) of biochemical parameters in studied group.

Asymptotic 95% Confidence Interval

Parameters AUC Sensitivity (%) Specificity (%) Cut-off Value Lower Bound Upper Bound P value

Marker of Heart Failure
BNP, pg/ml 90.1 85 98 0.36 0.85 0.94 <0.0001
uPA, pg/ml 38.3 20.2 88.9 0.44 0.290 0.476 0.02
WINT5A, pg/ml 91.8 80 90.1 0.54 0.877 0.959 <0.0001

Enzymes
CK (U/L) 95.6 98 96.7 26 0.945 0.996 <0.0001
LDH (U/L) 88.5 98 95 280 0.819 0.935 <0.0001
AST (U/L) 79.6 80 60 43 0.521 0.709 0.022

Parameters
RBG (mg/dl) 99 95.6 97 187 0.997 1 <0.0001
K (mmole/l) 60.7 45.5 87.2 4.5 0.517 0.697 0.034
Ca (mg/dl) 41.7 87.5 48.5 8.2 0.325 0.509 0.099
CRP (mg/dl) 96.7 82 92.3 41.9 0.943 0.992 <0.0001
Troponin (ng/l) 85.9 98.4 91.7 14 0.801 0.916 <0.0001

Lipid Profile
Cholesterol (mg/dl) 90.1 92.4 96 253 0.852 0.949 <0.0001
TG (mg/dl) 94.8 86 91 231 0.907 0.99 <0.0001
HDL (mg/dl) 42.1 82.4 86 47 0.331 0.511 0.115
LDL (mg/dl) 98.8 99 92 124 0.320 0.499 0.07
VLDL (mg/dl) 85.6 68 88 28.2 0.794 0.918 <0.0001

Renal Function Test:
Urea (mg/dl) 82.3 87.9 91.2 62 0.758 0.887 <0.0001
Creatinine (mg/dl) 85.5 95.1 84 1.4 0.797 0.913 <0.0001
Uric Acid (mg/dl) 89.7 76 67.3 6.7 0.83 0.935 <0.0001

Fig. 2. ROC curve for evaluation of BNP in patients with HF.

Fig. 3. ROC curve for evaluation of Wint5a in patients with HF.
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Table 4. Pearson’s correlation of BNP, uPa, Wint5a with other parameters.

Marker of Heart Failure

Parameters BNP uPa Wint5a

Cardiac Enzymes
BNP R 1 –0.04 0.35

P - 0.602 <0.001
uPa R –0.04 1 –0.06

P 0.602 - 0.453
Wint5a R 0.35 –0.06 1

P <0.001 0.453 -
CK R 0.56 –0.13 0.61

p <0.001 0.119 <0.001
LDH R 0.56 –0.1 0.62

p <0.001 0.238 <0.001
AST R 0.33 –0.12 0.27

p <0.001 0.139 0.001
Variable Parameters

RBG R 0.48 –0.14 0.59
P <0.001 0.098 <0.001

K R 0.18 0.02 0.11
P 0.026 0.831 0.186

Ca R –0.04 –0.02 –0.07
P 0.668 0.842 –0.382

CRP R 0.56 –0.12 0.64
P <0.001 0.154 <0.001

Troponin R 0.57 –0.11 0.59
P <0.001 0.163 <0.001

Lipid Profile
Cholesterol R 0.52 –0.08 0.61

P <0.001 0.359 <0.001
TG R 0.55 –0.12 0.61

P <0.001 0.129 <0.001
HDL R –0.19 –0.04 0.03

P 0.018 0.609 0.693
LDL R 0.56 –0.14 0.53

P <0.001 0.098 <0.001
VLDL R 0.32 –0.01 0.26

P <0.001 0.925 0.001
Renal Function

Urea R 0.47 –0.03 0.46
P <0.001 0.697 <0.001

Creatinine R 0.45 –0.11 0.28
p <0.001 0.175 <0.001

Uric Acid r 0.41 –0.2 0.37
p <0.001 0.013 <0.001

Table 4 shows Pearson’s correlations between BNP,
uPA and Wint5a and other parameters, we found
significant positive correlation between BNP and
Wint5a, our patients have diabetes and RD that’s
mean increment of Wint5a explained by the impor-
tant role in the presence of T2DM and chronic kidney
complications.25

Creatine kinase, lactate dehydrogenase, and
aspartate dehydrogenase in HF patients

This research demonstrated a substantial increase
in creatine kinase (CK), which is similar to Lizzy M
et al.28 The increase in CK may imply more muscle

injury in elderly persons.28 Creatine kinase (CK) plays
a pivotal role in the diagnosis and treatment of heart
failure (HF), and its raised levels have been linked to
the progression of the disease and heightened death
rates. Nevertheless, it is crucial to acknowledge that
the levels of CK may also be increased in alternative
medical disorders, including renal failure, rhabdomy-
olysis, and hypothyroidism,29 in the current study we
noted that patients with both HF and RD have higher
levels of CK than patients have only HF as shown in
Table 2.

Lactate dehydrogenase (LDH) serves as a cytoplas-
mic enzyme diagnostic for myocardial damage.30

The presence of elevated amounts of LDH has been
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documented in several cardiac illnesses, as seen in
Table 2 Specifically, the G1 group exhibits greater
LDH levels, and these patients are diagnosed with
both heart failure (HF) and respiratory distress (RD).
The observed increase in blood LDH levels resulting
from organ damage may be attributed to substantial
cellular demise, leading to the loss of cytoplasmic
content. Diseases such as sudden myocardial infarc-
tion, anemia, pulmonary embolism, hepatitis, and
acute renal failure are among the potential causes
of tissue damage.31 Our findings are consistent with
other research that has shown a positive association
between increased LDH levels and worse outcomes
in individuals diagnosed with acute decompensated
heart failure, acute aortic syndromes, and acute aortic
dissection.32

In this study there was increase of AST levels in HF
patients as shown in Table 2 but it is non-significant,
in previous studies by Eman S. Mahmood and Luay A.
Al-Helaly evaluated AST in animal model. Decrease in
the level of AST may be the patients treated with drug
that effect on AST levels also there was association
between AST and the risk for CVD or mortality are
mostly hypothetical.33

Diabetes in HF patients

Individuals diagnosed with heart failure (HF) are
more susceptible to the development of diabetes mel-
litus;34 the coexistence of diabetes in individuals
diagnosed with heart failure has been shown to be
linked with elevated rates of hospitalization, cardio-
vascular morbidity, and death. Moreover, patients
with heart failure are more likely to acquire diabetes,
thereby increasing their susceptibility to this condi-
tion.35 In our investigation, all participants exhibit
diabetes, a condition in which both heart failure (HF)
and renal dysfunction (RD) often co-occur.36

Potassium, calcium, troponin, c-reactive protein in
studied groups

Patients with heart failure (HF) should be wor-
ried about hyperkalemia, and there may be a link
between the use of angiotensin-converting enzyme
inhibitors (ACEIs) and angiotensin receptor blockers
(ARBs) and an increased risk of hyperkalemia.37 The
K levels of our patients exhibit a notable disparity
when compared to the control group, as seen in
Table 1 Elevated levels of potassium have the po-
tential to cause arrhythmias that pose a significant
risk to an individual’s life, particularly in individu-
als with reduced heart function.38 Previous studies
have shown a significant association between hy-
perkalemia and adverse outcomes in individuals

with heart failure (HF), such as heightened rates
of hospitalization and death.39 The monitoring and
regulation of potassium levels play a critical role in
the treatment of heart failure (HF) in order to max-
imize the advantages of medicine while minimizing
the dangers associated with hyperkalemia (elevated
potassium levels).40

Calcium is of utmost importance in facilitating the
contraction of heart muscle and the transmission of
electrical signals.41 Disruptions in calcium manage-
ment may manifest in heart failure patients, hence
impacting the myocardium’s contractile function.42

Several investigations have shown that the presence
of aberrant calcium handling in heart failure might
potentially contribute to the deterioration of cardiac
function and the occurrence of arrhythmias.43 Nev-
ertheless, the precise processes and the significance
of calcium in the context of heart failure remain
subjects of ongoing investigation. Calcium channel
blockers and other pharmaceutical agents that specif-
ically target calcium channels are sometimes used in
the treatment of heart failure.44

C-reactive protein (CRP) is a biomarker of inflam-
mation that has been linked to the development and
progression of heart failure (HF).45 Elevated levels
of C-reactive protein (CRP) in individuals with heart
failure (HF) often signify heightened inflammation
within the cardiovascular system.46 Elevated levels of
C-reactive protein (CRP) have been associated with
unfavorable outcomes in heart failure (HF), such as
heightened rates of hospitalization and an increased
risk of death.47 Monitoring CRP levels can provide
valuable insight into the inflammatory status of pa-
tients with heart failure and may aid in treatment
decision-making.48

Troponin serves as a cardiac biomarker that is used
for the purposes of diagnosing and evaluating cardiac
injury.49 Elevated levels of troponin in individuals
with heart failure (HF) often signify cardiac stress
or damage, since the myocardium is impaired in the
context of HF.50 The elevation of troponin is often
seen in acute diseases such as heart attacks. How-
ever, studies have shown that even slight elevations
in troponin levels among patients with heart failure
are correlated with worse outcomes.51

Lipid profile in HF patients

Lipids are an essential component for individ-
uals with heart failure (HF) due to the crucial
involvement of fatty acids (FA) in maintaining cel-
lular membranes, regulating gene expression, and
exhibiting anti-inflammatory characteristics.52 The
maintenance of the heart’s structural and functional
integrity heavily relies on lipid metabolism. Cardiac
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myocyte plays a vital role in this process by coor-
dinating the management of fatty acid absorption,
beta-oxidation, and mitochondrial oxidative phos-
phorylation, which are all critical for the synthesis
of ATP in the heart. Prior research has shown that
the heart mostly generates adenosine triphosphate
(ATP) via metabolizing fatty acids, which accounts
for around 40–60% of ATP generation.53 Triglyceride
(TG) serves as a fundamental provider of necessary
fatty acids for the production of myocardial ATP, and
the regulation of TG metabolism plays a crucial role
in governing myocardial lipid metabolism. Further-
more, an excessive buildup of lipids in the cardiac
tissue might interfere with the regular communi-
cation between cells, resulting in programmed cell
death, enlargement of the heart muscle, and impaired
cardiac function.54 The malfunction of mitochondrial
substrate oxidation and respiration, excessive lipid
buildup, and heart failure are consequences of cardiac
pressure overload.55

The complex interplay between renal function and
cardiac disease has attracted considerable interest
within the medical field. The kidneys and the heart
exhibit a strong interconnection, wherein impairment
in one organ often impacts the functioning of the
other. This article examines the complex role of renal
function in the context of cardiac disease, emphasiz-
ing the reciprocal influence and clinical significance
of this association. Renal failure has the potential to
cause compromised control of salt and water, lead-
ing to the accumulation of fluid in the body.56 The
presence of excessive fluid in the body is a con-
tributing factor to the elevation of blood pressure,
which is recognized as a significant risk factor for the
development of heart disease.57 Hypertension exerts
pressure on the heart by augmenting its workload and
facilitating the remodelling of cardiac tissues, which
may result in the development of diseases such as left
ventricular hypertrophy and heart failure.58

As renal function deteriorates, there is a progres-
sive buildup of uremic toxins in the circulation. The
presence of these toxins is associated with endothe-
lial dysfunction, oxidative stress, and inflammation,
all of which have a role in the pathogenesis and
advancement of atherosclerosis and coronary artery
disease. Uremic toxins have the potential to cause
direct harm to cardiac myocytes, resulting in com-
promised contractility and heightened vulnerability
to arrhythmias.59 The coexistence of acute kidney
injury (AKI) and chronic kidney disease (CKD) is of-
ten seen in conjunction with cardiovascular illness.
Acute kidney injury (AKI) has the potential to initiate
cardiac events, but chronic kidney disease (CKD) is
a robust and autonomous indicator of unfavorable
cardiovascular outcomes. Both illnesses exhibit over-
lapping risk factors and pathophysiological pathways,

highlighting the interconnectedness of renal and
heart health.60

Conclusion

In HF patients, BNP serves as a valuable biomarker
with diagnostic and prognostic significance. Combin-
ing BNP measurements with clinical assessment and
additional biomarkers can enhance the evaluation of
heart and renal health, ultimately guiding treatment
strategies and improving patient outcomes. For the
uPA, the utilization of urokinase in HF patients with
RD requires a cautious and individualized approach.
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تقييم الببتيد الدماغي الناتريوتريك و منشط البلازمينوجين 

يوروكيناز والونكلس من النوع الخامس في المرضى العراقيين 

 الذين يعانون من قصور القلب

 رغده فارس سالم1، وفاء راجي الفتلاوي1، محمد عبد الجبار الدباغ2

 1 فرع الكيمياء التطبيقية، قسم العلوم التطبيقية، الجامعة التكنولوجية، بغداد، العراق.

 2 وحدة البحوث الطبية، كليه الطب، جامعه النهرين، بغداد ، العراق.

 المستخلص

في مرضى قصور القلب الذين يعانون من ضعف وظائف الكلى ، يكون الببتيد الدماغي الناتريورتك بمثابة علامة حيوية 

تؤثر على مستويات ال الببتيد الدماغي الناتريورتك، وان فهم  ذات أهمية تشخيصية وإنذارية. بينما ضعف وضائف الكلى

العلاقه بين الضغط على القلب وضعف وظائف الكلى والحاله السريريه امر بالغ الاهميه في دقه التفسير .إن الجمع بين 

تقييم صحة القلب قياسات الببتيد الدماغي الناتريورتك والتقييم السريري والمؤشرات الحيوية الإخرى يمكن أن تعزز 

والكلى، مما يؤدي في النهاية إلى توجيه استراتيجيات العلاج وتحسين نتائج المرضى. بالنسبة لليوروكاينيز، فإن استخدام 

اليوروكيناز في مرضى قصور القلب المصابين بأمراض الكلى يتطلب اتباع نهج حذر وفردي.في حين أن خاصيه التخثر 

قلب والأوعية الدموية، فإن التعقيد المشترك  بين وظائف الكلى، ومخاطر النزيف، وتوازن تعمل على معالجة مضاعفات ال

السوائل يتطلب تقييمًا دقيقاً وإدارة بحذر. يعد النهج المتكامل والمراقبه باستمرار والتواصل المنتظم بين المتخصصين أمرًا 

من المرضى. ودورالونكلس في مرضى القلب الذين يعانون ضرورياً للتغلب على تعقيدات علاج اليوروكيناز في هذه الفئة 

من خلل في وظائف الكلى يدل على إمكاناته كرابط قوي يربط بين صحة القلب والأوعية الدموية والكلى. وفي حين لا تزال 

تعالج هناك تحديات، ان فهمنا ومعرفه مسار الإشارات  قد يمهد الطريق لأدوات تشخيصية مبتكرة وتداخلات علاجية 

 التداخل  المعقد بين مضاعفات القلب والكلى.
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