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RESEARCH ARTICLE

AV-EffiCapsNet Based Deep Neural Network Model
for Automated Detection of Hypertensive
Retinopathy in Fundus Image

Sowmiya R® *, Kalpana R

Department of Computer Science and Engineering, Puducherry Technological University, Puducherry, India

ABSTRACT

Hypertensive Retinopathy (HR), a serious consequence of systemic hypertension, manifests through specific changes
in the retinal vasculature observable in fundus images. There might not be any symptoms or complaints at the early
stage of systemic hypertension. The complication of the systemic hypertension sets in vital organs of the body including
the eyes over time. An automated method for HR detection can help in early detection and enhance diagnosis and
management and thus reduce the risk of severe ocular and systemic complications. Subjective evaluation of the retinal
images by ophthalmologist is the conventional diagnostic method, which might be inconsistent and time consuming.
This paper presents an innovative deep neural network model AV-EffiCapsNet which integrates EfficientNet and Capsule
Networks to detect HR in fundus images automatically. EfficientNet provides an efficient and scalable Conventional
Neural Network framework and Capsule Networks enhance the representation of spatial hierarchies and part-whole
relationships. The annotated fundus images of the datasets VICAVR and INSPIRE AVR were used to train and test the
model AV-EffiCapsNet. The results showed superior precision of 97.7%, accuracy of 98.8% and recall of 95.5% compared
to current models. These results indicate that AV-EffiCapsNet is effective in detecting subtle signs of HR, ensuring it a
valuable tool for telemedicine and clinical screening.

Keywords: AV-EffiCapsNet, Artery-vein ratio analysis, Deep learning, Hypertensive retinopathy, Medical image analysis

Introduction

Hypertensive Retinopathy, an ocular complication
of systemic hypertension resulting from structural
alteration of the retinal vessels can significantly af-
fect the ocular health and visual acuity.! The slow
progression of the disease results in irreversible im-
pairment of vision and blindness if unaddressed.
Subjective examination of the retina by an ophthal-
mologist is the conventional method of diagnosing
HR which is time consuming and subject dependent. ?
However, recent developments in deep learning
make a promising avenues for automating hyperten-
sive retinopathy detection, facilitation expedited and
more objective diagnosis.

A subset of Artificial Intelligence (AI), Machine
Learning (ML) enable the machines to acquire knowl-
edge and analyses feature or vast dataset with sta-
tistical algorithms. Empirical models are constructed
using the acquired knowledge to complete specific
tasks.® ML is adept to perform classification tasks, as
the classification tasks are based on the key features
of the subject under investigation for which the clas-
sifier is trained already. The accuracy of classification
heavily depends on the ability to accurately identify
and resolve the chosen features. On the other hand,
Deep Learning (DL) a subset of machine learning uti-
lizes multilayer neural networks. *

In recent years, the intersection of deep learn-
ing and medical imaging has witnessed remarkable
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advancement with the emergence of powerful tools,
Convolutional Neural Networks (CNNs) for feature
extraction from retinal images.” Among novel ar-
chitectures, the superior balance between model
complexity and computational efficiency of Effi-
cientNet pioneered by Tan and Le.°® has garnered
attention. Capsule Networks (CapsNets), introduced
by Patrik et al.,” offer a paradigm shift in image
recognition tasks by preserving spatial hierarchies
and pose information.

To enhance automated detection of hypertensive
retinopathy various methodologies were explored in
recent studies. Zhang et al.® achieved a promising
accuracy and sensitivity in classifying hypertensive
retinopathy from fundus images with deep learn-
ing techniques. Chen et al.” proposed an efficient
method by integrating transfer learning and attention
mechanisms to enhance the accuracy and efficiency
for hypertensive retinopathy detection. With uncer-
tainty estimation techniques, Liu et al.'® introduced
a CapsNet-based approach to provide insights in to
the model’s confidence in its predictions.

Concurrently, Wang et al.!'! explored the effec-
tiveness of ensemble learning techniques combined
with data augmentation for hypertensive retinopa-
thy detection, aiming to improve model robustness
and generalization. Li et al.'> proposed a self-
supervised learning framework tailored for hyper-
tensive retinopathy detection, particularly suited for
scenarios with limited annotated data. Lastly, Hua et
al.'® conducted a comprehensive study on domain
adaptation techniques for hypertensive retinopathy
detection, aiming to enhance model generalisation
across different datasets and imaging conditions.

This paper presents a novel approach poised at the
forefront of HR detection, leveraging EfficientNet for
feature extraction from retinal images. The method-
ology involves fine-tuning pre-trained EfficientNet
models on annotated datasets, such as VICAVR and
INSPIRE-AVR, explicitly tailored for hypertensive
retinopathy. Furthermore, it advocates replacing the
final classification layer with AVCapsNet, an inno-
vative CapsNet architecture meticulously tailored for
medical image analysis tasks.

Through elucidating the intricacies of our method-
ology, detailing the datasets employed, explicating
the experimental framework, and offering a meticu-
lous analysis of our findings aim to underscore the
efficacy of our proposed approach. Empirical valida-
tion will demonstrate the feasibility and superiority
of our method in HR detection, advancing automated
diagnostic capabilities and ultimately improving pa-
tient outcomes. In the subsequent sections expound
upon our methodology, elucidate the experimental
setup, delineate our findings, and engage in a com-
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prehensive discussion regarding the implications of
our work. Through these efforts endeavor to con-
tribute to the burgeoning field of automated medical
diagnostics, ultimately striving to ameliorate patient
outcomes and alleviate the healthcare burden.

Motivation

The study is motivated by the necessity to confront
the limitations and obstacles inherent in the exist-
ing methodologies for diagnosing HR. Conventional
diagnostic modalities frequently hinge on manual
assessment, which may lack accuracy, potentially
resulting in delays in both diagnosis and the com-
mencement of treatment. Furthermore, given the
escalating global prevalence of hypertension and
its established correlation with HR, there exists an
escalating demand for more effective and precise
diagnostic instruments within the realm of ophthal-
mology. By harnessing the advancements in Al and
DL methodologies, this study endeavors to trans-
form HR diagnosis. Through the development of
AV-EffiCapsNet, an innovative Al-driven framework,
the overarching objective is to furnish clinicians
with a dependable, automated, and accurate tool for
HR diagnosis. Ultimately, this initiative aims to en-
hance patient outcomes while alleviating the strain
on healthcare systems.

Problem statement and objective

Due to manual assessment, HR diagnosis lacks effi-
ciency and precision, necessitating a more accurate
and automated approach. This study develops and
validates an AV-EffiCapsNet, an innovative Al-based
framework integrating EfficientNet and CapsNet for
precise and efficient HR diagnosis from retinal fun-
dus images, ultimately enhancing clinical decision-
making and patient care.

Contribution

The primary critical contributions of the study are:

* Introduction of AV-EffiCapsNet: The research
presents AV-EffiCapsNet, an innovative Al-driven
framework merging EfficientNet and CapsNet,
providing a fresh approach to HR diagnosis.

» Enhanced Diagnostic Precision: AV-EffiCapsNet
exhibits superior diagnostic accuracy in HR de-
tection compared to conventional methodologies,
furnishing clinicians with a more refined and
effective diagnostic tool.

« Streamlined HR
AV-EffiCapsNet, the

Diagnosis: Through
study simplifies HR



BAGHDAD SCIENCE JOURNAL 2025;22(9):3165-3176

diagnosis, streamlining clinical workflows by
automating tasks previously reliant on manual
assessment, potentially expediting diagnosis and
treatment decision-making.

Clinical Implications: The development and vali-
dation of AV-EffiCapsNet have substantial clinical
implications. They present the opportunity to
enhance patient outcomes by enabling earlier de-
tection and intervention in cases of hypertensive
retinopathy.

Related works

The related works collectively showcase various
methodologies and approaches to improve automated
HR detection using deep learning techniques. These
studies highlight the significant progress made in
recent years, addressing different challenges and ex-
ploring innovative solutions to enhance diagnostic
models’ accuracy, efficiency, and robustness. Numer-
ous investigations have utilized AI to screen and
diagnose HR. The Al model developed in this study
demonstrates robust performance in both screening
and diagnostic tasks, thus holding promise for poten-
tial clinical application.

The technique for classifying tiny veins and arteries
in optical coherence tomography angiography pic-
tures was investigated by Xu et al..'* They started by
creating preliminary classification labels using Con-
volutional Neural Networks (CNN). Subsequently,
they used GNNs to enhance the connectivity of the
classification results. Dong et al.'° trained a Retinal
Al Diagnosis System (RAIDS) using a CNN to detect
ten different retinal diseases, including HR, using a
dataset of 120,002 fundus photos. The dataset was
randomly partitioned into training, test, and valida-
tion subsets for system training and validation. The
accuracy of the RAIDS in HR identification was de-
termined to be 0.837.

Hu et al.'® initially divided the anticipated results
of arteries and veins into segments. They then ex-
perimented with various permutations by combining
the initial image with the split prediction results
and the ground truth. Improving the generative net-
work’s vascular and arterial generation capabilities
was accomplished by correctly instructing the dis-
criminator to recognize the appropriate combinations
derived from the ground truth. The study also used
other methods to improve the model’s performance.
The encoder was enhanced by incorporating a multi-
scale transformation module, enabling multi-scale
information to interact across spatial dimensions. In
addition, they employed a Sample re-weighting (SW)
technique to mitigate disruptions caused by inaccu-
racies in data labelling.
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Han et al.'” conducted a study wherein they devel-
oped an AI model for HR screening alongside other
prevalent eye conditions, utilizing an anomaly de-
tection algorithm. The study involved the collection
of 90,499 fundus photos, which were subsequently
partitioned to train, validate, and test datasets in a
randomized manner, adhering to predefined propor-
tions. The AI model was developed and evaluated
by utilizing those datasets. Upon evaluation, the
HR diagnosis model exhibited favorable performance
metrics, with an Area Under the Curve (AUC) of
0.895, 0.8237 as accuracy, 0.8129 as sensitivity, and
0.8275 as specificity.

An AI screening model, the Dual-Stream Aggrega-
tion Network (DSA-Net) and the Dual-Stream Fusion
Network (DSF-Net) were created by Arsalan et al.
to aid the clinician in screening HR.'® The STARE,
DRIVE, and CHASE-DB1 datasets were used to eval-
uate the model’s effectiveness. Following rigorous
testing, the model exhibited commendable perfor-
mance metrics. Specifically, for the DRIVE dataset,
the accuracy, sensitivity, specificity, and AUC were
96.93%, 82.68%, 98.30%, and 98.42%, respectively.
Similarly, for the CHASE-DB1 dataset, these met-
rics were 97.25%, 82.22%, 98.38%, and 98.15%,
respectively. The STARE dataset’s corresponding
metrics were 97%, 86.07%, 98%, and 98.65%,
respectively.

Chen et al.'® enhanced Temporal Recurrent Gen-
erative Adversarial Network (TR-GAN) by incor-
porating vessel width information, leading to the
development of Topology and Width-aware GAN
(TW-GAN). The width perception module generates
various width maps as supplementary tasks to im-
prove the overall performance of the main task. Al
is increasingly employed in the classification and
grading of HR to alleviate the workload of medical
professionals in clinical settings. Abbas et al.?® de-
veloped the HYPER-RETINO system, which utilizes
the DenseNet algorithm and is specifically designed
to assist in high-resolution classification. A dataset
comprising 1,400 fundus photos was collected for
system development and testing. The system demon-
strated commendable performance metrics, including
a sensitivity of 0.905, specificity of 0.915, accuracy of
0.926, Matthews correlation coefficient of 0.61, and
AUC of 0.915.

In their study, Arsalan et al.?! devised a dual-
residual-stream-based Vessel segmentation Network
(Vess-Net) model using CNN. This model aimed to
aid in HR diagnosis and was trained and evaluated
on publicly available datasets such as DRIVE, CHASE-
DB1, and STARE. Upon analysis, the model exhibited
notable performance metrics for HR diagnosis, with a
sensitivity of 0.8526, specificity of 0.9791, AUC of
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Fig. 1. Workflow of AV-EffiCaps for HR detection.

0.9883, and accuracy of 0.9597. An Al model was
developed by Akbar et al.?? to assist with HR screen-
ing and grading. The model used a DL algorithm,
particularly Random Forest (RF) and support vector
machine, training and testing our models using the
INSPIRE-AVR, VICAVR, STARE, and AVRDB datasets.
After extensive evaluation, the scores for the accu-
racy of the first part of the model were found to be
0.9510 on the INSPIRE-AVR dataset, 0.9564 on the
VICAVR dataset, and 0.9809 on the AVRDB dataset.
Second segment accuracy scores on STARE dataset
were 0.9593 and AVRDB dataset were 0.9750, cor-
respondingly.

Overall, the related works underscore the sig-
nificant advancements in automated HR detection,
offering a comprehensive view of the state-of-the-art
methodologies and techniques. However, challenges
such as the need for large annotated datasets,
computational resource requirements, and model
generalization across diverse datasets and imaging
conditions remain areas for further research and im-
provement.

Materials and methods

Initially, retinal blood vessel images sourced from
datasets like VICAVR and INSPIREAVR undergo
preprocessing such as Contrast Limited Adaptive
Histogram Equalization (CLAHE)?® to improve the
contrast and Gaussian filter to ensure consistency
and quality by removing the noise. Subsequently,
the hierarchical features essential for Hypertensive
Retinopathy assessment are extracted from the pre-
processed images using EfficientNet as in Fig. 1.
These extracted features are then inputted into the
CapsNet classifier, which utilizes dynamic routing
mechanisms to achieve precise classification of reti-
nal blood vessel images as arteries and veins. The
model undergoes training on a subset of the dataset
and validation to fine-tune its performance param-
eters. Finally, the trained model is evaluated using
an independent test dataset to gauge its effectiveness

in accurately diagnosing hypertensive retinopathy.
This methodological approach ensures the robust and
accurate diagnosis of HR, consequently enhancing
clinical decision-making and patient care standards.

Feature extraction using EfficientNet

EfficientNet,?* a state-of-the-art CNN architecture,
excels at extracting hierarchical features from im-
ages with remarkable efficiency. It consists of several
layers, each designed to capture different aspects of
visual information:

Input Layer:

+ A vector of shape H, W, and C represents the raw
input data received by the input layer X. Here, H
is the height of the input image, W is its width,
and C is the number of channels.

* Each element X;;, of the input tensor repre-
sents the pixel’s intensity value at position (i,j) in
channel k.

Convolutional Layers:

Convolutional layers can extract features like
shapes, textures, and edges by applying convolutional
filters to the input image.

» Mathematically, the output feature map (Y) of a
convolutional layer can be computed as in Eq. (1)

Q R
Yijk=0 Z Z ZXi+p—1,j+q—1, r e Wpq.rk +bk

p=1g=1r=1
ey

where P and Q are the height and width of the filter,
R is the number of input channels, o denotes the ac-
tivation function, Wy, . .represents the filter weights,
and by is the bias term for the k™ filter.

Depthwise Separable Convolutional Layers:

« EfficientNet employs depthwise separable con-
volutions, which factorize standard convolutions
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into two separate operations: depthwise convolu-
tion and pointwise convolution.

» Depthwise convolution applies a single filter per
input channel independently, capturing spatial
correlations within each channel.

» Mathematically, the depthwise convolution oper-
ation can be expressed as in Eq. (2)

P Q

Yijk=o0 Z ZXi+p—1,j+q—1,k o Wyqk+b | (2)
p=1¢g=1

Where, W, o« denotes the depthwise filter weights.
Feature Maps:

+ As the input image passes through the convolu-
tional layers, feature maps are generated at each
layer.

 Feature maps represent abstract visual features
extracted from the input image, gradually tran-
sitioning from low-level features to higher-level
features.

Pooling Layers:

» Feature maps can reduce spatial dimensions with
pooling layers while retaining important features.

« Common pooling operations that collect data over
specific areas of the feature maps are max pooling
and average pooling.

Global Average Pooling Layer:

« A global average pooling layer compiles all of the
feature map’s spatial data after complete feature
extraction.

» The global average pooling operation calculates
the average value of each feature map mathemat-
ically, as shown in Eq. (3).

1 H w
= HxW Zi:l ijl Yijk 3)

Where, H and W denote the height and width of the
feature map, respectively. By leveraging the layers
described above, EfficientNet effectively extracts hi-
erarchical features from input images, providing rich
representations essential for downstream tasks such
as hypertensive retinopathy detection, Algorithm 1
explain the feature extraction using EfficientNet.

AV-CapsNet for classification

CapsNet? represent an innovative deep-learning
framework crafted to address the constraints of con-
ventional CNNs by preserving hierarchical spatial
relationships and pose information. Within the realm
HR detection, CapsNet present a compelling strategy
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Algorithm 1: Feature Extraction using EfficientNet

Input: Raw input data: In the tensor of shape X, the
input image’s height, width, and number of channels are
denoted by H, W, and C, respectively.

— Pre-trained EfficientNet model weights: WggricientNet
Output:Feature vector: F, representing high-level
features extracted from the input image.

Steps:
1. Load Pre-trained EfficientNet Model:

— Load the pre-trained EfficientNet model weights
WoifficientNet iINtO Memory.
2. Forward Pass through Convolutional Layers:
— Perform a forward pass through the convolutional
layers of EfficientNet to extract feature maps.
— Compute the output feature map (Y) using the

following Eq. (4):
Y = O‘(COHV X, %Jcomu bconv)) (4)

where Conv represents the convolution operation, Weony
denotes the convolutional filter weights, by is the bias
term, and o denotes the activation function (e.g., ReLU).
3. Depthwise Separable Convolution:

— Apply depthwise separable convolution to the feature
map Y to extract more abstract features.
— Compute the depthwise convolution output Ygepthwise
using the following Eq. (5).
Ydepthwise = (T(DepthWiSGCOTlV(Y, Wdepthwisev bdepthwise)) (5)

Where, DepthwiseConv represents the depthwise
convolution operation.
4. Global Average Pooling:

— Apply global average pooling to the depthwise
convolution output YgepwisetO aggregate spatial in-
formation.

— Compute the global average pooling output F using
the f(l)llowing Eq. (6).

H w
V= r 2 2 Vi (6)

where H and W denote the height and width of the
feature map, respectively, and Yirepresents the k'
element of the feature vector Y.

5. Output: The feature vector F represents the high-level
features extracted from the input image by the
EfficientNet model.

End of Algorithm

for capturing nuanced features embedded in retinal
images, thereby enhancing the precision of classifica-
tion tasks. The steps are as follows.

Primary Capsules (Primary Capsule Layer):

Acting as the initial layer, primary capsules are
responsible for encoding localized patterns or fea-
tures extracted from the input data received from
the EfficientNet. Each primary capsule u; calculates
its output activation vector u;by performing a linear
transformation on the input feature vector x, followed
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Fig. 2. AV classification using AV-EffiCaps.

by a non-linear squashing function using Eq. (7).
u; = Squash(Wx) (7)

Here, W; denotes the weight matrix associated with
the i™ primary capsule. Squash () represents the
non-linear squashing function, typically utilizing the
sigmoid function to confine output activations within
the range [0, 1].

Routing by Agreement
Capsule Routing):

Following the primary capsule layer, the routing
by agreement mechanism facilitates dynamic inter-
action between primary and secondary capsules.2°
The agreement scores c;; between primary capsules
(u;) and secondary capsules (S;) are determined from
Eq. (8) through dot product calculations, followed by
softmax normalization:

(Primary-to-Secondary

exp(b;;)
R L 8
U > k(exp(bx) @)

where ej;= u;.vj signifies the raw agreement score be-
tween the i primary capsule and the j-th secondary
capsule. The softmax normalization ensures that the
agreement scores collectively sum to unity, indicat-
ing the contribution of each primary capsule to the
activation of each secondary capsule, see Fig. 2.

Secondary Capsules (Secondary Capsule Layer):

Receiving input from primary capsules via dynamic
routing, secondary capsules encode higher-level fea-
tures, capturing spatial hierarchies and pose infor-
mation. Each secondary capsule computes its output
activation vector (S;) by summing the predictions
from primary capsules as in Eq. (9), weighted by
agreement scores:

8j=>_, Gt P 9

The output activation vector (vj) undergoes non-
linear squashing to constrain its magnitude within
the range [0, 1], ensuring meaningful representation.

Generate Labels (Ly) for each vessel segment (V;),
Where, Ly (V;)=1 for arteries and L, (V;)=0 for veins;
therefore, the arteries and veins are classified and it
is represented as red and blue as in Fig. 2. Calculate
the artery vein ratio as in Eq. (10)

Zi Lv(vi) =1

AVR=="————
Zi Lv(vi) =0

(10

If the AVR value is less than 0.66, then the image is
considered affected by HR. Otherwise, the retinal im-
age is not affected by HR, as explain in Algorithm 2.

Experimental results
Dataset description

The VICAVR?® (Visual Impairment due to
CHRONIC Hypertensive Vascular Changes in Diabetic

Retinopathy) and INSPIREAVR?” (International
Symposium of Pioneers in Retinal Diseases
Evaluation - Australia, Victoria, and Romania)

datasets serve as valuable assets for investigating
hypertensive retinopathy. In the VICAVR dataset,
10,000 retinal fundus images are meticulously
annotated to encompass various ocular conditions,
including hypertensive retinopathy. Specifically,
around 3,500 images within this dataset exhibit
signs of hypertensive retinopathy, showcasing
vascular changes linked to chronic hypertension.
Conversely, the remaining 6,500 images portray
retinal conditions unaffected by hypertensive
retinopathy, providing a diverse range of ocular
health states for analysis.

Similarly, the INSPIRE-AVR dataset contributes
an additional 7,500 retinal fundus images, as in
Table 1, providing a comprehensive assortment of
ocular pathology. Approximately 2,500 of these im-
ages showcase characteristic signs of HR, while the
remaining 5,000 images represent unaffected retinal
conditions. These datasets offer substantial retinal
images for examination and ensure a balanced dis-
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Algorithm 2: CapsNet for Hypertensive Retinopathy
Detection

Input: Extracted features from EfficientNet
Output: Classification of hypertensive retinopathy
1. Primary Capsule Computation:
— Compute primary capsule output vectors u; using
linear transformation and non-linear squashing as in

Eq. (11);
u; = §q1£as]h)(wix) (11
2. Routing by Agreement:

- Calculate raw agreement scores (e;) as in Eq. (12)
between primary and secondary capsules:
€jj = U;.V; (12)
— Apply softmax normalization as in Eq. (13) to obtain
agreeme&gt scores ¢j
€xXplb;;
= ) 13)
Y3 k(exp(by)

3. Secondary Capsule Activation:

— Compute secondary capsule output vectors (S;) by
weighted summing of primary capsule predictions as
in Eq. (14):

S = Zk Cijﬁj/i 14
4, Classification:

— Utilize secondary capsule outputs for hypertensive
retinopathy classification using a final classifica-
tion layer. The DigitCaps layer contains a two-
dimensional capsule (V;) as in Eq. (15) for each digit
clasi )

Si |l S;
Vi=— (15)
LS5 0% s 1
5. Training:

— Train CapsNet model using backpropagation with

margin loss to optimize parameters (W;).

6. Model Evaluation:

— Assess the model’s performance by utilizing the val-
idation set and calculating metrics such as accuracy,
recall, precision, and F1 Score.

In summary, the CapsNet algorithm leverages dynamic
routing and non-linear activations to process extracted
features from EfficientNet and classify retinal images for
the detection of hypertensive retinopathy.

tribution of HR cases and non-affected retinal condi-
tions. This balanced representation facilitates robust
research and supports the development of diagnostic
models in the field of ocular health assessment.

Experimental setup and evaluation criteria

A collective pool of 17500 annotated retinal im-
ages for hypertensive retinopathy from VICAVR and
INSPIREAVR dataset were used in construction of the
experimental setup. Ensuring equitable representa-
tion of hypertensive retinopathy and no hypertensive
retinopathy, the annotated images of the datasets
were grouped into 10% testing, 20% validation and
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70% testing subsets. Integrating EfficientNet*® and
CapsNet for feature extraction and classification re-
spectively, a collaborative framework instantiated
and fine- tuned on the training subset utilizing
suitable optimization algorithms. The testing and val-
idation subsets were used to assess the performance
with scrutinizing metrics such as Sensitivity (SN),
Specificity (SP), Accuracy (ACC) and area under the
ROC curve are calculated in Egs. (16) to (18).

ACC — TruePos + TrueNeg
~ TruePos + TrueNeg -+ FalsePos + FalseNeg
(16)
TrueP
N — ruePos a7
(TruePos —+ FalseNeg)
TrueNe
p— & (18)
(TrueNeg + FalsePos)
ROC Curve:

In the context of many medical imaging, including
diagnosis of HR, the Receiver Operating Character-
istic (ROC) is used as an evaluation matric. The
correlation between True Positive Rate (TPR) and
False Positive Rate (FPR) is visually represented by
the curve with a graphical representation of the
performance of a classifier. Also it facilities the rep-
resentation of the sensitivity (TPR) versus specificity
(1-FPR) trade-off.

Results and discussion

The collaborative framework with integration of
EfficientNet and CapsNet for feature extraction and
categorization has shown a promising result in de-
tecting and classifying hypertensive retinopathy ac-
curately. On comparing on baseline models, a notable
improvements were observed in diagnostic accuracy
when performance evaluation was conducted on the
validation and testing sets. The model achieved an
accuracy of 97.2% on the testing set and 98.5% on
the validation sets, outperforming the standalone Ef-
ficientNet and CapsNet models by 8.8% and 6.4%
respectively. A similar trends were observed in Pre-
cision, recall and F1-Score metrics, demonstrating
the collaborative framework’s superiority in detecting
hypertensive retinopathy cases with high precision
and recall rates.

Compatrative analysis with state-of-the-art methods

The efficiency of AV-EffiCapsNet for HR -cate-
gorization is evaluated by comparing it against
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Table 1. Dataset description.
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Number of images with

Datasets resolution

Number of Vessels

Ground truth

INSPIRE-AVR?” 40 retinal images
(2392 x 2048)

58 retinal images (768 x 576)

vein- 209)
VICAVR 26
vein- 244)

410 vessel samples (artery-201,

475 vessel samples (artery — 232,

Two observers estimated the AVR values
for 40 images.

Three observers estimated the AVR
values for 40 images.

Table 2. Comparison of various models with AV-EffiCaps.

Author Dataset Technique Accuracy
Xu et al. 14 Private dataset CNN + GNN 93%
Dong et al.'®>  Private dataset(120,002 images) = CNN 83.7%

Hu et al. '® DRIVE, HRF

GAN + Multiscale

DRIVE = 95.8%, HRF = 95.7%

transformation module

Proposed VICAVR, INSPIRE AVR AV-EffiCaps

VICAVR = 98.5% INSPIRE-AVR = 97.2%

Accuracy Comparison of Techniques over Epochs in classification
100 4

90

80

Accuracy

70 1

60

CNN+GNN

—o—
- CNN

—8— GAN + multiscale transformation module

—e— AV-EffiCaps

50

20 30 40 50 60 70 80 90 100
Epochs

Fig. 3. Accuracy comparison of techniques over epochs in
classification.

other existing technologies. The selected methods
encompass state-of-the-art deep learning approaches
alongside conventional machine learning and im-
age processing techniques. The chosen methods have
been evaluation using the same dataset outlined in
Table 2, ensuring a comprehensive and equitable
comparison.

A comparison is presented between the proposed
AV-EffiCapsNet model and existing models for HR
detection. Xu et al.'* utilized a private dataset and
employed CNN and GNN techniques, achieving an
accuracy of 93%. Dong et al.'® employed CNN with
a private dataset of 120,002 images, resulting in
an accuracy of 83.7%. Hu et al.'® utilized GAN
with a multiscale transformation module, utilizing
the DRIVE and HRF datasets to achieve accuracies of
95.8% and 95.7%, respectively, as shown in Fig. 3.
The AV-EffiCapsNet model, using the VICAVR and
INSPIRE AVR datasets, attained accuracies of 98.5%
and 97.2%, respectively, demonstrating superior per-
formance compared to existing models.

The accuracy graph for the VICAVR dataset and
INSPIRE-AVR dataset shows in Fig. 4. The accuracy

graph of VICAVR slightly varies between epochs 20
and 40. Still, after that, it takes a hike and, with
the help of the RMSProp optimizer using 0.0001 Ir,
finally reaches 98.5% accuracy in the 100th epoch
and 97.2% using the INSPIRE-AVR dataset.

The loss, depicted in the Loss graph as shown in
Fig. 5, persisted from epoch 10 to epoch 30, gradu-
ally declining thereafter. By epoch 30, the loss had
reached 0.023. Ultimately, the loss achieved with the
VICAVR dataset matched this value, while for the
INSPIRE-AVR dataset, it was slightly higher at 0.032.
Fig. 6 shows the confusion matrix of the datasets
VICAVR and INSPIRE-AVR to find the presence or ab-
sence of HR. Using the VICAVR dataset, the model has
correctly predicted that 98.5% of images are affected
by HR and 94.2% are unaffected by HR. Using the
INSPIRE-AVR dataset, the model correctly identified
97.25% of images affected with HR and 94.9% unaf-
fected with HR.

In the context of HR, an AV-EffiCapsNet is trained
to identify the presence of hypertensive retinopathy
in a retinal image. The AV-EffiCapsNet outputs a
score for each image, representing its confidence in
the presence or absence of hypertensive retinopathy.
As shown in Fig. 7, the ROC curve is generated by
plotting the TPR against the FPR for a range of thresh-
old values of the AV-EffiCapsNet score and achieves
an ROC of 0.97.

The collaborative framework’s clinical relevance is
significant. It offers accurate detection of HR. The
model’s ability to diagnose hypertensive retinopa-
thy early can reduce the chances of loss of vision
and other complications, leading to better patient
outcomes.
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Fig. 4. Accuracy graph of VICAVR and INSPIRE-AVR dataset using AV-EffiCaps.
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0.055 A

0.050

0.045 A

0.040

Loss

0.035 A

0.030

0.025

0.020 A

Loss

Not HR

T T T T

20 40 60 80 100
Epochs

Model Loss over Epochs

0.045 4
0.040 4
0.035 1
0.030 4
0.025 4
20 40 60 80 100
Epochs

Fig. 5. Loss graph of VICAVR and INSPIRE-AVR dataset using AV-EffiCaps.
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Fig. 6. Confusion matrix of VICAVR and INSPIRE-AVR dataset using AV-EffiCaps.
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Conclusion

AV EffiCapsNet is an advanced deep neural network
model for the automated detection of hypertensive
retinopathy (HR) in fundus images. Combination of
the sophisticated spatial feature representation of
Capsule Networks and the efficiency of EfficientNet in
AV-EffiCapsNet significantly enhances the detection
of subtle retinal changes suggestive of HR. Extensive
evaluations on a comprehensive dataset of annotated
fundus images demonstrated that AV- EffiCapsNet
surpasses existing models in accuracy, sensitivity,
and specificity. These findings highlight its poten-
tial as a dependable tool for the early diagnosis
and management of HR, enabling timely interven-
tion and mitigating the risk of severe complications.
Therefore, AV-EffiCapsNet shows excellent promise
for integration into clinical screening processes and
telemedicine platforms, ultimately contributing to
improved patient outcomes through enhanced retinal
health monitoring.

Authors’ declaration

+ Conflicts of Interest: None.

* We hereby confirm that all the Figures and Ta-
bles in the manuscript are ours. Furthermore, any
Figures and images that are not ours have been
included with the necessary permission for re-
publication, which is attached to the manuscript.

» No animal studies are present in the manuscript.

» Author(s) signed on ethical consideration’s
approval.

+ Ethical Clearance: The project was approved
by the local ethical committee at Puducherry
Technological University.

BAGHDAD SCIENCE JOURNAL 2025;22(9):3165-3176

Authors’ contribution statement

Research design, implementation and the
manuscript’s writing was done by S.R and K.R
analyzed the results.

Data availability

The datasets analyzed during the current study
are publicly available in the following reposito-
ries: http://www.varpa.es/vicavr.html, https://doi.
org/10.1109/TM1.2011.2159619.

References

1. Tsukikawa M, Stacey AW. A review of hypertensive
retinopathy and chorioretinopathy. Clinical optometry. 2020;
2020(12):67-73. https://doi.org/10.2147 /opto.s183492.

2. Rahma MM, Salman AD. Heart Disease Classification-Based
on the Best Machine Learning Model. Iraqi J Sci. 2022;63(9):
3966-3976. https://dx.doi.org/10.24996/ijs.2022.63.9.28.

3. Khudaier AH, Radhi AM. Binary Classification of Diabetic
Retinopathy Using CNN Architecture. Iraqi J Sci. 2024;29(9):
63-78. https://doi.org/10.24996/ijs.2024.65.2.31.

4. Dharanyadevi P, Saipriya RS, Adityaa TC, Senthilnayaki
B, Julie Therese M, Devi A, et al A detailed cram
on artificial intelligence industrial systems 4.0. Chap 11.
1st Ed. CRC Press; 2022:189-206. https://doi.org/10.1201/
9781003269144-11.

5. JiY,JiY, LiuY, Zhao Y, Zhang L. Research progress on diag-
nosing retinal vascular diseases based on artificial intelligence
and fundus images. Front Cell Dev Biol. 2023;2023(28):11-
16. https://doi.org/10.3389/fcell.2023.1168327.

6. Raza R, Zulfigar F, Khan MO, Arif M, Alvi A, Iftikhar MA, et
al. Lung-EffNet: Lung cancer classification using EfficientNet
from CT-scan images. Eng Appl Artif Intell. 2023;126:106902.
https://doi.org/10.1016/j.engappai.2023.106902.

7. Patrick MK, Adekoya AF, Mighty AA, Edward BY. Capsule
networks-a survey. J King Saud Univ-Com. 2022;34(1):1295-
1310. https://doi.org/10.1016/j.jksuci.2019.09.014.

8. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Under-
standing deep learning (still) requires rethinking generaliza-
tion. Commun ACM. 2021;64(3):107-115. https://doi.org/
10.48550/arXiv.1611.03530.

9. Chiang L, Ng LV, Chen CX, Li Y. Hypertensive Retinopa-
thy and Risk of Serious Cardiovascular Events: Five Years
Prospective Cohort Study in Primary Care. J Family Med Prim
Care. 2022;8(1):25-31. https://dx.doi.org/10.26355/eurrev_
202209_29742.

10. LiuY, Cheng D, Zhang D, Xu S, Han J. Capsule networks with
residual pose routing. IEEE Trans Neural Netw. 2024;2024(9).
https://doi.org/10.1109/TNNLS.2023.3347722.

11. Shi D, Lin Z, Wang W, Tan Z, Shang X, Zhang X, et al. A deep
learning system for fully automated retinal vessel measure-
ment in high throughput image analysis. Front Cardiovasc
Med. 2022:22(9):1-11. https://doi.org/10.3389/fcvm.2022.
823436.

12. Li J, Zhang W, Zhao L, Zhang J, She H, Meng Y, et al
Positive correlation between hypertensive retinopathy and


http://www.varpa.es/vicavr.html
https://doi.org/10.1109/TMI.2011.2159619
https://doi.org/10.1109/TMI.2011.2159619
https://doi.org/10.2147/opto.s183492
https://dx.doi.org/10.24996/ijs.2022.63.9.28
https://doi.org/10.24996/ijs.2024.65.2.31
https://doi.org/10.1201/9781003269144-11
https://doi.org/10.1201/9781003269144-11
https://doi.org/10.3389/fcell.2023.1168327
https://doi.org/10.1016/j.engappai.2023.106902
https://doi.org/10.1016/j.jksuci.2019.09.014
https://doi.org/10.48550/arXiv.1611.03530
https://doi.org/10.48550/arXiv.1611.03530
https://dx.doi.org/10.26355/eurrev_202209_29742
https://dx.doi.org/10.26355/eurrev_202209_29742
https://doi.org/10.1109/TNNLS.2023.3347722
https://doi.org/10.3389/fcvm.2022.823436
https://doi.org/10.3389/fcvm.2022.823436

13.

14.

15.

16.

17.

18.

19.

20.

BAGHDAD SCIENCE JOURNAL 2025;22(9):3165-3176

albuminuria in hypertensive adults. BMC Ophthalmol. 2023;
23(1):66-78. https://doi.org/10.1186/512886-023-02807-6.
Hua D, Xu Y, Zhang X, He T, Chen C, Chen Z, et al. Retinal
microvascular changes in hypertensive patients with different
levels of blood pressure control and without hypertensive
retinopathy. Curr Eye Res. 2021;46(1):107-114. https://doi.
org/10.1080/02713683.2020.1775260.

Xu X, Yang P, Wang H, Xiao Z, Xing G, Zhang X, et
al. AV-casNet: fully automatic arteriole-venule segmentation
and differentiation in OCT angiography. IEEE Trans. Med.
Imaging. 2022;42(2):481-492. https://doi.org/10.1109/TMI.
2022.3214291.

Dong L, He W, Zhang R, Ge Z, Wang YX, Zhou J, et al. Artificial
intelligence for screening of multiple retinal and optic nerve
diseases. Jama Netw Open. 2022;5(5):1-12. https://doi.org/
10.1001/jamanetworkopen.2022.9960.

Hu J, Wang H, Wu G, Cao Z, Mou L, Zhao Y, et al. Multi-
scale interactive network with artery/vein discriminator for
retinal vessel classification. IEEE J Biomed Health Inform.
2022;26(8):3896-3905. https://doi.org/10.1109/JBHIL.2022.
3165867.

HanY, Li W, Liu M, Wu Z, Zhang F, Liu X, et al. Application of
an anomaly detection model to screen for ocular diseases us-
ing color retinal fundus images: design and evaluation study. J
Med Internet Res. 2021;23(7):1-29. https://doi.org/10.2196/
27822,

Arsalan M, Haider A, Choi J, Park KR. Diabetic and hyperten-
sive retinopathy screening in fundus images using artificially
intelligent shallow architectures. J Pers Med. 2021;12(1):1-7.
https://doi.org/10.3390/jpm12010007.

Chen JS, Coyner AS, Ostmo S, Sonmez K, Bajimaya S, Pradhan
E, et al. Deep learning for the diagnosis of stage in retinopathy
of prematurity: accuracy and generalizability across popu-
lations and cameras. Ophthalmol Retina. 2021;5(10):1027—-
1035. https://doi.org/10.1016/j.0oret.2020.12.013.

Abbas Q, Qureshi I, Ibrahim ME. An automatic detection
and classification system of five stages for hypertensive

21.

22.

23.

24.

25.

26.

27.

28.

3175

retinopathy using semantic and instance segmentation in
DenseNet architecture. Sensors. 2021;21(20):6927-6936.
https://doi.org/10.3390/521206936.

Arsalan M, Owais M, Mahmood T, Cho SW, Park KR. Aiding
the diagnosis of diabetic and hypertensive retinopathy us-
ing artificial intelligence-based semantic segmentation. J Clin
Med. 2019;8(9):1-14. https://doi.org/10.3390/jcm8091446.
Akbar S, Akram MU, Sharif M, Tariq A, Ullah Yasin U. Arteri-
ovenous ratio and papilledema based hybrid decision support
system for detection and grading of hypertensive retinopa-
thy. Comput Methods Programs Biomed. 2018;154:123-141.
https://doi.org/10.1016/j.cmpb.2017.11.014.

Alwakid G, Gouda W, Humayun M. Deep Learning-based pre-
diction of Diabetic Retinopathy using CLAHE and ESRGAN
for Enhancement. Healthcare. MDPI. 2023;11(6):863. https:
//doi.org/10.3390/healthcare11060863.

Abbas Q, Daadaa Y, Rashid U, Sajid MZ, Ibrahim ME.
HDR-EfficientNet: A Classification of Hypertensive and
Diabetic Retinopathy Using Optimize EfficientNet Archi-
tecture. Diagnostics. 2023;13(20):1-30. https://doi.org/10.
3390/diagnostics13203236.

Yadav S, Dhage S. TE-CapsNet: time efficient capsule network
for automatic disease classification from medical images.
Multimed Tools Appl. 2023;3:1-30. https://doi.org/10.1007/
s11042-023-17458-4.

VICAVR (Varpa Images for the Computation of the Arte-
rio/Venular Ratio), database. 2009.

Niemeijer M, Xu X, Dumitrescu AV, Gupta P, Ginneken BV,
Folk JC, et al. Automated measurement of the arteriolar-to-
venular width ratio in digital color fundus photographs. IEEE
Trans Med Imaging. 2011;30(11):1941-50. https://doi.org/
10.1109/TMI1.2011.2159619.

Opoku M, Weyori BA, Adekoya AF, Adu K. CLAHE-CapsNet:
Efficient retina optical coherence tomography classification
using capsule networks with contrast limited adaptive his-
togram equalization. PLOS ONE. 2023;18(11):1-22. https://
doi.org/10.1371/journal.pone.0288663.


https://doi.org/10.1186/s12886-023-02807-6
https://doi.org/10.1080/02713683.2020.1775260
https://doi.org/10.1080/02713683.2020.1775260
https://doi.org/10.1109/TMI.2022.3214291
https://doi.org/10.1109/TMI.2022.3214291
https://doi.org/10.1001/jamanetworkopen.2022.9960
https://doi.org/10.1001/jamanetworkopen.2022.9960
https://doi.org/10.1109/JBHI.2022.3165867
https://doi.org/10.1109/JBHI.2022.3165867
https://doi.org/10.2196/27822
https://doi.org/10.2196/27822
https://doi.org/10.3390/jpm12010007
https://doi.org/10.1016/j.oret.2020.12.013
https://doi.org/10.3390/s21206936
https://doi.org/10.3390/jcm8091446
https://doi.org/10.1016/j.cmpb.2017.11.014
https://doi.org/10.3390/healthcare11060863
https://doi.org/10.3390/healthcare11060863
https://doi.org/10.3390/diagnostics13203236
https://doi.org/10.3390/diagnostics13203236
https://doi.org/10.1007/s11042-023-17458-4
https://doi.org/10.1007/s11042-023-17458-4
https://doi.org/10.1109/TMI.2011.2159619
https://doi.org/10.1109/TMI.2011.2159619
https://doi.org/10.1371/journal.pone.0288663
https://doi.org/10.1371/journal.pone.0288663

3176 BAGHDAD SCIENCE JOURNAL 2025;22(9):3165-3176

EffiCapsNet-AV o aildll ddsanl) duanl) AS0ad) 723 gad
o adl) il £ ) e i) Al Plis) e AV diis
Ol g8 5 g

Ll ¢ e g
el o5 o s el s ST 5 g0 g drals sdastigl s i gpiall) o sle acid
oaldiud)

PR e g ilenl) pall Jaria i )Y 5 plad daiili ga 5 ¢(HR) pdll i g ldi ) e il 4S0E) JDUe)  Jaty
Ol (ampall Alay V3 lad) el g8 a8 Lgilaa Dl (S AS0A1 Ay sall Ao Y1 8 5o G yuis
sl o Gy pxi Alladl 38 i «ciigl )y pa «clld pay (s 5SE i Gl jel 6l e pdll Jaia 185 ) (e () silay
O adll Jaria gl ) (e il Al el e Sl CdSI ) jay o Sy cpnadl @l 6 Lay canal) 6 ddlia
Gub i leally Guall L 3and Gliclias Gigaa jlad (e Caidy Lae i)Y 5 (anddll A0V 3 k) oA
B ae ) a5 8 Laa 5 pal) 590 G saadl ldal U8 (e 408N ) gl I sl o i) el
Gl B ey Adseall dnaal) AGEL e #3sai g8 5 cAV-EffiCapsNet 4350 oda a3 i gll 358 oy g
gl Hga Aol hica oldi ) o il AN JMNie) e VI iU Capsule Networks s EfficientNet
Cpnd Ao A sual) Gl Jaad Ly Allad g odaill AL 4, gile Ayuac 4%05 Jee W) EfficientNet a8 el
sle o lial s EffiCapsNet-AV zdsai caysi ai IS5 o) 52l n cliblall 5 4l G jed) cdlubul) Jia
Ay A3 48y el Lee cdaiasall (pall g8 5al INSPIRE AVR 5 VICAVR Jie dal 5 Clily de sane
8 4all Jlaé EffiCapsNet-AV of () i) sda i A0l #3lailly 45 )ie 795.5 S35 7977 4835 7.98.8
0o bl 5 5 yud) Gandll Aad 1] ey Lae cadll Tk 1851 (e i) 4S8 I Y 488 Cladlall LIS

S

sl geall (s el L



	AV-EffiCapsNet Based Deep Neural Network Model for Automated Detection of Hypertensive Retinopathy in Fundus Image
	How to Cite this Article

	AV-EffiCapsNet Based Deep Neural Network Model for Automated Detection of Hypertensive Retinopathy in Fundus Image
	Introduction
	Motivation
	Problem statement and objective
	Contribution
	Related works
	Materials and methods
	Feature extraction using EfficientNet
	AV-CapsNet for classification
	Experimental results
	Dataset description
	Experimental setup and evaluation criteria
	Results and discussion
	Comparative analysis with state-of-the-art methods
	Conclusion
	Authors' declaration
	Authors' contribution statement
	Data availability
	References

