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RESEARCH ARTICLE

Iterative Approximation of Best Proximity Points of
M-T Cyclic Contraction Mappings

Raghad I. Sabri® ', Buthainah A. A. Ahmed® 2

1 Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq
2 Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

ABSTRACT

In many instances, acquiring a solution for an operator equation by using conventional analytical techniques, even
after it has been shown that such a solution exists. One has to know the approximate value of this solution to solve
situations like these. In order to do this, the operator equation must first be restructured to take the form of a fixed-
point equation (FP). On the FP equation, the most convenient iterative method is used, and the limit of the sequence
that is created by this algorithm is, in fact, the value of the FP that is sought for the FP equation, as well as the
solutions to the operator equation. The numerical computation of FPs for nonlinear operators is now an interesting
research subject in nonlinear analysis owing to its applicability in several fields. Many researchers have developed a
wide range of techniques to estimate the FP for various sorts of applications. The primary objective of this paper is
to present new iteration schemes for approximating the best proximity point (BPP). The convergence of BPP for M-T
cyclic contraction mappings (MTCC-mapping) has been investigated in the context of uniformly convex Banach spaces
(UCB-space). The iterations approach proposed by Mann and Ishikawa was taken into account and as a result, some
strong convergence results were obtained for the BPP for MTCC-mapping. Furthermore, numerical examples supporting

the primary conclusion are provided, and the convergence behavior of the iterations is compared.

Keywords: Best proximity point, Iterative sequences, M-T cyclic contraction mapping, Strong convergence, Uniformly

convex Banach spaces

Introduction

Functional analysis is a subject of mathematics
which analyzes functions by studying the functioning
of a given function and discovering connections and
assumptions that can arise. It is also used to examine
a variety of spaces.'™ One of the most difficult and
quickly expanding subfields in nonlinear functional
analysis is fixed-point (FP) theory. This theorem is
an important resource for establishing the existence
and singularity of solutions to a broad variety of
mathematical models that explain phenomena across
various domains. The core idea of FP theory is the
approximation of FPs in various domains for non-
linear mappings using various iterative procedures.
Several authors put forward various iterative methods

for determining the FP’s approximate value.*® An
iterative process’ is proposed to approximate FPs of
nonexpansive mappings in Banach spaces that are
uniformly convex. The iterative process is as follows:

Knt1 = (1 — on)xn + 0n Tk 1)

The primary significance of the BPP theory is in
its association with both FP theory and optimization
theory. Consequently, the exploration of finding the
BPP of mappings that meet various forms of contrac-
tive conditions becomes an intriguing area of study.
An extensive number of authors have researched the
existence of the BPP, see.® !0 Eldred and Veeramani !
presented iteration algorithms as a novel approach
to identifying the BPP in cyclic contraction mapping.
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The convergence of BPP for noncyclic contractions
is discussed by Gabeleh and Kunzi.'? In the present
article, new iteration schemes are presented for ap-
proximating the BPP and the convergence of BPP for
MTCC-mapping is examined in the context of UCB-
space. Moreover, the outcomes produced by iterative
algorithms were evaluated and contrasted.

Preliminaries

In this part, some fundamental terminology and
ideas that are relevant to the context of our findings
are provided.

Assume W is a normed space and consider U C W
and V € W. The pair (U, V,) will represent the prox-
imal pair of (U, V), is defined as follows

U, ={p1 € U: [lp1 — p2ll = dist(U, V),
for some py € V},
Vo ={p2€V:|p1— p2| = dist(U, V),

for some p; € U},
where dist(U, V) = inf{||p1 — 2]l : p1 € U, p2 € V}.

Definition 1: '3 Assume (W, d) is metric space and
(U, V) is a pair of nonempty subsets of (W, d), where
U, # @. Then (U, V) possesses the P-property(P-p) if
and only if

d(k, 01) = dist(U, V)
dk;, ko) = d(p,
d(ky. py) = dist(TL, V) = d(kq, ko) (p1, p2)

where ki1, ko € U, and p1, p2 € V..

According to Abkar and Gabeleh'* any closed, con-
vex, and bounded pair in a UCB-space W possessed
the P-p,

Definition 2: !> A function ¢ : [0, c0) — [0, 1) is
termed M-T if limsups_.. ¢(t) <1 for every te
[0, 00).

Definition 3: '° Consider U, V are nonempty sub-
setsof (W,d). If T: WUV — U UV fulfills

(1) T(W) c Vand T(V) C U;
(2) thereis ¢ : [0, o0) — [0, 1) (which is M-T func-
tion)

such that

d(Tp1. Tp2) < ¢ (d (o1, p2)) d (o1, p2)
+ (1 — ¢ (d(p1, p2)))dist (U, V)

for any p; € U and py €V,
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then T is termed as M-T cyclic contraction (MTCC-
mapping) on U U V.

Theorem 1: '° Suppose U, V are nonempty subsets of
(W,d) and assume T: UUV — UUV is MTCC-map.
Let p; € U. Define a sequence {pn}hen bY pni1 = Ton.
Assume {pon_1} possesses a convergent subsequence in
‘U, then there is u € U with d(u, Tu) = dist(U, V).

Lemma 1: ! Let W be a UCB-space and U C W,V C
W where U is closed and convex and V is closed. Assume
that the sequences {p,} and {u,} in U and {q,} in V that
satisfy:

() llug — qull — dist(U, V).
(i) there is Ny such that | pm — qull < dist(U, V) + ¢
for each ¢ > 0 and for m > n > Nj.

Then, there is N; such that ||pm — Un|| <&,Vm > n >
Ni.

Lemma 2: !! Let W be a UCB-space and let U C
W,V € W where U is closed and convex and V is closed.
Assume that the sequences {p,} and {u,} in U and {q,}
in V that satisfy:

(D llpn — Gull — dist(U, V).
(2) llun — Gull — dist(U, V).

Then || py — Uy || converges to zero.

Lemma 3: 7 Consider ¢ : [0, 00) — [0, 00) where
©(0) =0 and ¢ strictly increasing. If {t,} in [0, co)
fulfills lim,,_, ,¢(t,) = O, then lim,,_, ,t, = 0.

Main results

Theorem 2: Assume W is UCB-space and suppose
U,V C Wwhere U, V closed and convex. If T : UUV —
U UV is MTCC-map, then there exists a unique BPP p in
U. Additionally, if po € U and pp+1 = T pn, then {pon}
converges to the BPP.

Proof: Suppose dist(U,V) =0, then UNV # @. As-
sume dist(U, V) # 0. Since

lp2n — T ponll — dist (U, V),
and
IT?p2n — T ponll — dist (U, V).
By Lemma 2, | p2n — p2ms+1)ll — 0. Similarly, it can
show that ||T pon — T p2m+1)l| — 0. Now to show that

Ve > 0, 3 Ny such that Ym > n > Ny, ||pom — T panll <
dist(U, V) + .
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If that is not the case, then 3 ¢ > 0 such that Vk ¢
N there is my > ny > Ny for which || pom, — T p2n, |l >
dist(U, V) + s.

Now
dist (U, V) + & < || pam, — T pan |l

< llp2m, — p2me—1) Il + | 20m—1) — T pan, |l

Hence limy_, ool p2m, — T p2n, || = dist(U, V) + ¢
Consequently

lo2m, — T pan |l < llo2m, — P20me+Dl
+ lo2em+1) — T o2+ | + 1T p2iy+1) — T p2n, |l

l o2tme+1) — T P2+ | = IIT p2me+1 — T P2+ |l

< ¢ (llp2mes1 — P21 l) lo2me1 — P2+l
+ (1 — ¢ (llo2me+1 — P2 1l)) dist (U, V)

< ¢ (llp2me+1 — P2+ ) 1 T p2me — T P21l
+ (1 = ¢ (lp2me+1 — P21y l1)) dist (U, V)

< ¢ (llp2mes1 — P2mernll) [@ (1 02me — O2n4111) | 02m,
—paner1ll + (1 = & (Il p2m, — p2n41 1)) dist (U, V)]
+ (1 — ¢ (l p2me+1 — P2m+1) D) dist (U, V).

Let o = ¢ (|| p2m+1 — P2+ [|) then one get,

lo20me+1) — T o2+ || < el ((dist(U, V) + €))(dist
(U, V) +e)+ (A — ¢(dist(U, V) + e))dist (U, V)] +
(1 — a)dist(U, V).

Now let 8 = ¢((dist(U, V) + ¢)) then

| p2(me+1) — T o2ty | < o [ B (dist (U, V) + ¢)
+ (1 = B)dist (U, V)] + (1 — ) dist (U, V)

< a[Bdist (U, V) + Be + dist (U, V) — Bdist (U, V)]
+ 1 —a)dist (U, V)

< a[Be +dist (U, V)] + (1 — &) dist (U, V)

< aBe +dist(U, V).

Hence

dist (U, V) + & < o [Be + dist (U, V)]
+ (1 — &) dist (U, V)
= aBe + dist (U, V)

Now the Mann iterative technique for determining
the BPP is discussed in the following.

Theorem 3: Suppose that W is a UCB-space and
(U, V) is a closed, disjoint, bounded, and convex pair
in Wand assume T : UUV — U UV be MTCC-map.
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Consider k, € U and
kni1 = (1 — an) kn + onT?kn, )

where on € (¢,1 —¢) and ¢ € (0,1/2]. Then {k,}
strongly converges to the BPP of T.

Proof: From Theorem 2, 3 g € V, with ||g — Tq| =
dist (U, V). Since ||T?q — Tq|| = dist(U, V) and since
(U, V) possesses the P-p, conclude that g = T?q, that
is,qisaFPof T?>:V — V.

Now,

lkne1 — qll = | (1 — &tn) kn + ot Tk
— (1 —an) g+ T?q|
< (1 — an) kn — qll + ol T?kn — T?q]|
< k. —qll.

Thus {||k, — qll},>1 is a decreasing sequence. Assum-
ing that lim,,_, . |k, — q|| =1 > dist(U, V).

Based on Lemma 3, it can be deduced that ¢:
[0, c0) — [0, o) is exists with ¢(0) = 0. Then

lkns1 — qI* = | @ — an) kn + 0 T?kn
— (1 —an) g+ anT?q|?
= || (1 — an) (kn — q) + an (T?kn — T?q) >
< (1 — an) llkn — qlI* + aall T?kn — T?q|)?
— an (1 — an) @ (Ikn — T?knll)
< lkn = ql* — a0 @ — an) @ (IIkn — Tkn]])

Therefore

%9 (Ikn — T?knll) < an (1 — atn) @ (Ilkn — T?knll)
< llknt1 — qlI* — Ilkn — qlI*.

If n — oo, deduce that:

lim,,_, ¢ ([lkn — T?kx|]) = 0. we conclude that ||k, —
T?k,|| — 0. Moreover, it is worth noting that
each UCB-space is reflexive, which means that
A is weakly compact. As a result, {k,},.; has a
weak convergent subsequence {ky, },., converging to
p* e U.

kn — Tknll = llkn — T?knl| + | T?kn — Tka||
< llkn — T?knll + ¢ (d (kn, Tkn)) lIkn — Tyl
+ [1 = ¢ (d (kn, Tky))] dist (U, V)
Ikn — Tknll — ¢ (d (kn, Tkn)) llkn — Tkql
< llkn — T?knll + [1 — ¢ (d (kn. Tkn))] dist (U, V)
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[1— ¢ (Ilkn — Tknll)] I kn — Tkl
< lIkn = T?knll + [1 = ¢ (Ilkn — Tkall)] dist (U, V)
llkn — T2k
[1— ¢ (Ikn — Tkall)]

and so ||k, — Tky| — dist(U, V). Since {kn,}.,, con-
verging to p* € A, then -

lkn — Tknll < + dist (U, V),

lp* = Tp*|l < lim inf|kn, — Tkn,|
k— o0
= lim ”knk - Tlek”
k—o00
— lim ||k, — Tky|| = dist (U, V).
n—oo

Again since (U, V) possesses P-p and uniqueness of
BPP, it follows that Tq = p* and as a result k, — p*.

The Ishikawa iterative method for determining the
BPP is discussed in the following theorem.

Theorem 4: Suppose that W is a UCB-space and
(U, V) is a closed, disjoint, bounded, and convex pair
in Wand assume T : UUV — UUV be MTCC-map.
Consider k., € U and

Kn+1 = (1 - an) Kn + anngn» (3)
tn = (1 — Bn) kn + BuT%kn, V¥ne NU{O},

where 0 <e <o, <1 and 0 < ¢ < B,(1 — Bn). Then
lkn, — T?k,|| — O and {k,} strongly converge to the BPP
of T.

Proof: Using comparable sense to the evidence of
Theorem 3, Assume q € Fix(T?|V,).
Now

Ikns1 — qll = 1| (1 — an) &n + @nT2n
— (1 —an) q+anT?q|
< (1 —an) &0 — qll + el T?¢, — Tq||
< (1 =) 5n — qll + anlién — qll = lIZa — qll

also,

120 — qll = | (1 = B kn + BuTkn
— (1= Ba)q+ BaT?qll
< (1 = Ba) Ik — qll + Ball T*kn — T?q]|
= [lkn — qlI.

Therefore, ||kp+1 — qll < |lkn — q|| and this demon-
strates that {||k, — q||} is decreasing.

BAGHDAD SCIENCE JOURNAL 2025;22(9):3037-3044

Thus lim,,_, . |k, — q| exists for any q € Fix(T?|V.).
Because W is UCB-space, there are functions ¢, T :
[0, c0) — [0, o) where ¢(0) = 0, Y(0) = 0 such that
lknt1 = ql* = | A — @) &0 + @a T2

— (1 —an) g+, T?ql
= | (A —an) (Gn — @ + an (T?5 — T?q) ||?
< (1 —an) 6n — qlI* + el T2 — Tq||?
—on (1 = an) @ (160 — T?2all)
< (1 —an) 40 — gl + nll (1 = Bu) kn
+ BT?kn — qlI> — an (1 — o) @ (160 — T?2all)
< (A —an)llgn — qll* + an (1 — Bn) llkn — gl
+ anfnl T?kn — T2q|?
— anfn (1 = Bu) Y (Ilkn — T?kn|l)
—on (1 = atn) @ (150 — T?all)
= lkn — qlI* = atnBn (1 — Bn) Y (lkn — T?knll)
—on (1 = atn) @ (I15n — T?2all) -

Therefore,

anfn (1 — Bn) Y (Ikn — T?knll)
< anPn (1= Bn) T (lkn — T?kall)
+an (1 —an) ¢ (150 — T?¢ll)
< (1 —an) lkn— ql* + (1 — B)lIkn — qlI?
< llkn — qlI* = llkns1 — qlI*.
Hence
&Y (llkn — T?knll) < lkn — qlI* — llkns1 — glI?
and this guarantees that lim,_, -, || T?k, — kn| = 0. By

a similar proof of Theorem 3. {k,} converges to the
BPP of T in U.

Results and discussion

Example 1: Consider W = R be a Banach space and
letu=1[0,%], V=1[2%1]
Suppose T : WUV — U UV where:

. ifpel0,3].

’ { if pe[21].

[SV] Lol OV] | )
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0.35

0.3

0.25

0.2

0.15

value of iteration

0.1

0.05

1 4 7 10131619222528313437404346495255586164677073767982

—@— |teration 4 =—=@=|teration 5

Fig. 1. The comparison between lteration 4 and lteration 5.

Let ¢ : [0, 00) — [0, 1) be specified as:
o(t) = HLl for all t € [0, c0).

T is MTCC-map since d(Tp, Tq) = |T(p) — T(q)| =
13 —3l=3=dist(U,V) and, ¢(d(p,q)d(p,q)+
(1 — ¢(d(p, PNist(U, V) = gry77-d(p. ) + (1 —
(d(plw))% >= d(Tp, T(I)

In this example, p* = 0.3333333333 is the BPP of T.
For (k,, ¢,) € U x V and each n € N U {0} our iterative
sequences are:

kn+1 =1 —an) kn + anTzkm @)

vn € NU {0}, where a, € (¢,1 —¢) and ¢ € (0,1/2]

)

knt1 = (1 — an) kn + anT ey,

tnt1 = (1 = Br) kn + BnTkn, Yn € N U {0}

where o, € (¢, 1 —¢) and ¢ € (0,1/2].
Consider ko = 0 the initial point in our example and
consider

2n+1 5n+1 2

~8n+10° "™ 8n+10° ° 100

Qn

It is evident from Table 1 that iteration 5 approaches
convergence to the BPP at a more rapidly rate than
iteration 4. Furthermore, the findings presented in Table 1
are depicted in Fig. 1.

Example 2: Consider W =R and letU = [
[3.1].

11 _
52l V=

3041

Table 1. The rate of convergence for new proposed iterations.

n Iteration 4 n Iteration 5

0 0 0 0

1 0.0333333333 1 0.0994152046
2 0.0833333333 2 0.1781376518
3 0.1314102564 3 0.2334060662
4 0.1729826546 4 0.2701805418
5 0.2073435143 5 0.2939259914
6 0.2350612745 6 0.3089691497
7 0.2570877704 7 0.3183749989
8 0.2744163074 8 0.3242000721
9 0.2879512998 9 0.3277814071
10 0.2984666491 10 0.3299707167
76 0.3333333330 43 0.3333333332
77 0.3333333331 44 0.3333333332
78 0.3333333331 45 0.3333333332
79 0.3333333332 46 0.3333333333
80 0.3333333333 47 0.3333333333

Suppose T : UUV — UUV,

A= N

T(p)={

. ifpelg il

1
6°
1
20

. ifpe]

1

].

Consider ¢ : [0, 0c0) — [0, 1) be specified as ¢(t) =
o1 for dll t € [0, 00). Consider (p,q) € U x V, then

Ip—qlz‘

1 1
d(Tp, TQ) = T (0) - T ()] = ‘5 - Z‘

1
2 4 4

— dist (U, V).
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0.1

value of iteration
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21
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41
46

51

BAGHDAD SCIENCE JOURNAL 2025;22(9):3037-3044

O e+ O+ O OO OO oW
N O ONMN0WWOO OO O « = N AN
L I I I B I |

—@—|eration 4 =—=@=|teration5

Fig. 2. The comparison between Iteration 4 and lteration 5.

Table 2. The rate of convergence for new proposed iterations.

It is evident from Table 2 that iteration 5 approaches
convergence to the BPP at a more rapidly rate than

n Iteration 4 n Iteration 5

0 01 0 01 iteration 4. Furthermore, the findings presented in Table 2

1 0.1150000000 1 0.1447368421 are depicted in Fig. 2.

2 0.1375000000 2 0.1801619433

3 0.1591346153 3 0.2053272982 :

4 0.1778421945 4 0.2215812438 Conclusion

5 0.1933045814 5 0.2322666961 ) ) ) ) )

6 0.2057775735 6 0.2390361173 This paper’s main goal is to introduce novel iter-

7 0.2156894967 7 0.2432687495 ation approaches for estimating the best proximity

2 8;333%3233 2 gi:‘;gg?ggg‘z‘ point (BPP). This work examines the Mann iteration

10 0.2343099920 10 0.2484868225 schemg anc} Ishlkawa iterative strat‘egy ‘to develop
novel iteration techniques for approximating the BPP

: : : : for MTCC-mapping. In addition illustrative numerical

Eg g-gzgggggggg Zg ggjgggggggg examples are provided to substantiate the primary

120 0.2499999999 o4 0.2499999999 outcome. The ﬁr.1d.1ng5 indicate that the second iter-

121 0.2500000000 65 0.2500000000 ation is more efficient than the newly suggested first

122 0.2500000000 66 0.2500000000 iteration.

T is MTCC-map since

¢ (d(p.q) d(p,. @)+ (1 — ¢ (d(p, q))dist (U, V)

_ 4 )+(1_<;>>1
Tdp.gr1od dip.+1)) 4

>d(Tp, Tq)

In this example p* = 0.25 is the BPP of the mapping
T.

Consider ko = 0.1 the initial point in this example and
consider

. 2n+1
"~ 8n+10’

5n+1 2

b= gni10° 100°

Qn
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