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RESEARCH ARTICLE

Towards Efficient and Privacy Preserving
ECG Classification: Federated Transfer
Learning Enhanced by CKKS-Based
Homomorphic Encryption

Anmar A. Al-Janabi® ' Sufyan Al-Janabi® 2, Belal Al-Khateeb® 2

1 Collage of Computer Science, University of Technology - Iraq, Baghdad, Iraq
2 Department of Computer Science, College of Computer Science and Information Technology, University of Anbar, Ramadi, Anbar, Iraq

ABSTRACT

In healthcare, maintaining both the accuracy and privacy of medical diagnoses collaboratively is a significant
challenge. To the best of our knowledge, this research proposes the first end-to-end Privacy-Preserving Federated
Transfer Learning (PPFTL) framework for 2-D ECG arrhythmia classification. Incorporating Transfer Learning (TL)
narrows the gap between the encrypted and non-encrypted framework versions in the training step. It involves the
transformation of raw Electrocardiogram (ECG) signals into 2-D ECG grayscale images. The dataset is disseminated after
transformation to images and then fed as input into the local models, where MobileNetV2 serves as a feature extractor.
The training process for each client incorporates data balance and augmentation techniques to improve the model’s
performance. Deep Learning (DL) models are subject to various privacy attacks to gain sensitive data. As a result, the
Homomorphic Encryption Cheon-Kim-Kim-Song (HE-CKKS) scheme encrypts only model parameters to protect deep
models from adversary attacks, preventing the sharing of sensitive raw data. Experimental results on the MIT-BIH
Arrhythmia dataset achieved 88.12% accuracy. Incorporating HE-CKKS increased computation times by 1.08%, 1.27%,
and 1.43% for 2, 3, and 4 clients, respectively.

Keywords: Data privacy, Electrocardiogram, Federated learning, Homomorphic encryption, Transfer learning

Introduction abnormalities. The development of Machine Learn-

ing (ML) technology within Artificial Intelligence
(AI) and its employment within the medical domain
offered significant assistance in disease diagnosis
through the building of classification models. *
However, utilizing distributed ML over a large
amount of scattered medical data poses serious chal-
lenges. A key challenge is data privacy. Working
with medical records containing sensitive patients’
information normally raises security and privacy con-
cerns.>® For example, the confidential information
about an individual’s health can be used for iden-
tification purposes. Hence, the privacy and security

According to estimates from the World Health Or-
ganization (WHO), Cardiovascular Diseases (CVDs)
are currently recognized as the main cause of death
worldwide, resulting in around 17.9 million deaths
annually.? Several risk factors, such as smoking,
unhealthy eating habits, and excessive alcohol con-
sumption, have been shown to significantly elevate
the probability of experiencing adverse cardiac con-
ditions, such as heart attacks and heart failure.?

In general, doctors classify various shapes of wave-
forms in an electrical signal to recognize cardiac
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of such data have the highest priority, which must
be maintained. In order to preserve data privacy
and limit the availability of data, laws and reg-
ulations have been adopted. The European Union
General Data Protection Regulation (GDPR) regula-
tory framework has implemented a rigorous standard
for protecting and preserving the privacy of sensitive
data.”

Securing private data can be achieved through var-
ious approaches. An effective one is to employ Fed-
erated Learning (FL), where multiple entities utilize
collaborative computations in a distributed environ-
ment to protect sensitive data. The aforementioned
approach eliminates the need for raw data centraliza-
tion and vulnerability, which enhances medical data
privacy and security. A promising approach that has
significant possibilities in the healthcare industry as a
subcategory within ML is known as Transfer Learning
(TL). TL utilizes previously gained knowledge from
a particular task in order to enhance or improve
the performance of another one. Hence, utilizing
previously trained models to extract features im-
proves the efficiency and accuracy of other different
tasks. &°

MobileNetV2 specifically designed for mobile and
edge devices concentrating on computing efficiency.
It achieves a compact model size while maintain-
ing high accuracy by employing depthwise separable
convolutions, effectively decreasing the parameter
count and computational cost. As a result, it works
perfectly for real-time applications and devices with
limited working power, like smartphones, IoT de-
vices, and embedded systems. MobileNetV2 has
achieved extensive implementation in TL scenarios
where lightweight and practical models are required
for object detection, classification, and segmentation
tasks. It established new standards for building Deep
Learning (DL) models that are both powerful and
efficient while also being conscious of the available
resources. °

In order for the two-dimensional CNN to function
properly, its input data must be images. Therefore,
ECG signals are converted into 2-D images by plotting
the ECG beats as grayscale images. Converting the
signals into a visual representation enables the Con-
volutional Neural Network (CNN) model to extract
complex patterns and features that might not be rec-
ognized in their original form. Signals are segmented
into separate heartbeats, utilizing the detailed anno-
tations associated with the records and generating
two-dimensional grayscale standardized images. This
procedure enables CNN to classify and analyze car-
diac arrhythmias.

This research employs the MobileNetV2 architec-
ture as a previously trained CNN model. The deep
model analyzes ECG signals after being transformed
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into 2-D grayscale images for automating and assist-
ing in diagnosing cardiac arrhythmia.

The transmission of model parameters or gradients
within the FL approach is more effective and prefer-
able than transmitting raw data. Certain data owners,
such as hospitals, have rigorous privacy standards
that add additional restrictions to the disclosure of
any information beyond the final outcomes, including
intermediate model weights that can be exploited
to retrieve some of the training data.!' A possible
solution for the protection against adversarial col-
laborators can be achieved using the Homomorphic
Encryption (HE) mechanism. HE is a cryptographic
technology that enables data encryption while allow-
ing operations to be done on the encrypted data. '
This approach has the potential to protect the ML
model from adversarial attacks. This research intro-
duces an innovative paradigm for ECG data analysis
by integrating TL for feature extraction, FL for col-
laborative learning without direct data exchange, and
HE for secure aggregation of model updates. The com-
bined approaches enhance efficiency, accuracy, and
security in privacy-preserving ECG data analysis. This
paper’s primary contributions are as follows:

* To the best of our knowledge, this research
proposes the first end-to-end Privacy-Preserving
Federated Transfer Learning (PPFTL) framework
for 2-D ECG arrhythmia classification.

« Develop privacy-preserving healthcare analytics,
demonstrating that sensitive information related
to ECG analysis can be safely shared among
multiple participants without compromising the
privacy or security of the underlying patient data.

« Highlights the potential for hospitals and other
healthcare agencies to engage in collaborative
learning using FTL by implementing a shared
model that preserves data privacy.

+ This work empirically validates the proposed sys-
tem using a real-world ECG dataset.

Related work

The use of data-driven ML models in the health-
care sector offers significant advantages, particularly
when paired with private medical information. In
order to protect sensitive health-related data, these
models are trained on-premises. However, it can
be challenging to construct reliable models without
large, diversified datasets covering a wide range of
health conditions. Previous studies have suggested
using FL techniques as a potential solution to address
the problem. For instance, research studies'>'® re-
viewed the potential applications of FL within the
digital health domain. It highlights the challenges
and considerations that have to be tackled with FL
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in order to be successfully implemented and pro-
tect fragmented and private biomedical data. The
influence of FL is investigated by several stake-
holders, including patients, physicians, healthcare
institutions, and manufacturers.

The study in'® proposed a PPFL approach using the
BraTS 2018 dataset for brain tumour segmentation.
The proposed FL system is built on a client-server
architecture using the federated averaging technique.
The server manages the global Deep Neural Net-
work (DNN) model and coordinates clients’ local
Stochastic Gradient Descent (SGD) updates. The Dif-
ferential Privacy (DP) method is also utilized to
ensure patient data privacy. Experimental results of
the proposed approach assure data privacy protection
with high accuracy. The study did not examine how
privacy-preserving approaches impact brain tumour
segmentation model accuracy and performance. Fur-
thermore, the scalability of the method for complex
medical imaging purposes remains unexplored.

The authors in'” provided an innovative approach
to improving the security of e-Healthcare systems
through secure Multiparty Computation (MPC) and
the Paillier encryption scheme. The strategy safe-
guarded the privacy and confidentiality of sensitive
patient data. IoT-enabled healthcare devices are ad-
dressed for delivering accurate medical data. Also, the
suggested model has the potential to be applied to
the E-auction and E-voting models as well. The study
needs more information regarding the scalability of
the suggested approach, especially in the context of a
large number of patients.

The studies presented by Wibawa et al.®'® pre-
sented a PPFL framework for medical data. They
employed HE to protect sensitive data against privacy
attacks, including those from collaborator adversarial
attackers. In addition, to further protect the model
from adversaries, a secure MPC protocol is being
used. A real-world medical dataset of COVID-19 ra-
diography images with two classifications, which are
COVID and Normal, is utilized to evaluate the per-
formance of the proposed method in terms of model
accuracy. The developed framework has an accu-
racy of over 80% in both encrypted and plain data,
demonstrating the framework’s ability to maintain
performance and preserve data privacy. However,
processing time substantially increases because of HE
employment, limiting its practicality for real-world
applications.

Researchers in!° suggested an innovative and
efficient method utilizing Fully Homomorphic En-
cryption (FHE) in cloud computing. Their strategy
employed a twin-key encryption technique, as well as
a fragmentation technique of magic numbers to pro-
cess encrypted data securely. The practicality of the
suggested method is illustrated via cognitive applica-
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tions regarding smart cities, and its effectiveness is
evaluated through cryptanalytic attacks. The system
demonstrated a high level of resistance against brute-
force attacks. However, it lacks explicit information
concerning the dataset used in the research.

The study conducted by?° designed a deep, one-
dimensional CNN-based model to classify heartbeats.
Based on the standard specified by AAMI EC57, the
model was capable of classifying five different types
of arrhythmias. Furthermore, the authors were able to
translate the knowledge obtained from this task to the
Myocardial Infarction (MI) classification challenge.
Results show that the proposed approach achieves av-
erage prediction accuracies of 93.4% for arrhythmia
classification and 95.9% for MI classification.

Gao et al.?! developed a new technique called Het-
erogeneous Federated Transfer Learning (HFTL), in
which FL utilizes TL to deal with different feature
spaces. They developed a privacy-preserving transfer
learning method to remove the covariate shift of ho-
mogeneous feature spaces and bridge heterogeneous
feature spaces of various data owners. An end-to-end
secure multi-party learning protocol with two varia-
tions based on HE and Secret Sharing (SS) approaches
shows that the HFTL is secure, efficient, and highly
scalable on five benchmark datasets. However, it is
crucial to perform a comprehensive analysis to eval-
uate the scalability of the proposed approach in cases
that involve a larger number of clients.

In order to enhance statistical modeling within a
data federation, the study?? presented a new tech-
nique and framework known as federated transfer
learning. The paper also offers some novel approaches
for Two-Party Computation (2PC) with Neural Net-
work (NN) under the FTL framework, integrating
additively HE and SS using beaver triples so that the
accuracy is almost lossless and only minimal modi-
fications of the NN are required. Experiments were
conducted on publicly available datasets, including
the NUS-WIDE dataset and Default-of-Credit-Card-
Clients dataset, to validate the suggested technique.
The study results show that the suggested FTL
framework achieves similar or superior performance
compared to existing methods while also preserving
data privacy.

Singh et al.?* introduced a novel architecture that
combines FL and blockchain to improve privacy in
IoT healthcare systems for smart cities. The aim is
to protect data through a distributed method, em-
ploying blockchain for secure data exchange and FL
for maintaining local data privacy. It features a sen-
sor network for data collection from IoT devices, a
blockchain cloud network for data validation and
processing, and the distribution of processed data to
various healthcare and monitoring devices.?* Empir-
ical results indicated increasing network overheads
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Table 1. Related works strengths and weaknesses.
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Reference Strength(s)

Weakness(es)

Li, Wenqi '°
a central server without sharing data.
+ Improved convergence speed

achieves better performance.

Vijaya Kumar

advice system.
Wibawa et al. '8
performance.
Kara, Mostefa

« Similar segmentation performance compared to

Sharing larger proportions of the model

The suggested framework can be expanded to
Al include diagnostic centers for secure e-medical

« The BFV crypto scheme does not degrade model

« Offers efficient, secure, and private processing

The researchers did not investigate the scalability
for a larger dataset or other intricate medical tasks.
A thorough examination of communication and
computational costs would be beneficial for
practical, real-world deployment.

Operations are performed over encrypted data
which makes it relatively slow and hence impacts
the system’s efficiency.

Single public key.

Affected by the length of the encryption key.

The study does not investigate the limitations of the

etal.!® in cloud computing environments. suggested FHE utilizing twin-key encryption and
Magic Number Fragmentation.

Kachuee, + Propose a deep CNN classifying 1-D ECG signals + Further detailed evaluations of the suggested

Mohammad 2° with high average accuracy. method over others’ real-world scenarios are

Gao, Dashan?! « Handling Covariate Shift and Feature

Heterogeneity.

Liu, Yang et al. > + Flexible and highly adaptable to various ML

tasks.
Singh et al. >* + The proposed framework provides

privacy-preserving, security, reliability, and

scalability with a low overhead.

Walskaar et al. > + Robust model performance.

required.

Due to DP usage, the proposed model is vulnerable
to privacy leakage among participants during
model training.

The utilized secret sharing approach has to generate
and store many triplets before online computation.
The work relies only on the performance of the
Blockchain-FL.

Increased execution times per round.
Higher memory usage per IoT device and server.

proportional to service allocation probability, with
overheads rising from below 500ms to approximately
1500ms as the probability approaches 1.0 across
various latency scenarios. Future improvements are
anticipated in developing a blockchain-based trust
model, a novel consensus mechanism for FL nodes,
and improvements in latency, storage, and a feder-
ated reward system.

Walskaar et al. 2° published a study which enhanced
the research conducted by Wibawa et al. © by integrat-
ing an enhanced multi-key homomorphic encryption
(xMK-CKKS) approach into the FL framework. The
authors used the xMK-CKKS scheme introduced by
Ma et al.?° to enhance the security of model updates
in medical data applications. Specifically, they used a
COVID-19 X-ray lung scan dataset from the study,?’
which consisted of COVID and non-COVID classes.
Their modified Ring Learning with Error (RLWE)
scheme and changes to the Flower FL framework en-
dorsed enhanced client-server communications. The
experimental results showed that the model main-
tained an accuracy of 89%-97% even when the
number of clients varied from 2 to 5. Despite this,
the performance with 10 clients revealed a wide vari-
ation in accuracy of 50%, indicating challenges with
scalability.

Most previous works have focused on using sim-
ple model architectures in conjunction with privacy
techniques, including DP, MPC, and HE, because of
the noise generated from the computations within the

convolutional layers. Due to the extensive multipli-
cation operations within deep convolutional layers,
noise increases exponentially in HE. However, our
suggested framework addresses this issue using trans-
fer learning technology, where the weights are kept
frozen in the feature extraction section of the ar-
chitecture since all the heavy computations are
performed within. In addition, implementing transfer
knowledge reduces the cost of computations over the
distributed models since the training process does
not have to begin from scratch. Integrating cutting-
edge technologies, including FL, TL, and HE balances
and model performance, noise management, and data
privacy. Table 1 summarizes the related works, in-
cluding key strengths and weaknesses.

Preliminaries

The following subsections offer essential theoreti-
cal foundations for the current study. First, examine
cryptographic algorithms like CKKS. Next, continue
to review the regulations concerning the privacy of
healthcare data. Finally, delve into the research of
Federated and Transfer Learning technologies.

Homomorphic encryption
Encrypting data is usually used for securing data

at rest or while in transmission, both in enter-
prise and personal settings. However, this traditional
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method leaves security vulnerability during comput-
ing processes, especially in highly sensitive fields like
healthcare and personal information management.

As a response to this challenge, HE has emerged,
enabling mathematical operations to be performed
directly over encrypted data without the need for
decryption.?® When decrypted, the outcomes stay
encrypted as well as produce identical or almost iden-
tical results. HE complies with the stringent privacy
requirements of the modern, digitally interconnected
world by enabling secure data processing without
disclosing actual data.

Denoting encryption as Enc, decryption as Dec,
© represents homomorphic addition or multiplica-
tion operations over ciphertext, and f as a function
applied to actual plaintext values x and y using en-
cryption key pk, then the property of HE can be
presented by Eq. (1).

f (x. y) = Dec(Enc(pk, x) ® Enc(pk, y)) (1)

The adoption of HE enables privacy-preserving in
outsourcing storage and computation. It enables the
encryption and outsourcing of data processing to
commercial cloud environments while the data re-
mains encrypted.

HE can be classified into partial, somewhat, and
fully homomorphic encryptions based on the op-
erations they facilitate.?*3° Partial Homomorphic
Encryption (PHE) supports one type of mathemati-
cal addition or multiplication operation infinitely. In
contrast, Somewhat Homomorphic Encryption (SHE)
supports mathematical addition and multiplication
operations, increasing the noise. Additionally, it is
bound by the number of operations, and decryp-
tion fails when it overpasses a predefined threshold.
Last but not least, FHE supports both addition and
multiplication arbitrarily for an unlimited number of
operations.®! The bootstrapping strategy is utilized
to decrease noise and enable continued accurate de-
cryption. This work employs SHE, which enables both
multiplication and addition on encrypted data, both
of which are required for the secure aggregation of
DL model weights.

Cheon-Kim-Kim-Song (CKKS) scheme
Cheon et al.*? proposed the CKKS scheme, an ap-
proximative homomorphic encryption scheme with
a tunable level of approximation error for secure
data computation over real or complex numbers di-
rectly. It operates over polynomials in a ring, and
its security is primarily based on the Ring Learning
with Errors (RLWE) problem. CKKS is well-suited for
privacy-preserving computations in ML/DL and data
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analytics, for which approximate arithmetic tends to
be sufficient. The following paragraph describes the
scheme under consideration in brief.

Let n, q, A be initialized parameters, where n is a
ring dimension, q is a large prime coefficient mod-
ulus, and A is a scaling factor. The secret key sk is
sampled from R, and the public key pk = (pk;, pks)

is derived. A vector of complex numbers Ze Cz, and
A >1 being encoded into a single object a in the
plaintext domain represented by Eq. (2).

Encode (7, A) = LA.n’l (Zﬂ @

Encryption yields C = (C1,C;) via pk and error
distribution y. Homomorphic evaluation, denoted

as  EvalAdd(C™, C®) produces(C?, C§),  adds
polynomial components, while multiplication

EvalMult (C, C®) produces C® = (C?, ¢, ¢?),
which undergoes relinearization to reduce
dimensionality represented by Egs. (3) and (4),
respectively.

Evaladd (€, ¢®) = (¢, cf?) 3

EvalMult (¢, ¢®) = (¢, ¢, ¢f?) )

Following, Rescaling procedure after a multiplica-
tion operation is performed to manage noise so that
the output ciphertext closely resembles the input,
Eq. (5) denotes rescaling.

Rescale (C, A) = % [C1. C2]q ()]

Employing sk on ciphertext to decrypt and obtain
an encoded approximate plaintext is represented by
Eq. (6).

T;l = [Cl + Cz.Sk]q (6)

Decoding is the inverse of the encoding process
which returns a vector of complex numbers as de-
noted in Eq. (7).

Decode (a, A) = = (% a) @)

The CKKS scheme is significantly similar to other
RLWE-based schemes like BGV; however, a study pre-
sented by Li and Micciancio®® claims that a passive
adversary with the following capabilities can launch
an efficient passive attack:
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» The attacker can choose and encrypt any num-
ber of messages to generate their corresponding
ciphertext messages.

« The attacker acts as a server providing outsourced
computations, choosing a function to be evaluated
homomorphically.

» Based on the application context, the attacker
could choose some ciphertext messages and ask
for decryption.

The attack model with the abovementioned prop-
erties is known as INDistinguishability under Chosen
Plaintext Attack (IND-CPA). They claim the vanilla
CKKS scheme is less secure than BFV and BGV. The
attack uses the decryption function and the approx-
imate decryption result to infer information about
the RLWE error. In the best-case scenario, the at-
tacker potentially recovers the secret key with a
simple algebraic manipulation in one attempt, utiliz-
ing mathematical approaches such as the Extended
Euclidean algorithm and Bezout’s identity for com-
putational efficiency.

The authors also recommended modifying the
CKKS scheme by adding extra noise to the decryp-
tion results, aiming to conceal the RLWE noise and
mitigate attacks. However, if the decrypted results
are not shared with any untrusted participants, the
vanilla CKKS scheme in this case is secure enough.
In our framework context, once clients receive the
encrypted parameters from the central server, they
decrypt them locally and never share the decrypted
results with any other parties, making them suitable
and secure enough.

Additional security measures to address CKKS
crypto scheme vulnerabilities include secure selection
and periodically updating encryption parameters. En-
hancing key management is critical through the im-
plementation of secure key storage, such as hardware
security modules, to prevent unauthorized access.
Additionally, data privacy can be enhanced by inte-
grating cutting-edge technologies from DP or MPC.

Privacy and trustworthiness in healthcare sector

In today’s healthcare systems, trust and privacy are
essential aspects of the digital ecosystem that cannot
be compromised. Trust between stakeholders, such as
patients, healthcare professionals, health regulatory
authorities, and technological solutions providers, is
complicated and multifaceted. Due to the sensitivity
of medical data, it is crucial to protect the following
types of information: '8

« Identifiable personal information: Consisting of
a patient’s name, address, social security number,
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date of birth, and other financial information such
as bank account numbers.

Health status metrics: Detailed data regarding
a patient’s medical and psychological conditions,
effectively serving as a snapshot of their current
state of health.

+ Healthcare services data: This includes medical
and psychiatric consultations, prescribed medica-
tions, equipment used, and surgical or therapeutic
treatments.

Institutional and provider identifiers: Informa-
tion on healthcare facilities or professionals who
offered medical and psychological treatment.

The European Union’s General Data Protection
Regulation (GDPR) remains a prominent legislative
instrument that governs data privacy. It significantly
impacts public and private sector healthcare data pri-
vacy regulations by emphasizing individuals’ right to
control how their private data is used. Healthcare
systems can achieve unprecedented data privacy and
enable secure sharing and analysis by integrating FTL
with CKKS-based homomorphic encryption. This inte-
grated strategy promotes healthcare systems toward
a more secure and patient-centric model while simul-
taneously complying with GDPR standards. >4

Federated learning

FL is a decentralized ML framework that allows
stakeholders, such as healthcare and other data own-
ers, to collaboratively build a shared model while
storing their data locally. Since only the model’s pa-
rameters or gradients are transmitted in this method,
it is particularly attractive to entities with stringent
privacy policies. Participants can train a common
model on their local datasets in FL, even though
they may have distinct feature spaces and include
very different distributions of the shared features. The
trained models are either aggregated on a central
server or coordinated across participants to create
a global model. FL can be implemented on various
technical platforms and in applications in centralized,
decentralized, or heterogeneous environments. The
localized nature of the data and the collaborative
method for training make FL an effective strategy for
the privacy and security of data, particularly in fields
where data heterogeneity and privacy are essential,
such as healthcare. '

Transfer learning
The target domain of some real-world applica-

tions may suffer from insufficiency in data labeling
or a lack of features for various reasons, such as
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Fig. 1. System overview of the proposed PPFTL framework. '8

domain-specific expertise, data privacy, and cost and
time constraints, to name a few. The emergence of
TL enables these target domains to take advantage
of insights and patterns derived from more extensive
source domains.®>%¢ Automatic feature extraction
can be implemented through a successful, previously
trained deep CNN model. The feature maps generated
from the intermediate convolutional layers during
model training contain knowledge about the patterns
from the source dataset. These extracted features
surpass hand-crafted features and are effective for
feature extraction.*”-%®

In the healthcare domain, the use of the TL strat-
egy enables medical personals to fine-tune previously
trained models on medical data, such as radiology
scans, for particular tasks, such as ECG analysis for
early detection, as well as make decisions about the
best course of treatment. Despite the challenges of
ECG signals, which may vary substantially between
individuals, TL enhances the accuracy and efficiency
of an ECG’s cardiac interpretations. Hence, minimiz-
ing the need for extensive annotated ECG data labels
and accelerating the advancement of robust, reliable,
and accurate diagnostic tools within the healthcare
industry. 34!

System model

In order to fully understand the suggested pro-
cedure for analyzing 2-D ECG images’ beats, a

comprehensive understanding of the suggested Pri-
vacy Preserving Federated Transfer Learning (PPFTL)
framework is introduced in this section. The CKKS
encryption scheme was utilized in the suggested
framework due to its ability to support direct op-
eration on real numbers rather than approximation,
leading to improved model accuracy. The framework
comprises client-model and server-model stages. The
first primary stage performs data training, while the
second, represented by the server, performs a secure
aggregation of the models’ parameters or weights
gathered from the various distributed clients. Each
client locally trains a deep CNN model to extract
the most critical features from its own locally stored
data (beats’ images) via a previously trained model
through TL, thus maintaining the privacy of the data
during the training phase. The encryption of the
model weights is performed using the public key
within the CKKS scheme. Subsequently, the server
aggregates the encrypted weight matrices received
from various clients. The server transmits the final
aggregated weight matrix to the clients during the
second step. Each client updates its model’s weights
by decrypting the aggregated encrypted weight ma-
trix. After that, the aggregated model serves as an
organizing structure for the final classification stage,
providing a secure and private method for analysis.
Fig. 1 and the following algorithms provide a com-
plete system overview.
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Algorithm 1: Client model training

Input: The dataset at client c: D. = {(x, y)Ix € R™, y € R},; public key: Kpup; Mgiobai: global_model;

m. : Local model; W: model weights.
Output: Ciphertext of a matrix W: [[W]].
Begin
Step 1: Xiain, Xtest> Yerains Viest < Split_local_dataset (D)
Step 2: m. < Mgopal

Step 3: m..compile(loss = “categorical_crossentropy”, optimizer = “Adam”)

Step 4: me.fit < (Xiain, Yirain)
Step 5: W « {}
Step 6: For each [ € m. do
Step 6.1: [[W]] « encrypt_fractional(LW, Kyub)
Step 7: End For
Step 8: return [[W]]
End

// Encrypt the layer weights (LW € R™) with public key

// weights’ matrix in encrypted form

Algorithm 2: Secure model aggregation

Input: No._of clients: c; client_ model weights: W= {[W1l, ..
Output: Encrypted aggregated weight matrix: [W] qggregared

Step 1: [[W]] aggregated <~ {}
Step 2: For each [W] ; € W do
Step 2.1: For each [[r]] € [W] ; do

Step 2.1.1: [W] aggregated < wil aggregated@ [[r1]

Step 2.2: End For
Step 3: End For
Step 4: For each [[r]] € [W] aggregatea dO
Step 4.1: [1]] < [r] ® ¢}
Step 5: End For
Step 6: Return [W1 aggregated
End

- W1}

// Additive homomorphic operation

// Multiplicative homomorphic operation

// The aggregated matrix of weights in its encrypted form.

Client initialization

The steps in Algorithm 1 demonstrate the entire
sequence of steps occurring through the initializa-
tion stage. Each client receives the global model
architecture with their weights and independently
retrains the model’s upper layers, utilizing their pri-
vate set of data within batches of size 128 for 40
rounds. The generic feature extraction layers, whose
weights are frozen, remain unchanged during this
process. The categorical cross-entropy loss function
and Adam optimizer were utilized to compile the
model. Consequently, the trained model’s weight ma-
trix is encrypted and transmitted to the aggregator
using the homomorphic CKKS scheme. Before the
training step, private and public keys are generated
through the PYthon For Homomorphic Encryption
Libraries (PYFHEL) library for successful encryption.
Once local model training ends, the algorithm iterates
over each layer within the trained model to encrypt
its parameters by employing the generated public key
and then appending them to the encrypted weight

matrix. This procedure continues until all weights are
encrypted and formed properly before transmission.

Model aggregation

Algorithm 2 describes the aggregation process in
detail. First, the central server initializes a stor-
age structure for the average encrypted weights. It
generates an encrypted version of the denominator
that represents the reciprocal of the total number of
clients. Second, the aggregator receives all encrypted
weight matrices, denoted as {[W1lo, ..., [WI}, and
adds them homomorphically element-wise, where
each weight’s value participates equally in the final
aggregated weight matrix. Finally, the central entity
employs the FedAvg algorithm and securely computes
the average value for each neuron in the output en-
crypted matrix in the encrypted domain.

Client decryption

Clients can decrypt the weights after they have
been successfully encrypted and securely aggregated.
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Algorithm 3: Decryption process and local model update

Input: private key: K,;,; encrypted_aggregated weights: [WI aggregateq; global model: Mpqi

Output: Updated local model m,
Begin
Step 1: m. < Mgjopal
Step 2: For each [ € m, do
Step 2.1: [[r]] < [W] aggregated D
Step 2.2: | < decrypt fractional ([[r1], Kpriv)
Step 3: End For
Step 4: m..save_model
End

// lis a layer within the model.
// Retrieve the row that corresponds to the given layer.
// Row decryption and layer weight updates

// Client save aggregated model as global model.

Each client accepts the updated global model weight’s
matrix and traverses through its layers to decrypt
them with the private key previously generated uti-
lizing the PYFHEL library. It is essential to know that
PYFHEL loses reference to the encrypted version of
the decrypted floating point weight values and lacks
a direct link to the encrypted version; therefore, re-
referencing is required. Because of the unidirectional
nature of the decryption procedure, these newly de-
crypted weights are treated as a new entity. So, for
the decryption to be completely successful, must first
re-embed the decrypted weights into the model. The
decryption process is a key step in updating their local
models, as illustrated in Algorithm 3.

Experimental evaluation

This section assesses the effectiveness of our
method and discusses the experimental setup, includ-
ing datasets, architecture, and performance metrics.
After that, compare the outcomes and discuss privacy
and computational overhead.

Dataset and preprocessing

This study used the MIT-BIH Arrhythmia
Database, *> known for its high-quality, labeled ECG
records from eight different types of arrhythmia
(NOR, PVC, PAB, LBB, RBB, APC, VFW, and
VEB). Raw ECG records were converted to 2-D
grayscale images of size 96 x 96 for use as input
to the MobileNetV2-based feature extractor. The
choice of this image size is to maintain a balance
between computational complexity and sufficient
details. ECGs inherently hold fewer complex details
than other medical images, hence reducing the
need for higher resolution. FTL was employed for
decentralized training across several clients, with
data privacy guaranteed by the Homomorphic
Encryption Cheon-Kim-Kim-Song (HE-CKKS).
Concurrently, MobileNetV2 served as a feature

extractor to extract significant features from the
2-D ECG images. From the original dataset, 107,620
samples were obtained in total, then split into 80%
as a training set (86,092) and 20% as a testing
set (21,528). Oversampling minority classes and
under sampling dominant classes were both used
to address class imbalance. Since CNN was used as
a classifier, data augmentation techniques such as
rotation, zoom, shifting, and flipping were employed
in the training dataset, reducing overfitting and
balancing the distribution between classes on the
federated clients. This preprocessing method allowed
us to effectively exploit the spatial features of ECG
data in a federated and privacy-preserving manner,
providing a solid foundation for subsequent analyses.

Implementation and experimental setup

Table 2 provides an overview of the CNN architec-
ture derived from MobileNetV2 and used in the ECG
study.

The implementation was developed using Python
3.8.16 and utilized pre-existing third-party libraries.
Standard libraries were utilized, including Keras and
TensorFlow for ML. The NumPy library was also used
for processing weight arrays and the structure of
data. Furthermore, Pickle has been used for serial-
izing exported weights. Most importantly, PYFHEL*®
is a Python wrapper for Microsoft SEAL,** was uti-
lized for HE, and offers the same functionalities
as SEAL. Microsoft published the SEAL library for
HE in 2015. It employs both BFV* and CKKS®
schemes. It offers SHE from key generation to evalua-
tion, with homomorphic addition, multiplication, and
relinearization.

This study uses the standard parameters for HE
context generation to implement the CKKS scheme
within the PYFHEL library. The security parame-
ter n = 8192, scale factor = 23° and q; sizes =

[60, 30, 30, 30, 60]. The dataset is randomly dis-
tributed across clients C € (2, 3, and 4), then the
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Layer (Type) Output Shape No. of Parameters
input_2 (InputLayer) (None, 96, 96, 3) 0

Convl (Conv2D) (None, 48, 48, 32) 864
bn_Conv1 (BatchNormalization) (None, 48, 48, 32) 128
Convl_relu (ReLU) (None, 48, 48, 32) 0
expanded_conv_depthwise (DepthwiseConv2D) (None, 48, 48, 32) 288
out_relu (ReLU) (None, 3, 3, 1280) 0
avg_pool (GlobalAveragePooling2D) (None, 1280) 0
flatten (Flatten) (None, 1280) 0
dropout_3 (Dropout) (None, 1280) 0

dl (Dense) (None, 1024) 1311744
dropout_4 (Dropout) (None, 1024) 0

d2 (Dense) (None, 256) 262400
dropout_5 (Dropout) (None, 256) 0
classifier (Dense) (None, 8) 2056

Total params: 3,834,184. Trainable params: 1,576,200. Non-trainable params: 2,257,984.

encrypted domain’s predictive results regarding per-
formance are compared to the plaintext domains.

Practical considerations for real-world
implementation of PPFTL in healthcare sector

Several aspects must be considered to implement
and deploy the proposed PPFTL framework in a
real-world healthcare environment, including infras-
tructure requirements, regulatory compliance, user
adoption, security and privacy assurance, and con-
ducting practical studies. These aspects are briefly
explained in the following:

+ Infrastructure requirements: To deploy the
PPFTL successfully, a robust infrastructure, in-
cluding hardware and software to handle FL
and HE computational demands, is necessary.
Healthcare organizations require access to high-
performance servers and clients’ devices for effi-
cient cryptographic computation. In addition, a
reliable network is required to exchange the data
required by FL-distributed models without expos-
ing raw data.

Regulatory compliance: Following healthcare
regulations is essential for ensuring PPFTL deploy-
ment based on legal standards regarding patients’
sensitive data. Compliance with GDPR and HIPAA
is critical for the implementation, ensuring that
the transmitted and processed data is encrypted
and only minimal data is shared. Also, developing
and maintaining an audit trail, which is a mecha-
nism that is crucial to recording every access and
process of a patient’s data in addressing potential
breaches.

User adoption: several factors must be consid-
ered for the PPFTL to be adopted by healthcare

professionals; these include training and support
to educate healthcare staff with a comprehen-
sive training course on the proposed system and
continuously provide support to address any is-
sues that arise while using. A user-friendly User
Interface (UI) design for ease of use, especially
for non-technical staff. A feedback mechanism
with end-users will help to continuously opti-
mize and update the PPFTL framework based on
practical and real-world feedback from healthcare
providers.

Security and privacy assurance: Beyond regu-
latory compliance, transparency, including com-
prehensive documentation of how the data are
being collected, stored, processed, and protected,
should be available to the parties involved. Also,
emphasizing privacy guarantees of the PPFTL by
explaining how data exposure being minimized in
contrast to centralize approaches.

Practical studies: Before deploying and imple-
menting the proposed framework into the real
world, PPFTL must be tested in controlled health-
care configurations to monitor performance and
gather real-time feedback. Additionally, evaluat-
ing the proposed framework scalability on these
tests ensures it can handle additional loads gener-
ated by the increased number of participants.

Results and discussion

At first, experiments were conducted using the MIT-
BIH Arrhythmia dataset for ECG-based arrhythmia
classification without the FTL and CKKS encryption
scheme. Only one client participated in this baseline
examination.

To understand the efficiency of the proposed frame-
work in real-life environments, performance metrics
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Table 3. Performance metrics for this non-federated, non-encrypted model.

Preprocessing Techniques

Balancing Augmentation Accuracy Precision Recall F1-score

No No 0.923076928 0.829913127 0.853783358 0.832628812
Yes No 0.820605695 0.617478568 0.872002949 0.677675383
Yes Yes 0.73722595 0.573148724 0.838614315 0.618775105

were evaluated to assess the model’s classification
performance across various categories. Accuracy is
a general indicator represented by Eq. (8), which
measures the overall correctness of the model. It is
calculated by the sum of the total true positives and
true negatives divided by the total number of cases.
Precision, denoted by Eq. (9), measures the ability of
the model to classify positive values correctly and is
calculated by dividing the true positives by the total
number of predicted positive values. Recall, denoted
by Eq. (10), which calculates the model’s ability to
detect positive values among the actual positives. It
is the ratio of the true positives to the total values of
actual positives. The Fl-score, denoted by Eq. (11),
balances precision and recall, where 1 reflects per-
fection while 0 is the worst.

TP + TN
Accuracy = (8)
TP + TN + FP + FN
TP
Precision = ——— ()]
TP + FP
TP
Recall = —— (10)
TP + FN
2x (Precision * Recall)
F1 — score = an

Precision + Recall

Table 3 shows the performance metrics for this
non-federated, non-encrypted model and the total
execution time was 2347.022s. The model was com-
piled with Adam optimizer for the learning process,
and ReLU was utilized as an activation function,
while the last dense layer was a Softmax. Other hy-
perparameters include a minibatch size of 128, the
number of epochs fixed at 40, and a dropout value
of 0.5.

Table 3 shows that the highest accuracy has been
achieved at 92.31% when no augmentation and
balancing preprocessing techniques are performed,
while the F1_score is approximately 83.26%, indicat-
ing that the model performs best with this original
configuration without preprocessing procedures. Ap-
plying the balancing technique lowers the accuracy

to 82.06% and precision to 61.75% while increasing
recall to 67.77%, which helps the balanced model
identify more positive cases across various classes.
Furthermore, applying augmentation with data bal-
ancing reduces the model’s accuracy to 73.72%.
Similarly, the F1_score drops to 61.88%, reducing
model performance. Fig. 2 shows the performance
evaluation of the MobileNetV2 model of 8 classes for
loss and accuracy of the analyzed model’s training
set under different configurations concerning data
balancing and augmentation techniques.

Fig. 3 shows the confusion matrix for ECG ar-
rhythmia classification conducted on a test set under
various configurations for MobileNetV2 of 8 classes.
Fig. 3 (a) displays the confusion matrix of the base
model without implementing preprocessing tech-
niques and has the highest overall performance
metrics, as illustrated in Table 3. The model classifies
most classes correctly due to the high values of true
positives in the main diagonal, validating the high-
performance metrics. However, some classes, like
RBB and VFW, show a low recall value, raising con-
cern. In Fig. 3 (b), there is a shift in the main diagonal
values, which represent the correct predictions, being
decreased, particularly for the NOR labels compared
to their respective values of the confusion matrix in
Fig. 3 (a). This indicates that the model decreases
in its ability to correctly identify this class when the
balancing technique is applied. The precision decre-
mented value of performance metrics in Table 3 is
evident in Fig. 3 (b), in which false positive values
(off-diagonal values) are noticeable, particularly in
the RBB class of rate 0.18. Implementing the aug-
mentation procedure with data balancing, the model
significantly degrades overall performance metrics,
including accuracy, precision, and F1_score, as seen
in Table 3. Regarding the confusion matrix, Fig. 3
(c) shows that the true values (main diagonal values)
are high, referring to the classification of each class
as good. The model is strong in identifying APC and
VFW classes with a 0.98 rate value. Also, some class
confusions are being noticed; specifically, the NOR is
being misclassified as APC.

Subsequently, FTL was applied to the architecture,
observing the model’s performance based on evalua-
tion matrices. Table 4 shows the performance results
of the FTL approach without encryption.
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Fig. 2. MobileNetV2: Performance evaluation under various training configurations: (a, b) accuracy and loss without balancing or augmen-
tation; (c, d) with data balancing only; (e, f) with balancing and augmentation strategies.

Then, encryption was implemented to the model
using the CKKS scheme, observing the performance
measurements and adjusting various parameters re-
garding each run. Table 5 shows the performance
measurements of FTL with encryption.

Figs. 4 to 6 show accuracy, precision, recall, and
Fl-score in federated environments across various
data configurations grouped by client numbers 2,
3, and 4. HE-CKKS encryption approach was ap-
plied once the initial model was trained without
encryption.

Aside from the evaluation metrics computed above,
the computation complexity of the entire process
starts from the training at the client’s side over
the GPU until the end of the collaborative training
process, then classification results utilizing a secure
aggregated model. Tables 6 and 7 display the impact
of encryption and the computation complexity in
the collaborative process with a different number of
clients. Fig. 7 shows the total execution time of an
8-class MobileNetV2 pertained model in 2, 3, and 4
clients.
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Fig. 3. Confusion matrix for heartbeat classification on a test set for the baseline MobileNetV2 model under various configurations: (a)
without data balancing and augmentation; (b) with balancing only; (c) with both balancing and augmentation.

Table 4. Performance measurements: federated transfer learning without encryption.

Balance-Augment configuration Clients Accuracy Precision Recall Fl-score

0.852935731 0.925331249 0.599296672 0.682568185
0.785024166 0.830279854 0.483591325 0.552187302
0.814381242 0.968411290 0.479613559 0.565636811
0.859996259 0.670932913 0.872986862 0.712459160
0.839232624 0.656849202 0.859086509 0.691721481
0.871098101 0.684399758 0.851597916 0.699958531
0.771042347 0.570097763 0.833888412 0.619122848
0.777173936 0.608232374 0.781058720 0.616837991
0.751486421 0.590910337 0.784364743 0.602211150

NoBalance, NoAugment

Balance, NoAugment

Balance, Augment

AWNDPWONDMWODN

A histogram was utilized to show the correlation  trained model for training classifier layers reduces
between running time and homomorphic encryption.  overhead.
Fig. 8 shows that HE-CKKS implementation resulted With the findings being presented above, analyses
in a slight increase in running time. Utilizing a pre-  and insights can be deduced. Due to direct access to
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Table 5. Performance measurements: federated transfer learning with encryption.

Balance-Augment configuration Clients Accuracy Precision Recall F1-score
NoBalance, NoAugment 2 0.848522842 0.878016053 0.609438536 0.650703053
3 0.763517261 0.831286286 0.428062989 0.498521329
4 0.796915650 0.844882119 0.431418773 0.512032135
Balance, NoAugment 2 0.853818297 0.662478607 0.869734012 0.713714918
3 0.856140852 0.669617578 0.859177516 0.704492939
4 0.881224453 0.688576401 0.851417763 0.706130786
Balance, Augment 2 0.693143785 0.561076201 0.832628086 0.597602954
3 0.679022670 0.563893396 0.726780494 0.547892088
4 0.767837226 0.609095081 0.771069807 0.602702799
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Table 6. Computation overhead of MobileNetV2 for 8 classes among different client counts.

Time (seconds)

Category

Two clients

Three clients

Four clients

Generating keys

Splitting data

Training client 0

Encrypting weights with public key client O
Training client 1

Encrypting weights with public key client 1
Training client 2

Encrypting weights with public key client 2
Training client 3

Encrypting weights with public key client 3
Averaging encrypted weights

Export aggregated weights

Decrypt encrypted aggregated weights
Re-integrate decrypted weights to model
Model’s Evaluation Time

Total Execution Time

0.0425 0.0411 0.044
0.8013 0.8974 0.82
1434.6969 1094.3825 951.0993
11.9421 11.8538 11.8986
1456.8292 1131.1527 975.2448
11.642 11.7606 11.8525
1113.6686 930.612
11.5211 11.7796
975.0884
11.8228
4.0318 4.0597 4.2669
4.6476 4.9047 5.0477
4.6614 4.8288 4.7331
1.1717 1.1858 1.0474
15.4991 15.4991 15.4991
2945.9656 3405.7559 3910.8562

Table 7. Comparative analysis: computation Cost (Run
Time in seconds).

No_Of Clients No Encryption HE-CKKS

2 2914.522 2945.9656
3 3362.8996 3405.7559
4 3855.6382 3910.8562

unmodified data, the proposed convolutional model
can learn from accurate patterns without noise or
precision loss in circumstances without encryption.
In contrast, encryption increases the computational
overhead and affects the algorithm efficiency, influ-
encing the accuracy of the results. Tables 3 and 4
showed experimental results that provided insights

into the performance metrics of both encrypted and
unencrypted methods. HE-CKKS scheme appears to
have a minor influence on FTL model accuracy, which
is reassuring since model degradation is a major
concern. The balanced dataset outperforms the non-
balanced dataset in terms of performance metrics.
This indicates that class-balanced models are more
robust, especially with regards to recall.

The model is less likely to suffer from client in-
crements, at least in terms of learning, due to its
use of TL. In essence, it is not good to increase
clients’ numbers in the issue at hand simply be-
cause the actual data distribution in the classes will
not be authentic due to balancing and augmentation
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Fig. 8. A comparison of total execution times for MobileNetV2 of 8 classes with or without encryption under different client numbers.

techniques. Furthermore, it is important to note that
classes with a small sample size are particularly sus-
ceptible to overfitting. When using a DL model and
handling more clients, the risk also increases. Both
models show improved performance by integrating
data balance technology. However, applying balanc-
ing and augmentation techniques results in worse
performance metrics than not using them. In general,
measurements reveal that, from a model performance
standpoint, implementing HE-CKKS encryption into
FTL is an attractive choice that paves the way for
secure, PPDL without affecting much accuracy or
effectiveness.

As you can see in Table 5, more research into com-
putational overhead shows that the runtime of both
encrypted and unencrypted configurations grows as
the number of clients increases, which is expected be-

cause of the correlation between the number of clients
and computation time. Compared to unencrypted,
the CKKS computational cost is slightly higher across
board clients, approximately 1.08% for 2 clients,
1.27% for 3 clients, and 1.43% for 4 clients. However,
the difference is negligible, indicating that the CKKS
adoption is quite successful. Utilizing a pre-trained
MobNetV2 as a feature extractor in FTL effectively de-
creases the computational cost. This is because there
is no need for encryption or fine-tuning. When only
the classification part of the model is encrypted, the
computational overhead is much less than if the entire
model architecture were to be encrypted. Table 8
compares performance accuracy and privacy guar-
antees between our proposed PPFTL framework and
the related work approaches for privacy-preserving
medical diagnosis.



3110

BAGHDAD SCIENCE JOURNAL 2025;22(9):3094-3113

Table 8. Comparison of performance accuracy and privacy guarantees between our proposed PPFTL framework and the related work

approaches for medical diagnosis.

Reference Privacy guarantees Dataset (s)

Accuracy (%)

Li, Wenqi '° DP BraT$S 2018 83%-85%
Vijaya Kumar A7 MPC, PHE (Additive COVID-19 patient-related data N/A
-Paillier)
Wibawa et al. 18 MPC, HE COVID-19 82%-85%
Kara, Mostefa FHE using twin key Patient’s heart rate and other related N/A
et al.® encryption healthcare data
Kachuee, Not Applied PhysioNet MIT-BIH Arrhythmia and Arrhythmia:93.4%
Mohammad ° PTB Diagnostic ECG Databases MI: 95.9%
Gao, Dashan?! MPC, Paillier’s HE, SS,  « Spambase + 0.8315 + 0.0355 — Spambase
DP » Wisconsin Diagnostic Breast Cancer (HFTLyg).
(“WDBC”) * 0.9491 + 0.0482 - WDBC (HFTLR).
» mfeat-fourier » 0.6923 + 0.0162 - mfeat-fourier
« heart disease dataset (“heart”) (HFTLgs).
« Default-of-Credit-Card-Clients » 0.7230 + 0.0659 - heart
(“Default-Credit”) (HFTLss, HFTLR).
» Real-world dataset (MIMIC-III) * 0.5212 £ 0.0423 - Default Credit
(HFTLyg).
Liu, Yang et al.?? Additive HE, SS + NUS-WIDE N/A
+ Default-of-Credit-Card-Clients
(“Default-Credit”)
Singh et al.?? FL for end-device IoT healthcare related dataset N/A

privacy

(weight meters, blood pressure,

glucose meter, insulin pump)

Walskaar et al. 2> MPC, xMK-CKKS COVID-19

Our proposed HE-CKKS

PPFTL framework

PhysioNet MIT-BIH Arrhythmia
ECG database

* 89%-97% (clients: 2 to 5)
* 50% (clients: 10)
88% (clients: 2 to 4)

Conclusion

Regulations like Europe’s GDPR have brought at-
tention to the necessity for secure data handling
methods as data privacy gains prominence, especially
in the healthcare industry. FTL reduces data expo-
sure by creating decentralized data training among
institutions. Combined with homomorphic encryp-
tion, it allows for private and secure computations of
sensitive data. These technologies not only improve
performance but also increase computing complex-
ity, a trade-off willing to accept as preserving data
privacy is essential.

Performance scores within FTL usually surpass
80%. Still, accuracy drops slightly when data bal-
ancing and augmentation preprocessing strategies are
used at the same time. However, the findings of the
proposed paradigm show resilient scores regarding
precision, recall, and Fl-score despite the slight ac-
curacy reduction. Hence, maintain a balance between
precision and recall while at the same time classifying
positive cases accurately. Overall model performance
is preserved due to CKKS encryption scheme usage.
It also preserves the model’s privacy and adjusts as
well as scales for various applications under different
scenarios.

Data driven models within healthcare field are
hindered through data security and patients’ pri-
vacy attacks. As a result, improving the security
of data and the processing methods are essential.
The suggested framework takes advantage of utiliz-
ing FTL and HE technologies, and further improves
the security and efficiency of the application via
minimizing the shared actual raw data within the
healthcare industry. Future research will explore
and enhance the employed cryptographic scheme
by utilizing multi-key CKKS to solidify the security
of our framework. This feature promotes data pri-
vacy and model update confidentiality by making
aggregated data inaccessible to participants. Also,
adopting a weighted averaging strategy incorporating
the size of each client’s training data could result in
a more nuanced model updating approach. Addition-
ally, optimizing PYFHEL’s built-in code for parallel
processing will significantly reduce the total execu-
tion time under encrypted weight sharing, thereby
decreasing computational overhead. Furthermore, a
scalability assessment of the suggested framework
needs to be conducted on a more complex medical
dataset and tested with a more considerable number
of participating clients.
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