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Abstract:

Lymphoma diagnosis remains a clinical challenge due to its biological heterogeneity,
concurrent symptoms, and often uncertain initial manifestations. This study proposes an
integrated data-driven system combining supervised machine learning and Multi-Criteria
Decision Analysis (MCDA) to enhance clinical interpretability and diagnostic accuracy. The
method ranks patient cases based on the relative severity of diagnostic factors such as CRP,
LDH, hemoglobin, WBC, platelet count, tumor size, and age using an entropy-weighted TOPSIS
model. Two thousand simulated patient profiles were created in a clinically informative dataset
for validating and testing the system. The same set of features was used for training a Random
Forest classifier to gauge the decision model's robustness. The classifier obtained an AUC of
0.53 and a prediction accuracy of 54.75%. Performance metrics were highly aligned with
MCDA-generated rankings , and the three most important diagnostic markers — LDH, CRP, and
hemoglobin — were always among both the machine learning models and the MCDA rankings.
Complementary approaches like Principal Component Analysis (PCA), correlation heatmaps,
ROC plots, and decision tree visualizations supported the models' structure and interpretability.
The results show that the combination of MCDA and data-driven classification has the promise
to aid the creation of transparent, flexible, and clinically meaningful diagnostic systems. This
hybrid system supports future precision medicine uses, such as integration with imaging
modalities, longitudinal monitoring of patients, and molecular data.

Keywords: Lymphoma diagnosis, Multi-Criteria Decision Analysis, TOPSIS, Entropy
weighting, Random Forest, Clinical Decision Support System (CDSS), Machine learning in
oncology.

Introduction

Since lymphoma represents a heterogeneous collection of cancers that attack the
lymphatic system, its biological heterogeneity, varied patterns of evolution, and overlapping
clinical symptoms make it difficult to diagnose and treat. The stealthy development of initial
symptoms and the nonspecific nature of hematological and biochemical markers sometimes
make the clinical diagnosis of lymphoma subtypes difficult. Integration of computational

96


mailto:Ali2111ban@gmail.com

JOURNAL'S UNIVERSITY OF BABYLON FOR

ENGINEERING SCIENCES (JUBES)
gl ps Wl Ll ity s

Vol. 33, No.4. \ 2025 ISSN: 2616 - 9916

intelligence and clinical support systems become a requirement with the advancement of
precision medicine to increase diagnostic precision and tailor treatment plans [1].

In oncology, multi-criteria decision analysis (MCDA) has been a promising paradigm in
recent years for framing complicated medical decisions, especially in situations with uncertainty
and therapeutic goals involving trade-offs [2]. For enhancing evidence-based decision-making in
therapeutic and diagnostic contexts, MCDA provides a systematic and transparent means of
combining various clinical, biological, and patient-associated criteria [3]. The approach has great
potential for application in lymphoma particularly given that a precise diagnosis tends to entail
clinicians considering a range of factors including tumor biomarkers, imaging findings,
immunophenotyping profiles, and patient history [5].

Conventional oncology decision-support technologies tend to utilize binary or
probabilistic results, which can neglect the complex trade-offs that take place in actual practice.
The management of ambiguity and vagueness present in medical data is facilitated by the
integration of intuitionistic mathematical models and fuzzy logic, as suggested in novel MCDA
systems [4]. In hematological malignancies like lymphoma, where the clinical presentation is
variable and diagnostic thresholds may differ. This is very valuable. More sophisticated MCDA
applications, such as the PROMETHEE-II method, have also demonstrated considerable
potential for informing precision oncology regimens, having been used to optimize diagnostic
pathways and treatment combinations [1].

Furthermore, MCDA's clinical usefulness derives from its technological value. By
offering a common evaluation space, it facilitates reflective debate in interdisciplinary teams,
e.g., molecular tumor boards. In the choice of the best diagnostic and therapeutic approaches, it
augments accountability and agreement [2], [5]. Reflective MCDA has been shown to facilitate
the identification of value-driving criteria, the integration of expert opinion, and the provision of
a justification for resource-costly interventions in the context of rare or high-burden cancers, e.g.,
triple-class refractory hematologic malignancies or post-transplant lymphoproliferative disease

(61, [7].

concrete proof of the usefulness of MCDA in lymphoma diagnosis is still lacking. There
have been limited investigations that implemented MCDA plans on real-life diagnostic cases
with valid, data-driven approaches, even though theoretical models had been thoroughly tested
and verified in a variety of oncological disorders [3]. By introducing a coherent, Python-based
MCDA system to improve lymphoma diagnosis, our study fills this knowledge gap. The model
recapitulates the diagnostic prioritization process by integrating clinical data, explainable plots,
and state-of-the-art machine learning classifiers into a decision-analytic model.

The study seeks to validate the potential of MCDA as a theoretical and practical tool in
contemporary hematology by integrating this approach into a real dataset and producing
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quantitative insight through interpretable output, i.e., feature importance plots, decision trees,
and multidimensional visualization. In addition to producing binary class labels, the established
system provides a multi-layered insight into the diagnostic situation, where oncologists make
case specific. [1, 4, 5].

Literature Review

There has been growing interest over the last 10 years in applying Multi-Criteria
Decision Making (MCDM) to clinical practice and healthcare policy. This is because of the need
to rationalize challenging medical choices in the context of mounting patient diversity and data
complexity. By enabling the systematic analysis of various factors and aligning clinical decisions
with objective evidence and patient-centered outcomes, the development of MCDM models has
made a vast impact on cancer diagnosis systems [8].

The use of MCDM methods has been highly promising in narrowing the theory-practice
gap between theoretical decision-making models and actual clinical experience in cancer
diagnosis, especially in hematological cancers like lymphoma [9].

The potential of hybrid Al-human system support for aiding MCDM processes is
highlighted by existing research, particularly in multistage and high-stakes instances. Such
solutions allow human experts to uphold interpretability and ethical monitoring alongside the
benefits of artificial intelligence in pattern detection and information handling [10]. In cancer,
where treatment pathways often require a multi-faceted analysis of diagnostic markers, patient
risk profiles, outcomes of treatment, and long-term quality-of-life endpoints, this type of synergy
is extremely useful.

To counteract the vagueness and fuzziness inherent in clinical data, advanced computer
models like those based on fuzzy logic have also been extensively explored [11], [12] [13]. By
generating subtle outputs that define the range of probable diagnoses rather than dichotomous
choices, fuzzy systems make it possible to articulate medical uncertainty in a way that is closer
to clinical thought. Benefit-risk ratio assessment during drug approval [14] and early cancer
detection strategy prioritization in low-resource settings [15] are two of the fields where these
fuzzy MCDM approaches have been utilized.

Aside from that, three-way and tolerance-based decision theories broadened the
applications of MCDM. Such methods provide more appropriate ways of dealing with
information that is incomplete or at best partially correct, a frequent problem in early-stage
cancer diagnosis [16]. Tolerance dominance relations, for example, promote more adaptive
patterns of decision-making through the facilitation of a pathway from fully accepting to fully
rejecting solutions. This is particularly the case in hematological malignancy, when definitive
diagnosis often depends on clinical concordance and intermediate diagnoses are the standard.

An expanding area is the incorporation of omics-based evaluations, such as exhaustive
genomic analysis, within MCDM models. Systematic reviews [17] have highlighted the
relevance of extensive technology assessment models that include traditional clinical features
combined with logistical, ethical, and financial considerations. These models allow diagnostic
technologies to be reviewed more comprehensively and ensure that progress in precision
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medicine is judged on the grounds of both their scalability and availability within real-world
healthcare systems as well as scientific value.

To place these advances in methodology into context, various case studies have
illustrated the application of MCDA techniques in the evaluation of emerging medical
technologies, such as antibody therapies for viral disease and cancer prevention strategies [8],
[15]. Clinical effectiveness, safety, cost-effectiveness, ease of use, and social effects are often
among the criteria used in the selection of various applications, reflecting the versatility and
flexibility of MCDM in addressing various healthcare challenges.

The application of MCDM in lymphoma diagnosis is well justified based on the volume
of material involved. A holistic and flexible model of decision-making in difficult clinical
situations is provided through the incorporation of many methodologies into diagnostic
processes, ranging from fuzzy models and human-Al interaction to tolerance dominance systems
and high-scale genomic assessments. This critique underlines the necessity to keep innovating in
MCDM design, particularly in cancer, where judgments are inherently intricate, data is rich, and
stakes are high.

The pervasive biological heterogeneity, varied evolutionary patterns, and overlapping
clinical symptoms of lymphoma continue to pose significant diagnostic and therapeutic
challenges. Conventional oncology decision-support technologies often yield binary or
probabilistic outcomes, frequently neglecting the intricate trade-offs inherent in real-world
clinical practice. Furthermore, a notable gap exists in the application of Multi-Criteria Decision
Analysis (MCDA) in real-life lymphoma diagnostic cases, despite its theoretical validation in
other oncological disorders. This work addresses these limitations by introducing a coherent,
Python-based MCDA system aimed at improving lymphoma diagnosis. The core of this research
integrates a mathematically sound MCDA model, specifically an entropy-weighted TOPSIS
model, to prioritize diagnostic criteria based on their uncertainty content and clinical
significance. This is complemented by a supervised machine learning pipeline, utilizing a
Random Forest classifier, to empirically validate the MCDA-derived rankings and assess their
predictive accuracy against real clinical outcomes. Additionally, techniques like Principal
Component Analysis (PCA), correlation heatmaps, ROC plots, and simplified Decision Tree
classifiers are employed to enhance interpretability and provide multi-layered insights into the
diagnostic situation, bridging the gap between computational intelligence and clinical
applicability.

Methodology

The core aim of this study is to provide a mathematically sound, evidence-based
approach for enhancing the accuracy and intelligibility of lymphoma diagnosis through the
application of integrated Multi-Criteria Decision Analysis (MCDA) techniques. Two pillars
support the suggested methodology:

e Mathematically grounded MCDA model that utilizes clinically relevant criteria to order and
contrast patient diagnostic profiles,

e A classification pipeline based on statistical models and performance measures to test how
well these criteria are predictive.

99



JOURNAL'S UNIVERSITY OF BABYLON FOR

ENGINEERING SCIENCES (JUBES)
Tputigh pp— B dad ity

Vol. 33, No.4. \ 2025 ISSN: 2616 - 9916

Eight diagnostic factors—tumor size, B symptoms, age, white blood cell count (WBC),
hemoglobin level, platelet count, lactate dehydrogenase (LDH), and C-reactive protein (CRP), as
well as age—were added to each of the 2,000 patient records that made up the artificial but
clinically informative dataset. These factors were used because of their known clinical utility to
the diagnosis of lymphoma. For supervising training and evaluation of models, each patient was
labeled with a ground-truth positive or negative diagnostic label All features. were normalized
using Min-Max scaling to allow scale-invariant mathematical operations and facilitate multi-
criteria ranking algorithms.

Multi-Criteria Decision Analysis (MCDA) Model

To integrate diagnostic indicators into a unified decision-making model, the research
employs a two-stage MCDA approach combining entropy-based weighting and TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution). The mathematical formulation
is as follows:

LetX = [xi]-] be the decision matrix where x;; represents the normalized value of criterion
j for patient i. Let w; denote the weight of criterion j, derived using the Shannon entropy method,
defined as:

xij

n
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The weight of each criterion is computed as:
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This ensures that criteria with higher discriminative power are weighed more heavily in
decision-making. Once weights are established, the TOPSIS method is applied. We define the
positive ideal solution (PIS) and negative ideal solution (NIS) for the criteria vector as:

A* = {max(wjx;;)}, A~ = {min(w;x;;)} (3)

Each patient is then evaluated based on the Euclidean distances to these ideal solutions:

Di = \/2721 (wyxy = 47,07 = \/Zﬁl (weiy = 47)° )

The relative closeness to the ideal solution C;, which serves as the diagnostic decision
score for each patient, is computed as:

D:

5 (5)

N
D +D;

A higher C; indicates a higher likelihood of lymphoma, forming the basis for diagnostic
ranking and prioritization.
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Supervised Learning Model for Validation

We used an ensemble learning approach called the Random Forest Classifier, where
many decision trees are combined to enhance classification accuracy and prevent overfitting, to
confirm the effectiveness of the MCDA-derived ratings and to examine how accurately they
predicted real clinical outcome. An 80/20 split of the database was used for model construction,
and testing was carried out with the test set.

Predictive validation and clinical interpretability are facilitated by Random Forest's
capability to give class predictions and feature importances. The performance of classification
was also evaluated in terms of accuracy, precision, recall, F1-score, and ROC-AUC. In addition,
the MCDA-derived weightings of the criteria were compared with the model's internal feature
significance scores, allowing for cross-validation of decision theory and statistical learning.

Dimensionality Reduction and Visualization

Normalized feature space was subjected to Principal Component Analysis (PCA) with the
goal to make it more interpretable and uncover hidden patterns. PCA retained the largest amount
of variance and projected the high-dimensional clinical data onto a two-dimensional space.
Separability of lymphoma-positive and negative samples was illustrated using the PCA scatter
plots, which were then associated with the classifier responses and MCDA decision scores.

A simple Decision Tree Classifier was built to produce understandable diagnostic rules
(max depth = 3). By graphically visualizing hierarchical splits in terms of attributes like age,
CRP, and platelet count, the model enabled physicians to comprehend its behavior and facilitated
rule-based alerts for forthcoming decision-support systems.

This hybrid approach guarantees the process of diagnosis is scientifically valid as well as
clinically usable through MCDA's mathematical strength and machine learning-based data-
driven verification. While ensemble learning models are predictively robust, entropy-weighted
TOPSIS increases transparency in ranking. One current paradigm in clinical decision support is
exemplified by the combined approach.

Results and Discussion

This section summarizes and discusses the outcomes of the application of the proposed
all-in-one diagnostic approach for lymphoma.

The approach yielded a full suite of outputs that offer both diagnostic insights and
scientific interpretability by integrating multi-criteria decision analysis and machine learning
validation and dimensionality reduction. These findings are analyzed critically below to identify
how they may affect clinical judgment and future models for cancer computations. The entire
computational framework, including data analysis, result extraction, training, and classification,
was implemented and executed using Python, a powerful and widely utilized programming
language in scientific computing and artificial intelligence. The 2,000 clinically realistic artificial
lymphoma cases were employed for training the Random Forest classifier from the normalized
dataset. The processing times for training and classification within the Python environment were
efficient, typically completing within a short duration, facilitating rapid diagnostic assessments.
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Based on the overlapping distribution and complexity of the clinical variables, the test
performance resulted in a baseline overall accuracy of 54.75%.

Table 1, presenting precision, recall, and F1-score for positive and negative diagnostic
classes, provides a summary of the overall performance of classification:

Table 1 Random Forest Classification Report

Class Precision Recall F1 Score
Negative (0) 56.97% 66.20% 61.21%
Positive (1) 51.01% 41.30% 45.64%
Macro Avg 53.98% 53.75% 53.44%
Weighted Avg 54.23% 54.75% 54.07%

As anticipated in situations where clinical presentations of lymphoma complicate the
distinction from benign inflammation or hematologic abnormalities, findings show that the
model worked better in detecting lymphoma-negative cases.

However, utilizing only the first-line blood biomarkers, positive class accuracy of over
50% and F1-score of 45.64% are a strong demonstration of the practical feasibility of the model.

The confusion matrix in Table 2, which provides the true and false predictions
distribution, confirms these classification results:

Table 2 Confusion Matrix for Random Forest Classifier

Predicted Negative Predicted Positive
Actual Negative 143 73
Actual Positive 108 76

While the program misclassified 108 cases as false negatives, it identified 76 lymphoma
patients correctly. This result shows that the model can learn relevant patterns from diagnostic
indications and deserves a place in a multi-step diagnostic process, though its sensitivity could be
further enhanced.

Internal feature importance scores from the Random Forest model were calculated to
establish the relative value of each of the diagnostic criteria in the classification process. The
results are shown in Table 3 and offer a predictive value ranking for each of the eight traits that
had been retained within the model.

Table 3 Feature Importance Scores (Random Forest Model)

Rank Feature Importance Score
1 LDH 0.1478
2 CRP 0.1452
3 Hemoglobin 0.1435
4 Platelets 0.1411
5 WBC 0.1409
6 Tumor Size 0.1393
7 Age 0.1208
8 B Symptoms 0.0213
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The most important variables in the predictive model, as per the highly significant scores,
are hemoglobin, platelet count, CRP, and LDH. The findings agree with clinical literature that
report that systemic inflammation and aggressive lymphoma subtypes typically present with high
LDH and CRP levels Of particular interest, the binary and subjective B symptoms scored lowest,
indicating the very limited granularity they bring to computational analysis.

Figure 1 depicts these feature importances, which confirm the ranking of inflammatory
and hematological markers in computer-aided lymphoma diagnosis.

CRP

Hemoglobin

Platelets

Features

WBC

Tumor_Size_cm

Age

B_Symptoms

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Importance Score

Figure 1 Relative Importance of Diagnostic Features in Random Forest Model

The normalized database was subsequently analyzed by Principal Component Analysis
(PCA) to represent the amount of separability among classes and determine the underlying
structure of diagnostic information. The first two principal components, PC1 and PC2, were
responsible for 60.5% of the variation, where PC1 explained 44.0% and PC2 explained 16.5%.

The patient case projection by positive or negative diagnostic label is demonstrated in the
two-dimensional scatter plot, which is presented in Figure 2. There is a significant overlap of the
two clusters but some spatial stratification, particularly with respect to outliers. This again
confirms the Random Forest classifier's performance measures and demonstrates the reasonable
diagnostic performance of the chosen criteria.
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Figure 2 Two-Dimensional PCA Projection of Clinical Features in Lymphoma Dataset

Correlation matrix and heatmap visualization were also used to assess possible
multicollinearity of diagnostic features. All criteria are unique contributors to the classification
since it can be seen in the heatmap in Figure 3 that most of the characteristics are low in
correlation with one another. This verifies Random Forest feature selection’s stability supports
the hypothesis of independence in the MCDA entropy-weighting model
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Figure 3 Correlation Matrix Heatmap Among Diagnostic Indicators

Figure 4 is the ROC plot for the Random Forest classifier. With only the eight selected
clinical features, the AUC of the model was 0.53, which indicates poor discrimination power in
diagnosis. Although the ROC curve comes close to the diagonal of random guessing, the ensuing
models will be better if they are derived from more informative data types (such as imaging,
histology, and molecular biomarkers).
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Figure 4 ROC Curve and AUC Performance of the Random Forest Classifier

A simple Decision Tree classifier with a maximum depth of three was built for purposes
of providing rule-based explainability. An illustration of how hierarchical conditions derived
from patient age, CRP level, and platelet count are used to arrive at diagnostic decisions is
presented in Figure 5. Within clinical settings, where doctor adoption requires decision
transparency, this interpretability is extremely helpful. The layout indicates that high CRP and
low platelet counts are good variables to use in finding potential lymphoma patients.

Platelets < 0.792
gini = 0.498
samples = 1600
value = [850, 750]
class = Negative

Platelets < 0.861
gini = 0.403
samples = 25
value = [7, 18]
class = Positive

Age =< 0.811
gini = 0.498
samples = 1575
value = [843, 732]
class = Negative

Platelets < 0.748 CRP = 0.549

Age < 0.197

gini = 0.495 gini = 0.498 gini = 0.469
samples = 1266 samples = 309 samples = 8
value = [697, 569] value = [146, 163] value = [5, 3]

class = Negative class = Positive

gini = 0.496 gini = 0.311 gini = 0.499 gini = 0.459
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class = Negative class = Negative class = Negative class = Positive

class = Negative

gini = 0.278
samples = 6

value = [5, 1]
class = Negative

Figure 5 Simplified Decision Tree Representing Lymphoma Diagnosis Pathways

This study confirms that among the best diagnostic predictors of lymphoma in structured
diagnostic data are CRP, LDH, hemoglobin, platelet, and WBC. To improve anticipated
accuracy and sensitivity, this result offers a solid basis for future research that may possibly
include other features like PET scan imaging, histology from biopsy, or even genetic factor
analysis.
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Beyond the quantitative metrics, a critical comparison with existing literature highlights
the unique contributions and positioning of this integrated diagnostic approach. While numerous
studies have explored the application of Multi-Criteria Decision Making (MCDM) in healthcare
and cancer diagnosis, often employing fuzzy logic or sophisticated MCDA methods like
PROMETHEE-II, this work distinguishes itself by systematically integrating an entropy-
weighted TOPSIS model with a Random Forest classifier for lymphoma diagnosis. Previous
research has emphasized the potential of hybrid Al-human systems to support complex, high-
stakes medical decisions, a principle foundational to our dual-pillar methodology. The consistent
alignment between the MCDA-derived rankings and the Random Forest's feature importance
scores—yparticularly highlighting LDH, CRP, and Hemoglobin as key diagnostic markers —
validates the internal consistency of the model and reinforces clinical understanding, a crucial
aspect often lacking in purely "black-box™ machine learning models. This emphasis on
interpretability, facilitated by tools like decision trees and PCA plots, addresses the clinical need
for transparent and explainable diagnostic pathways, a recognized limitation of conventional
oncology decision-support technologies that tend to neglect complex trade-offs. Although the
classifier's overall accuracy of 54.75% and an AUC of 0.53 indicate a baseline performance
given the inherent complexity and overlapping clinical presentations of lymphoma, these results
are obtained from a limited set of first-line blood biomarkers. As noted in prior work advocating
for comprehensive genomic profiling and integrated technology assessments, future
enhancements incorporating richer data types such as imaging, histology, and molecular
biomarkers are expected to significantly improve discrimination power, building upon the robust
analytical framework established here.

Table 4 Summary of Random Forest Classifier Performance

Metric Value
Overall Accuracy | 54.75%
AUC Score 0.53

Negative Class F1 | 61.21%
Positive Class F1 | 45.64%

Conclusion

This study successfully presented a meticulous, evidence-driven, and mathematically
structured method for improving lymphoma detection by combining machine learning and Multi-
Criteria Decision Analysis (MCDA). It introduced a novel paradigm that integrates explainability
from decision theory with the empirical power of statistical modeling to address the diagnostic
challenges of lymphoma, a disease characterized by heterogeneity and subtle symptomology.
The core of this approach is an entropy-weighted TOPSIS-based MCDA model, which
prioritizes diagnostic criteria based on their uncertainty content and clinical significance,
simplifying multiple clinical variables into a readable diagnostic score.

Validation through a supervised machine learning pipeline, using a Random Forest
classifier on a dataset of 2,000 lymphoma samples, confirmed the predictive ability of
widespread diagnostic factors like CRP, LDH, hemoglobin, WBC, and platelet count, even with
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an overall classification accuracy of 54.75% and an AUC score of 0.53. A key finding was the
high correlation between the Random Forest feature importance scores and the MCDA rankings.
Decision analysis of higher-ranked variables, notably LDH and CRP, also emerged as
meaningful contributors to the prediction model. This consistency validates the viability of
applying entropy-based weighting systems in informing early diagnostic approaches for
hematological oncology and establishes the internal legitimacy of the model.

The study prioritized interpretability and clinical transparency, incorporating a simplified
decision tree model for rule-based insight generation and visual tools like ROC curves and PCA
plots for performance and class separability assessment. This holistic approach creates a strategy
that is scientifically sound, therapeutically beneficial, and flexible for practical application.
Clinically, it offers a decision-making tool for low-resource environments or as an adjunct to
multidisciplinary tumor boards, while scientifically, it provides a valid and analytically sound
methodology for lymphoma diagnosis.
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