

Baghdad Journal of Biochemistry and Applied Biological Sciences

2025, VOL. 6, NO. 4, 222-231, e-ISSN: 2706-9915, p-ISSN: 2706-9907

NARRATIVE REVIEWS

Advances in Nanotechnology for Latent Fingerprint Detection

Dunya Abdullah Mohammed^{1*}, Omar A. Mahmoud¹, Farah Badri Abed¹, Mohammed A. Hameed¹, Ruaa Maan Attallah¹, Shahrazad H. Muhi¹, Ibrahim Ramzi Hadi¹, Sahar M. Ibrahim^{1,2}, Dina H. Haider²

¹Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq ²Department of Forensic Chemistry, Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Article Info.

Keywords:

Nanoparticles, Latent fingerprinting, Forensic science, Evidence, Quantum dots

Received: 18.02.2025 Accepted: 22.07.2025 Published online: 01.09.2025 Published: 01.09.2025

Abstract

Nanotechnology has become a transformative tool in forensic investigations, offering enhanced capabilities for detecting and examining materials of evidentiary relevance. Owing to their physicochemical features, nanomaterials have proven beneficial in identifying latent fingerprints, detecting illicit drugs, and tracing explosive residues. Their integration into molecular biology techniques like polymerase chain reaction has improved accuracy and sensitivity of DNA analysis. Sophisticated analytical procedures, such as atomic force microscopy, scanning electron microscopy-transmission electron microscopy, dynamic light scattering, Raman micro-spectroscopy, and time-of-flight mass spectrometry, are used to detect forensic traces at microscopic and nanoscopic levels. Although latent fingerprints are vital forensic evidence, their recovery from difficult surfaces such as textured vehicle dashboards remains limited. No universally accepted method exists to reliably extract prints from such complex substrates at crime scenes. Conventional visualization techniques use fingerprint powders, followed by lifters or molding materials to transfer impressions. Cyanoacrylate fuming and fluorescent dyes, such as Rhodamine 6G, are also used to enhance contrast and visibility. However, the effectiveness of lifters and casting materials on uneven surfaces is not studied extensively and presents an area for research. Collection, processing, and interpretation of fingerprint evidence should be conducted by trained forensic experts to ensure accuracy. When applied correctly, fingerprint identification remains one of the most reliable methods for linking individuals to criminal acts. It can substantiate witness testimonies, corroborate forensic findings, and exclude individuals from suspicion, helping investigators allocate resources effectively.

1. Introduction

The study of nanotechnology concerns the manipulation and use of particles measuring between 1 and 100 nanometers (nm) in size [1]. It readily lends itself to a wide variety of applications in modern forensic science [2]. This occurs because, at this scale, particles begin to show unique and typically improved properties; these include a large surface area, quantum behavior, and, above all, smaller particle size [3]. They are commonly used in a diverse range of applications and processes, such as scanning tunneling

microscopy, microscale chemical technology, nanoelectronics, biochemistry, calorimetry, electro-optics, and so on [4]. This accounts for their increasing application in multidisciplinary fields of science, especially the life sciences [5].

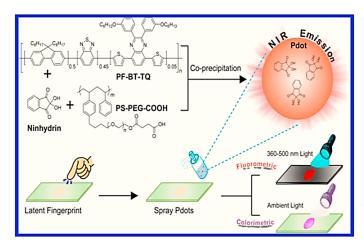
These materials, therefore, have potential for special applications in detection systems (enlarged latent fingerprint development, nanoscale bomb and drug particle detection, etc.) [6]. The need for more accurate detection systems is growing. Issues of national security and civil safety, including prison security, make it

*Corresponding author: Dunya Abdullah Mohammed: dunya.a.206@nahrainuni.edu.iq

How to cite this article: Mohammed, DA, et al. Advances in Nanotechnology for Latent Fingerprint Detection. Baghdad Journal of Biochemistry and Applied Biological Sciences, 2025, VOL. 6, NO. 4, 222–231. https://doi.org/10.47419/bjbabs.6i4.357 License: Distributed under the terms of The Creative Commons Attribution 4.0 International License (CC BY 4.0), which Permits unrestricted use, distribution, and reproduction In any medium, provided the original author and source are properly cited. Copyright: © 2025 the AuthorsCC BY license (http://creativecommons.org/licenses/by/4.0/).

necessary for latent fingerprints to be easier to identify, have more details, and to have markings that last longer and do not change or disappear over time [7]. This is particularly important in prevention and crime-solving [8]. The increasing importance of these areas has generated a clear need for the development of nanotechnology in forensic sciences, particularly when detecting latent fingerprints [9]. We intend to provide a brief review of these developments so that they can be referred to as part of a larger composite in future [10].

2. Background


Nanotechnology is concerned with the nanoscale manipulation of matter, typically between 1 and 100 nanometers in size [1,5]. This field has emerged as a powerful interdisciplinary science that intersects physics, chemistry, biology, and materials science [11,12]. In forensic science, nanomaterials offer unique advantages because of their high surface area-volume ratio, optical properties, and reactivity, making them particularly useful in detection and enhancement [39,92].

Fingerprint detection, especially latent fingerprint visualization, is a crucial element in forensic investigations. Traditional techniques include powder dusting, ninhydrin spraying, and cyanoacrylate fuming, which rely on physical or chemical interactions with components of fingerprint residues, such as sweat, amino acids, or oils [27,28]. While effective, these methods often suffer from limitations, such as environmental sensitivity, low contrast on certain surfaces, and reduced accuracy over time because of degradation of print components.

Recent advancements in nanotechnology have led to the development of a variety of novel techniques to overcome these challenges. Nanoparticles (NPs), such as quantum dots (QDs), carbon nanotubes (CNTs), metal oxides, and magnetic nanostructures, are now employed to improve visualization and enhance contrast, even on challenging surfaces such as textured plastics or fabric. These materials can bind selectively to fingerprint residue components, offering greater sensitivity and specificity [27,29,31].

One significant innovation is the use of polymer dots (Pdots) with near-infrared (NIR) fluorescence properties. These Pdots can be engineered to bind with amino acids present in fingerprint residues, offering enhanced visualization under specific lighting conditions. Figure 1 outlines how the synthesis of functionalized Pdots can lead to high-contrast fingerprint images by combining optical sensitivity and chemical specificity [21,54,55]. The process involves synthesizing a conjugated polymer, stabilizing polymer, and a chemical used for detecting amino acids in latent fingerprints. Pdots exhibit strong NIR emission, making them suitable for high-contrast visualization under specific lighting conditions. The method combines chemical sensitivity and optical fluorescence, enhancing fingerprint detection and forensics analysis.

To contextualize these advancements, Table 1 provides a comparative overview of traditional fingerprint

Figure (1): Process for improving latent fingerprint detection using polymer dots (Pdots) with near-infrared (NIR) emission [26].

Table (1): A comparison table summarizing traditional techniques and nanotechnology-based approaches for latent fingerprint detection.

Aspect	Traditional methods	Nanotechnology approaches
Chemical use	Involves harmful chemicals (e.g., ninhydrin, cyanoacrylate) [28]	Uses low-toxicity, environment-friendly nanomaterials [31]
Detection basis	Physical interaction with sweat, oil, and amino acids [29]	Molecular-level interaction and nanoscale binding [32,33]
Surface compatibility	Less effective on texture or porous surfaces [31]	Works well even on rough and complex substrates [32,34]
Clarity & sensitivity	Limited contrast and resolution	High-detail, high- sensitivity detection [29]
Technological progress	Limited innovation over recent years	Rapid advancements using smart, adaptive materials [30,32]
Tools used	Powders, chemical sprays, lifting tapes	Quantum dots, nanostructured films, fluorescent nanoparticles [32,33]
Environmental impact	Often unsafe or polluting [26]	Green chemistry principles with improved safety [30]
Future prospects	Incremental improvements expected	Strong potential for miniaturized, on-site forensic tools [34]

detection techniques and those enabled by nanotechnology. Key differences lie in the methods employed, environmental safety, detection mechanisms, and performance across various surface types. This comparison highlights the transformative potential of nanoscale materials in forensic science [27,92].

Despite these advances, broader implementation remains limited by factors, such as cost, complexity of synthesis, and regulatory concerns. Nonetheless, nanotechnology is poised to redefine latent fingerprint detection through its adaptability, sensitivity, and precision.

3. Principles of Latent Fingerprint Detection

Detecting latent fingerprints, such as invisible traces left behind by natural secretions, is one of the foundational techniques in forensic science. Two widely used methods to visualize them are fuming and application of chemical dyes [13].

In the solvent entombment method, a solvent, typically an ester, penetrates the dehydrated fingerprint residue, encapsulating it for further treatment [14]. The print is then exposed to a fluorescent dye. After absorption, the latent print becomes visible under a secondary light source, such as ultraviolet (UV) light, creating a fluorescence effect that highlights ridge patterns [15,16]. To make print permanent, it is often dusted with powder. However, this multi-step process can be sensitive. Overprocessing, poor surface quality, or examiner's experience can reduce clarity of the print [17–19].

Fuming, particularly with cyanoacrylate, works by releasing vapors that form a polymer coating on fingerprint's ridges [20]. This polymerization enhances ridge visibility. More advanced techniques now use coated luminescent fuming, which incorporates fluorescent agents to improve details' recognition [21]. These methods allow for clear identification of second-level details such as ridges, furrows, and bifurcations [11,22]. The resulting contrast, typically white ridges on a darker background, makes the print highly visible [23]. Combined with dye treatment, the fumed print can form a well-defined three-dimensional (3D) map of ridge details [24,25].

4. Traditional Techniques vs. Nanotechnology

Traditional fingerprint detection methods, such as powdering, ninhydrin spraying, and cyanoacrylate fuming, depend on physical or chemical interaction with fingerprint residues such as sweat, oils, and amino acids [12,27]. While these methods are widely used, they have limitations: low sensitivity on aged or textured surfaces, poor environmental adaptability, and reliance on potentially hazardous chemicals [28].

Nanotechnology offers a more advanced solution. Materials engineered at nanoscale, such as quantum dots, metallic nanoparticles, and carbon-based nanostructures, interact more precisely with fingerprint residues because of their small size and high surface area [29]. These nanomaterials can bind to specific components in the residue, providing stronger contrast, enhanced resolution, and greater adaptability across various surfaces [30].

Researchers are also exploring biomimetic systems that imitate natural structures to improve adherence and

image clarity. These innovations not only reduce the environmental impact but also overcome challenges posed by complex or deteriorated surfaces [31,32]. The integration of smart nanotechnologies is pushing the boundaries of what is possible in forensic detection [33].

5. Nanoparticles and Their Role in Fingerprint Detection

Nanoparticles are materials that measure less than 100 nanometres in at least one dimension and bridge the gap between atomic-scale matter and bulk materials [34,35]. These particles can be composed of metals, non-metals, liposomes, quantum dots, carbon structures, or biomolecules [36]. Owing to their minute size, nanoparticles exhibit unique optical, magnetic, and chemical properties that differ significantly from their larger counterparts, making them powerful tools in forensic imaging and detection [37,38]. They are typically synthesized through techniques such as chemical reduction, thermal decomposition, or deposition methods, each affecting their morphology and functionality [39].

In forensic science, particularly fingerprint detection, nanoparticles are making a transformative impact. For example, gold nanoparticles can be synthesized from natural plant extracts, such as *Drimia indica* (*D. indica*), providing an eco-friendlier route to production of nanoparticles [40]. A notable development involves DITMSA (a specific nanoparticle formulation), which has demonstrated excellent optical properties, zeta potential, and UV response, making it ideal for detecting fingerprints [41]. When applied using laser-assisted electrodeposition, these nanoparticles turn latent fingerprints into silver-metal imprints, offering enhanced contrast and clarity [42]. Experimental studies using DITMSA, coffee powder, and household dust yielded 100% detection accuracy, showcasing their practical reliability in forensic scenarios [43].

6. Nanotechnology-Based Imaging Techniques

Recent advances in nanotechnology have introduced new imaging tools into forensic science, supplementing traditional Raman spectroscopy. These include hyperspectral imaging, chemical vapor imaging, and scanning probe microscopies that offer nanoscale resolution [44]. Although only a few of these have seen widespread forensic use so far, technologies such as atomic force microscopy (AFM) and tunnel molecular force microscopy are gaining traction because of their capacity for high-detail visualization [45].

Advanced infrared techniques have shown potential in detecting luminescent fingerprints on treated paper, especially those doped with elderberry extracts and metallic agents such as titanium or lanthanides. These modifications create high-contrast nanocomposites that are particularly useful for aged fingerprints or complex surfaces [46,47].

7. Surface-Enhanced Raman Spectroscopy (SERS)

Surface-enhanced Raman spectroscopy is a highly sensitive variation of Raman spectroscopy that uses metallic nanoparticles, commonly gold or silver, as substrates to amplify signal responses [48,49]. These nanoparticles can detect even faint fingerprints on smooth or reflective surfaces, such as glass or plastic [50]. For example, silver nanoparticles embedded in silk films or on paper substrates have demonstrated strong enhancement of fingerprint ridge detail [51,52]. In one method, silver nanoparticles are deposited onto reduced graphene oxide (rGO) and polyvinyl alcohol (PVA) films using a microwave-assisted technique. The resulting composite exhibits high flexibility, uniform nanoparticle growth, and excellent adhesion, making it ideal for latent fingerprint detection [53,54].

8. Quantum Dots in Fingerprint Detection

Quantum dots are semiconductor nanocrystals known for their bright and tunable luminescence, offering a clear advantage over traditional dyes [55]. They are especially useful in fingerprint detection because of their sensitivity to excitation light and robust stability [56]. Quantum dots combined with silver nitrate and surfactants are now used to produce fingerprint powders that can detect prints on glass, metal, and plastic [57].

Studies show that factors, such as UV excitation intensity, treatment duration, and environmental conditions, directly influence the luminescent intensity of quantum dot-based powders [58,59]. Sulfide coatings enhance this stability, preventing photodegradation and extending usability in field conditions [60,61]. Since conventional powders often lack the sensitivity needed for weak or partial prints, quantum dot-based solutions represent a significant upgrade for forensic practitioners [62–64].

9. Carbon Nanotubes and Graphene in Forensics

Carbon nanotubes and graphene are known for their strength, flexibility, and excellent electrical and thermal conductivity, which make them promising candidates in forensic applications [65]. These carbon-based nanomaterials are used to create new fingerprint detection systems and to enhance the performance of the existing ones [66]. However, their application must consider environmental and toxicity factors, including how different coatings influence their behaviour [67].

Researchers are investigating how to create safe and effective formulations for forensic use. For example, pre-oxidized multi-walled CNTs or those paired with organic adhesives can enhance fingerprint quality on substrates where traditional powders fail [68,69]. Graphene-based materials also overcome challenges associated with "invisible fingerprints" caused by surface texture or chemical interference [70,71]. Numerous studies have

demonstrated that these advanced coatings produce clear and high-quality ridge details across a wide range of surfaces [72–74].

10. Advances in Nanopore Technology

Nanopore technology represents a cutting-edge approach to fingerprint detection. It operates through tiny pores in membranes and analyzes the size and composition of individual molecules in fingerprint residues [75]. These systems are highly precise, label-free, and non-destructive ideal qualities for forensic evidence analysis [76].

What makes nanopore technology especially exciting is its compatibility with flexible and wearable electronics. These developments could soon lead to wearable fingerprint detectors integrated into gloves or handheld devices used directly at crime scenes [77].

Traditional fingerprint detection methods are often time-consuming, expensive, or prone to damaging the print. In contrast, nanopore devices promise to deliver real-time analysis with minimal background noise or chemical interference [78,79]. Research is now focused on optimizing the fabrication of solid-state nanopores and integrating them with biocompatible sensors for use in real-world forensic environments [80–83].

11. Nanotechnology in Fingerprint Enhancement

Despite ongoing improvements, visualizing latent fingerprints remains a persistent challenge in forensics [84]. Traditional methods, such as lasers, powders, and chemical dyes, often fail on textured or dark surfaces and may damage the print in the process [85]. Nanotechnology, first introduced conceptually in 1959, has now matured to the point where its application in fingerprint enhancement is both practical and powerful [62].

Because nanoparticles have an incredibly high surface area-mass ratio, they bind effectively to fingerprint residues, increasing contrast and clarity [86]. Over the last decade, a wide variety of nano-powders, fluorescent, magnetic, or metallic, have been developed to improve detection across different surfaces and environmental conditions [87].

However, no universal method yet exists, and forensic experts often struggle to choose the most effective technique for a given case. Millions of latent prints may go undeveloped due to this limitation [88]. Research now focuses on creating nanoparticle-based "universal developers" capable of adapting to multiple surface types and residue conditions [88].

12. Nanotechnology in Fingerprint Visualization

Fingerprint visualization using nanotechnology relies on the use of specially engineered particles, often metallic or fluorescent, that can adhere to trace residues and render high-resolution prints [33]. These nano-powders are highly sensitive and provide superior visualization on both common and challenging surfaces [21,68,89].

Optimizing these particles for stability, cost, and surface compatibility remains an ongoing research priority. Different deposition temperatures and methods of synthesis can dramatically influence performance [90,91]. A growing body of work now focuses on improving these protocols to ensure consistent high-quality results across various crime scene environments [92].

13. Nanotechnology in Fingerprint Development

Latent fingerprints are some of the most valuable forms of physical evidence in criminal investigations, and nanotechnology has revolutionized how they are detected and developed [20,27]. Compared to traditional methods, nanoparticle-based approaches often yield higher-quality prints with better resolution, even under adverse conditions [28].

Today, forensic laboratories worldwide are testing a range of nanoparticles to evaluate their potential for replacing or enhancing older development techniques. These include chemical, physical, biological, and hybrid methods designed to increase the visibility and integrity of fingerprints on various surfaces [26,91]. Still, no single method works universally, highlighting the need for continued innovation and comparative analysis [93].

14. Nanotechnology in Fingerprint Lifting

Nanotechnology has significantly advanced both lifting and visualization of latent fingerprints, offering high-contrast, noninvasive, and non-destructive alternatives to conventional methods. These techniques use engineered fluorescent powders and photoluminescent materials to highlight ridge details without damaging the substrate [82]. However, despite their effectiveness, these methods are often costly and complex. In particular, the mass production of certain nanoparticle formulations is restricted by commercial or intellectual property concerns [16].

Photoluminescence-based fingerprint lifting, where especially designed fluorescent nanoscale powders react with fingerprint residues, has shown promise but still faces practical barriers, such as the need for sophisticated laser systems that limit portability and field application [94]. In contrast, modified dusting powders using magnetic fluorescent nanoparticles are easier to apply across various surfaces and provide consistent results, making them suitable for both lifting and preserving prints [92].

The forensic field has seen notable progress from these innovations, but continued research is needed to adapt nano-enhanced powders to different surfaces and environmental conditions [94,95,60]. Interestingly, both secretors and non-secretors have been identified through powdered fingerprint residues, including those with trace DNA, suggesting that individual identification through such particles may soon become a routine [96].

15. Nanotechnology in Fingerprint Preservation

Preserving latent fingerprints is just as important as detecting them, especially in long-term forensic investigations. Recent innovations in nanotechnology are playing a key role here. Fluorescent nanoparticles and photoluminescent nanomaterials have not only enhanced detection but have also improved the stability and longevity of the preserved fingerprints [18,19,92].

These advanced materials enable the creation of durable fingerprint images through mineral transfer and crystallization, which help to maintain the print's structural integrity [97,98]. Effective preservation hinges on enhancing the print's contrast without compromising its original detail, something nanoparticle-based techniques achieve exceptionally well [99,100].

16. Challenges and Limitations of Nanotechnology in Fingerprint Detection

While the benefits of nanotechnology in fingerprint detection are undeniable, several challenges must be addressed before these methods are adopted universally. A key concern is toxicity. Some nanomaterials, especially when improperly capped, pose health risks, such as cellular damage, genetic mutation, and toxic buildup in organs [101–103]. For instance, fluorescent nanoparticles and metal conjugates have been shown to cause adverse effects in zebrafish embryos and mammalian liver cells during laboratory tests [104,105].

This underscores the urgent need for biocompatible alternatives and rigorous toxicity testing. The development of safe capping agents has already opened up safer applications, but regulatory frameworks must catch up. New safety standards should cover material composition, handling procedures, exposure routes (like inhalation or skin contact), and transportation protocols [106–108].

One overlooked issue is that some nanomaterials, such as CNTs, are harmful due to their geometry and electrical properties, making them dangerous when inhaled [109]. Despite known risks, comprehensive regulations or safety thresholds for their use in forensic contexts are still lacking. In future, it is essential that each nanomaterial used in evidence processing come with traceable certification, or a "passport," outlining its safety profile and production origin [60,91].

17. Future Directions and Emerging Trends

The use of nanotechnology in fingerprint science is still evolving but has already revealed enormous potential. From evidence collection at crime scenes to courtroom presentations, nanomaterials are changing how forensic scientists operate. One major trend involves simplifying current technologies to reduce costs and expand accessibility, especially in low-resource settings [92,72,109].

Researchers are also working toward multifunctional devices and tools that can detect, analyze, and store fingerprint data in one integrated unit. Such innovations would streamline investigative procedures and speed up case resolutions [110, 111]. Yet, this field is in its infancy. Greater collaboration across materials science, chemistry, and forensics is needed to push the boundaries further.

In future, we may witness real-time colorimetric fingerprint detection systems that can identify residues and ridge details within seconds. These advancements would not only enhance efficiency but also minimize sample destruction, preserving critical forensic evidence [112,113].

18. Conclusion

Nanotechnology is transforming forensic science by making investigations more sensitive, efficient, and versatile. A key advancement is in latent fingerprint detection, where nanoparticles allow for clearer ridge detail, even on difficult surfaces. These technologies also enable the development of compact portable systems that improve processing of on-site evidence.

Innovations, such as nano-trackers and nanoscale barcodes, already are being used for crime prevention and real-time tracking. In future, nanomaterials would play a larger role in identifying suspects, reconstructing crime scenes, and locating missing persons or stolen items.

However, concerns remain over the potential health risks of long-term exposure to certain nanoparticles, which can penetrate the body and damage DNA or tissues. Addressing these risks through proper regulation and safer materials is essential.

Despite these challenges, nanotechnology shows great promise in forensic science. It offers powerful tools for evidence collection and analysis from improved fingerprint detection to portable devices for rapid field testing, potentially reshaping the way crimes are solved.

Ethical approval

This study did not involve human participants or animals requiring ethical approval.

Author Contributions

All authors contributed significantly to the conception, design, data collection, analysis, and writing of the manuscript. All authors have read and approved the final version of the manuscript.

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Funding

Self-Funded.

References

- [1] Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N., et al. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts. 12(11): 1386, 2022. https://doi.org/10.3390/catalysts12111386
- [2] Findik, F, Nanomaterials and their applications. Period Eng Nat Sci. 9(3): 62–75, 2021. https://doi.org/10.21533/ PEN.V9I3.1837
- [3] Suhag, D.; Thakur, A.; Thakur, P, Integrated Nanomaterials and their Applications. Springer: New York, NY, 2023. https://doi.org/10.1007/978-981-99-6105-4
- [4] Gupta, D.S.K., Study of nanotechnology and its application. J Phy Opt Sci. 2(1): 2, 2020. https://doi.org/10.47363/ JPSOS/2020(2)107
- [5] Khan, S.; Hossain, M.K., Classification and properties of nanoparticles. In Nanoparticle-Based Polymer Composites. Elsevier: Amsterdam, The Netherlands, 2022. pp. 15–54. https://doi.org/10.1016/B978-0-12-824272-8.00009-9
- [6] Jandt, K.D.; Watts, D.C., Nanotechnology in dentistry: present and future perspectives on dental nanomaterials. Dent Mater. 36(11): 1365–1378, 2020. https://doi.org/10.1016/j.dental.2020.08.006
- [7] National Academies of Sciences, Engineering, and Medicine; Division on Engineering and Physical Sciences; National Materials and Manufacturing Board; Committee on National Nanotechnology Initiative: A Quadrennial Review. A Quadrennial Review of the National Nanotechnology Initiative: Nanoscience, Applications, and Commercialization. National Academies Press (US): Washington, DC, 2020, Apr 7. https://doi.org/10.17226/25729. PMID: 32931182.
- [8] Pushparaj, K.; Liu, W.C.; Meyyazhagan, A.; Orlacchio, A.; Pappusamy, M.; Vadivalagan, C; et al. Nano-from nature to nurture: a comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy. 240: 122732, 2022. https://doi.org/10.1016/j.energy.2021.122732
- [9] Hodgson, A.; Maxon, M.E.; Alper, J., The US bioeconomy: charting a course for a resilient and competitive future. Ind Biotechnol. 18(3): 115–136, 2022. https://doi.org/10.1089/ind.2022.29283.aho
- [10] Joyce, P.; Allen, C.J.; Alonso, M.J.; Ashford, M.; Bradbury, M.S.; Germain, M.; et al., A translational framework to deliver nanomedicines to the clinic. Nat Nanotechnol. 19(11): 1597–1611, 2024. https://doi.org/10.1038/s41565-024-01754-7
- [11] Karsharma, M.; Vasava, M.; Khandelwal, R.; Abhirami, R.B.; Maity, P., From past to present: a review on advancements in luminescent and fluorescent materials for latent fingerprint developments. Aust J Forensic Sci. 57(4): 433–469, 2024. https://doi.org/org/10.1080/0 0450618.2024.2365833
- [12] Prasad, V.; Lukose, S.; Agarwal, P.; Prasad, L., Role of nanomaterials for forensic investigation and latent fingerprinting—a review. J Forensic Sci. 65(1): 26–36, 2020. https://doi.org/10.1111/1556-4029.14172
- [13] Peng, X.; Zhang, J.; Xiao, P., Photopolymerization approach to advanced polymer composites: integration of surfacemodified nanofillers for enhanced properties. Adv

- Mater. 36(33): 2400178, 2024. https://doi.org/10.1002/adma.202400178
- [14] Asefa, G.; Negussa, D.; Lemessa, G.; Alemu, T., The study of photocatalytic degradation kinetics and mechanism of malachite green dye on Ni–TiO₂ surface modified with polyaniline. J Nanomater. 2024(1): 5259089, 2024. https://doi.org/10.1155/2024/5259089
- [15] Swain, S.K.; Sahoo, A.; Mishra, P.; Swain, S.K.; Tripathy, S.K., Surface modification methods of magnetic nanoparticles. Funct Magn Nanoparticles Theranostic Appl. 69–96, 2024. https://doi.org/10.1002/9781394172917.ch3
- [16] Mallik, A.K.; Moktadir, M.A.; Rahman, M.A.; Shahruzzaman, M.; Rahman, M.M., Progress in surface-modified silicas for Cr (VI) adsorption: a review. J Hazard Mater. 423: 127041, 2022. https://doi.org/10.1016/j.jhazmat.2021.127041
- [17] Ken, D.S.; Sinha, A., Recent developments in surface modification of nano zero-valent iron (nZVI): remediation, toxicity and environmental impacts. Environ Nanotechnol Monit Manag. 14: 100344, 2020. https://doi. org/10.1016/j.enmm.2020.100344
- [18] Gnilitskyi, I.; Dolgov, L.; Tamm, A.; Ferraria, A.M.; Diedkova, K.; Kopanchuk, S.; et al., Enhanced osteointegration and osteogenesis of osteoblast cells by laser-induced surface modification of Ti implants. Nanomed Nanotechnol Biol Med. 62: 102785, 2024. https://doi.org/10.1016/j.nano.2024.102785
- [19] Ansari, A.A.; Aldajani, K.M.; AlHazaa, A.N.; Albrithen, H.A., Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord Chem Rev. 462: 214523, 2022. https://doi.org/10.1016/j.ccr.2022.214523
- [20] Baldelli, A.; Esmeryan, K.D.; Popovicheva, O., Turning a negative into a positive: trends, guidelines and challenges of developing multifunctional non-wettable coatings based on industrial soot wastes. Fuel. 301: 121068, 2021. https://doi.org/10.1016/j.fuel.2021.121068
- [21] Prabakaran, E.; Pillay, K., Nanomaterials for latent fingerprint detection: a review. J Mater Res Technol. 12: 1856– 1885, 2021. https://doi.org/10.1016/j.jmrt.2021.03.110
- [22] Xuan, W.; Shan, H.; Hu, D.; Zhu, L.; Guan, T.; Zhao, Y.; et al., In situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room-temperature heptanal sensors. Mater Today Chem. 26: 101155, 2022. https://doi.org/10.1016/j. mtchem.2022.101155
- [23] Kiss, A., Enhanced Near-Infrared Emission in Supramarble Coatings of Egyptian Blue. Dissertation, Doctor of Philosophy, Faculty of the College of Graduate Studies, Tennessee Technological University, 2023; 30317822.
- [24] Ji, C.; Zhang, Z.; Omotosho, K.D.; Berman, D.; Lee, B.; Divan, R.; et al., Porous but mechanically robust all-inorganic anti-reflective coatings synthesized using polymers of intrinsic microporosity. ACS Nano. 16(9): 14754–14764, 2022. https://doi.org/10.1021/acsnano.2c05592
- [25] Popy, D.A.; Evans, B.N.; Jiang, J.; Creason, T.D.; Banerjee, D.; Loftusm L.M.; et al., Intermolecular arrangement facilitated broadband blue emission in group-12 metal (Zn, Cd) hybrid halides and their applications. Mater Today Chem. 30: 101502, 2023. https://doi.org/10.1016/j. mtchem.2023.101502
- [26] Awasthi, K.K.; Sankhla, M.S.; Lukose, S.; Parihar, K., Friction Ridge Analysis. Springer: Cham, Switzerland, 2023. https://doi.org/10.1007/978-981-99-4028-8
- [27] Singh, A.; Pandit, P.P.; Nagar, V.; Lohar, S.; Sankhla, M.S.; Shekhar Daga, S.; et al., Role of nanotechnology in latent fingerprint development. In: Friction Ridge Analysis:

- Applications of Nanoparticles for Latent Fingerprint Development. Springer: Cham, Switzerland, 2023, pp. 1–16. https://doi.org/10.1007/978-981-99-4028-8_1
- [28] Assis, A.M.L.; Costa, C.V.; Alves, M.S.; Melo, J.C.S.; de Oliveira, V.R.; Tonholo, J.; et al., From nanomaterials to macromolecules: innovative technologies for latent fingerprint development. Wiley Interdiscip Rev Forensic Sci. 5(2): e1475, 2023. https://doi.org/10.1002/wfs2.1475
- [29] Bhati, K.; Tripathy, D.B., Role of nanoparticles in latent fingerprinting: an update. Lett Appl NanoBioSci. 9: 1427–43, 2020. https://doi.org/10.33263/lianbs93.14271443
- [30] Bashir, K.; Amin, M.; Majid, M.; Butt, F.A.; Rather, J.A.; Wani, W.A.; et al., From invisible to visible: a concise review on conjugated polymer materials in latent finger-print analysis. J Polym Res. 31(8): 235, 2024. https://doi.org/10.1007/s10965-024-04086-1
- [31] Ding, L.; Peng, D.; Wang, R.; Li, Q., A user-secure and highly selective enhancement of latent fingerprints by magnetic composite powder based on carbon dot fluorescence. J Alloys Compd. 856: 158160, 2021. https://doi. org/10.1016/j.jallcom.2020.158160
- [32] Gawel, A.M.; Betkowska, A.; Gajda, E.; Godlewska, M.; Gawel, D., Current non-metal nanoparticle-based therapeutic approaches for glioblastoma treatment. Biomedicines. 12(8): 1822, 2024. https://doi.org/10.3390/biomedicines12081822
- [33] He, X.; Chen, S.; Mao, X., Utilization of metal or non-metal-based functional materials as efficient composites in cancer therapies. RSC Adv. 12(11): 6540–6551, 2022. https://doi.org/10.1039/d1ra08335j
- [34] Zaheer, T.; Zia, S.; Pal, K.; Aqib, A.I.; Fatima, M.; Muneer, A.; et al., Recent trends in nobel metals and carbon dots in the costume of hybrid nano architecture. Top Catal. 67(1): 280–299, 2024. https://doi.org/10.1007/s11244-023-01869-6
- [35] Sharma, A.R.; Lee, Y.H.; Bat-Ulzii, A.; Bhattacharya, M.; Chakraborty, C.; Lee, S.S.. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnol. 20(1): 501, 2022. https:// doi.org/10.1186/s12951-022-01650-z
- [36] Karabuga, M.; Erdogan, S.; Timur, S.S.; Vural, I.; Çalamak, S.; Ulubayram, K., Development of tumor-specific liposomes containing quantum dots-photosensitizer conjugate used for radiotherapy. J Liposome Res. 32(4): 396–404, 2022. https://doi.org/10.1080/08982104.2022.2087082
- [37] Molaei, M.J., Carbon quantum dots-based fluorescent layered double hydroxide for targeted drug delivery application. Diam Relat Mater. 137: 110135, 2023. https://doi. org/10.1016/j.diamond.2023.110135
- [38] Sandhu, A.; Bhatia, T., Novel nanomaterials in forensic investigations: a review. Mater Today Proc. 50(5): 1071–1079, 2021 Aug 1. https://doi.org/10.1016/j.matpr.2021.07.466
- [39] Nadar, S.S.; Kelkar, R.K.; Pise, P.V.; Patil, N.P.; Patil, S.P.; Chaubal-Durve, N.S.; et al., The untapped potential of magnetic nanoparticles for forensic investigations: a comprehensive review. Talanta. 230: 122297, 2021. https://doi.org/10.1016/j.talanta.2021.122297
- [40] Hegde, C., PCF chemistry of fingerprint and illicit substances: a short review. Evaluation. In Handbook of Nanomaterials, Micro and Nano Technologies, vol. 2; Malik, M.I., Hussain, D., Shah, M.R., Guo, D.S., Eds. [Internet]. Elsevier: Amsterdam, The Netherlands, 2024. Chap. 7, pp. 153–177. Available at: https://www.sciencedirect.com/science/article/pii/B9780323955133000149. https://doi.org/10.1016/B978-0-323-95513-3.00014-9
- [41] Din, S.; Shafique, S.; Khan, F., Nanotech and document security. In: Modeling and Simulation of Functional

- Nanomaterials for Forensic Investigation. 2023, pp. 223–242. https://doi.org/10.4018/978-1-6684-8325-1.ch012
- [42] Fouda Mbanga, B.G.; Onotu, O.; Olushuyi, C.I.; Nthwane, Y.; Nyoni, B.; Tywabi-Ngeva, Z., Application of metallic oxide coated carbon nanoparticles in adsorption of heavy metals and reusability for latent fingerprint detection: a review. Hybrid Adv. 6: 100248, 2024 Jul 1. https://doi.org/10.1016/j.hybadv.2024.100248
- [43] Verma, P.; Ujjainia, P.; Moza, B.; Mukherjee, D., Nanoparticles as silent witnesses: significance, challenges and ethical considerations in forensic analysis. Rasayan J Chem. 17: 297–305, 2024. https://doi. org/10.31788/RJC.2024.1718665
- [44] Chango, X.; Flor-Unda, O.; Gil-Jiménez, P.; Gómez-Moreno H., Technology in forensic sciences: innovation and precision. Technologies. 12:(8) 120, 2024. https://doi.org/10.3390/technologies12080120
- [45] Yadavalli, V.K.; Ehrhardt, C.J., Atomic force microscopy as a biophysical tool for nanoscale forensic investigations. Sci Justice. 61(1): 1–12, 2021 Jan. https://doi.org/10.1016/j.scijus.2020.10.004
- [46] Ganechary, P.; Yadav, C., Development of nanomaterial-based biosensors for forensic applications. Mater Today Proc. 95: 88–100, 2023. https://doi.org/10.1016/j.matpr. 2023.10.124
- [47] Costanzo, H.; Gooch, J.; Frascione, N., Nanomaterials for optical biosensors in forensic analysis [Internet]. Talanta. 253: 123945, 2023. https://doi.org/10.1016/j. talanta.2022.123945
- [48] Kanodarwala, F.; Lesniewski, A.; Olszowska-Łoś, I.; Spindler, X.; Pieta, I.; Lennard, C.; et al., Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming. Forensic Sci Int. 326: 110915, 2021. https://doi.org/10.1016/j.forsciint.2021.110915
- [49] Mohd Nazri, N.N.S.; Kalel Asmel, N.; Luiz Francisco Alves, J., Assessment of microbiological growth on biometric devices [Internet]. Environ Toxicol Manag. 2(3 SE-Articles): 20–23, 2022. https://doi.org/10.33086/etm. v2i3.3567
- [50] Tekielska, D.; Pečenka, J.; Hakalová, E.; Čechová, J.; Bytešníková, Z.; Richtera, L.; et al., Elimination of Curtobacterium sp. strain A7_M15, a contaminant in Prunus rootstock tissue culture production, using reduced graphene oxide-silver-copper and silver-selenium nanocomposites [Internet]. Chem Biol Technol Agric. 11(1): 19, 2024. https://doi.org/10.1186/s40538-024-00536-6
- [51] Ioannou, P.; Baliou, S.; Samonis, G., Nanotechnology in the diagnosis and treatment of antibiotic-resistant infections. Antibiotic (Basel, Switzerland). 13(2): 121, 2024. https://doi.org/10.3390/antibiotics13020121
- [52] Tobin, E., Nanotechnology applications for infectious diseases. In 2013, pp. 1–84. https://doi.org/10.1201/ b15642-2.doi.org/10.1201/b15642-2
- [53] Hunter, R., Medical diagnostics with surface enhanced Raman scattering. 2022; https://doi.org/10.1021/acsami. 7b06669.s001
- [54] Yuan, Q.; Gu, B.; Liu, W.; Wen, X.R.; Wang, J.L.; Tang, J.W.; et al., Rapid discrimination of four Salmonella enterica serovars: a performance comparison between benchtop and handheld Raman spectrometers. J Cell Mol Med. 28(8): e18292, 2024. https://doi.org/10.1111/jcmm.18292
- [55] Doménech-Carbó, M.T.; Doménech-Carbó, A., Spot tests: past and present. Chemtexts. 8(1): 4, 2022. https://doi. org/10.1007/s40828-021-00152-z
- [56] Janus, Ł.; Radwan-Pragłowska, J.; Piątkowski, M.; Bogdał, D., Facile synthesis of surface-modified carbon quantum dots (CQDs) for biosensing and bioimaging.

- Materials (Basel). 13(15): 3313, 2020. https://doi.org/10.3390/ma13153313
- [57] Zhang, Z.; Yi, G.; Li, P.; Zhang, X.; Fan, H.; Zhang, Y.; et al., A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale. 12(26): 13899–13906, 2020. https://doi.org/10.1039/d0nr03163a
- [58] Jing, H.H.; Bardakci, F.; Akgöl, S.; Kusat, K.; Adnan, M.; Alam, M.J.; et al., Green carbon dots: synthesis, characterization, properties and biomedical applications. J Funct Biomater. 14(1): 27, 2023. https://doi.org/10.3390/ ifb14010027
- [59] Ajith, M.P.; Pardhiya, S.; Rajamani, P., Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small. 18(15): 2105579, 2022. https://doi. org/10.1002/smll.202105579
- [60] Darshan, G.P.; Prasad, B.D.; Premkumar, H.B.; Sharma, S.C.; Kiran, K.S.; Nagabhushana, H., Fluorescent quantum dots as labeling agents for the effective detection of latent fingerprints on various surfaces. In Quantum Dots. Elsevier: Amsterdam, The Netherlands, 2023, pp. 539–574. https:// doi.org/10.1016/j.materresbull.2017.09.059
- [61] Kumar, K.N.; Vijayalakshmi, L.; Vishwakarma, P.K.; Saijyothi, K.; Lim, J.; Siddiqui, M.R., Europium-doped lanthanum oxide quantum dots: a promising quantum dots for latent fingerprint detection and photonic applications with remarkable red luminescence and biocompatibility. Opt Laser Technol. 179: 111279, 2024. https://doi. org/10.1016/j.optlastec.2024.111279
- [62] Singla, G.; Kansay, V.; Sharma, V.D.; Singh, V.; Bhatia, A.; Bera, A.; et al., Harnessing hetero-atom doped CQDs from Pyrostegia venusta for latent fingerprint and anticounterfeit applications. Microchem J. 207: 111831, 2024. https://doi.org/10.1016/j.microc.2024.111831
- [63] Tambo, F.; Ablateye, D.N.O., A review on the role of emerging revolutionary nanotechnology in forensic investigations. J Appl Nat Sci. 12(4): 582–591, 2020. https://doi.org/10.31018/jans.v12i4.2415
- [64] Pandey, G.; Tharmavaram, M.; Rawtani, D., Surface engineered nanomaterials: an emerging trend for futuristic forensic science. Curr Forensic Sci. 1(1): e190122200354, 2023. https://doi.org/10.2174/26664844016662201191 01815
- [65] Fathi-karkan, S.; Easwaran, E.C.; Kharaba, Z.; Rahdar, A.; Pandey, S., Unlocking mysteries: the cutting-edge fusion of nanotechnology and forensic science. Bionanoscience. 14(3): 3572–3598, 2024. https://doi.org/10.1007/s12668-024-01542-6
- [66] Bhatt, P.V.; Pandey, G.; Tharmavaram, M.; Rawtani, D.; Mustansar Hussain, C., Nanotechnology and taggant technology in forensic science. Technol Forensic Sci Sampl Anal data Regul. 279–301, 2020. https://doi.org/10.1002/9783527827688.ch14
- [67] Łukawski, D.; Hochmańska-Kaniewska, P.; Janiszewska-Latterini, D.; Lekawa-Raus, A. Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives. Wood Sci Technol. 57(5): 989–1037, 2023. https://doi.org/10.1007/ s00226-023-01484-4
- [68] Swamy, N.K.; Mohana, K.N.S.; Madhusudana, A.M.; Manjunatha, J.G.; Manukumar, H.M., Graphene nanoribbon derived from multi-walled carbon nanotube: an efficient viral gene hosting and biosensing molecular platform for the electroanalysis of HIV-1 gene. Results Chem. 7: 101393, 2024. https://doi.org/10.58837/chula. the.2011.808
- [69] Vermisoglou, E.; Panáček, D.; Jayaramulu, K.; Pykal, M.; Frébort, I.; Kolář, M.; et al., Human virus detection with

- graphene-based materials. Biosens Bioelectron. 166: 112436, 2020. https://doi.org/10.1016/j.bios.2020.112436
- [70] Riaz, A.; Zafeer, I.; Munawar, A., Graphene-based nanomaterials for forensic application. In: The 2-Dimensional World of Graphene. Bentham Science Publishers: Sharjah, UAE, 2024, pp. 20–42. https://doi.org/10.2174/97898152 38938124010004
- [71] Dutta, T.; Llamas-Garro, I., Velázquez-González, J.S., Bas, J., Dubey, R., Mishra, S.K., A new generation of satellite sensors based on graphene and carbon nanotubes: a review. IEEE Sens J. 2024. https://doi.org/10.1109/jsen.2024.3440499
- [72] Chauhan, N., Pareek, S., Jain, U., Carbon disposable multifunctional sensors. Org Inorg Mater Based Sensors. 3: 997– 1012, 2024. https://doi.org/10.1002/9783527834266.ch43
- [73] Sauciuc, A., Maglia, G., Controlled translocation of proteins through a biological nanopore for single-protein fingerprint identification. Nano Lett. 24(44): 14118–14124, 2024. https://doi.org/10.1021/acs.nanolett.4c04510
- [74] De Lannoy, C., Lucas, F.L.R., Maglia, G., De Ridder, D., In silico assessment of a novel single-molecule protein finger-printing method employing fragmentation and nanopore detection. Iscience. 24(10): 103202, 2021. https://doi.org/10.1016/j.isci.2021.103202
- [75] Das, N., Mandal, N., Sekhar, P.K., Roy Chaudhuri, C., Signal processing for single biomolecule identification using nanopores: a review. IEEE Sens J. 21(11): 12808–12820, 2020. https://doi.org/10.1109/jsen.2020.3032451
- [76] Tytgat, O., Škevin, S., Deforce, D., Van Nieuwerburgh, F., Nanopore sequencing of a forensic combined STR and SNP multiplex. Forensic Sci Int Genet. 56: 102621, 2022. https://doi.org/10.1016/j.fsigen.2021.102621
- [77] Gui, X., Xie, J., Wang, W., Hou, B., Min, J., Zhai, P., et al., Wearable and flexible nanoporous surface-enhanced Raman scattering substrates for sweat enrichment and analysis. ACS Appl Nano Mater. 6(13): 11049–11060, 2023. https://doi.org/10.1021/acsanm.3c00812
- [78] Sun, H., Zheng, Y., Shi, G., Haick, H., Zhang, M.. Wearable clinic: from microneedle-based sensors to next-generation healthcare platforms. Small. 19(51): 2207539, 2023. https://doi.org/10.1002/smll.202207539
- [79] Reitemeier, J., Metro, J., Fu, K.X., Nanopore sensing and beyond: electrochemical systems for optically coupled single-entity studies, stimulus-responsive gating applications, and point-of-care sensors. Sensors Actuators Rep. 100225, 2024. https://doi.org/10.1016/j.snr.2024.100225
- [80] Lin, Z., Duan, S., Liu, M., Dang, C., Qian, S., Zhang, L, et al., Insights into materials, physics, and applications in flexible and wearable acoustic sensing technology. Adv Mater. 36(9): 2306880, 2024. https://doi.org/10.1002/ adma.202306880
- [81] Das, S., Mazumdar, H., Khondakar, K.R., Kaushik, A., Machine learning assisted enhancement in a twodimensional Material's sensing performance. ACS Appl Nano Mater. 7(12): 13893–13918, 2024. https://doi. org/10.1021/acsanm.4c02127
- [82] Williams, A., Aguilar, M.R., Pattiya Arachchillage, K.G.G., Chandra, S., Rangan, S., Ghosal Gupta, S., et al., Biosensors for public health and environmental monitoring: the case for sustainable biosensing. ACS Sustain Chem Eng. 12(28): 10296–10312, 2024. https://doi.org/10.1021/acssuschemeng.3c06112
- [83] Thaweeskulchai, T., Sakdaphetsiri, K., Schulte, A.. Ten years of laser-induced graphene: impact and future prospect on biomedical, healthcare, and wearable technology. Microchim Acta. 191(5): 292, 2024. https://doi. org/10.1007/s00604-024-06350-z

- [84] Ullah, M.F., Khan, Y., Khan, M.I., Abdullaeva, B.S., Waqas, M., Exploring nanotechnology in forensic investigations: techniques, innovations, and future prospects. Sens Bio-Sensing Res. 100674, 2024. https://doi. org/10.1016/j.sbsr.2024.100674
- [85] Rana, A., Gautam, D., Kumar, P., Das, A.K. Architectures, benefits, security and privacy issues of internet of nano things: a comprehensive survey, opportunities and research challenges. IEEE Commun Surv Tutorials. 2024. https://doi.org/10.1109/comst.2024.3423477
- [86] de Alencar Morais Lima, W., de Souza, J.G., García-Villén, F., Loureiro, J.L., Raffin, F.N., Fernandes, M.A.C., et al., Next-generation pediatric care: nanotechnology-based and AI-driven solutions for cardiovascular, respiratory, and gastrointestinal disorders. World J Pediatr. 21(1): 8–28, 2025. https://doi.org/10.1007/s12519-024-00834-x
- [87] Ansari, A.A., Aldajani, K.M., Al Hazaa, A.N. A.H. Emerging trends in nanotechnology for forensic science. Adv Fabr Invest Nanomater Ind Appl. 51–70, 2024. https://doi.org/10.1016/j.ccr.2022.214523
- [88] Wayman, J.L., Jain, A.K., Maltoni, D., Maio, D., Biometric Systems: Technology, Design and Performance Evaluation. Springer Science & Business Media: Berlin, 2005. https://doi.org/10.1007/b138151
- [89] Abbasi, A.S., Rehman, R.A., Anwar, A., Mehak, U.A., International activities in nano-forensics. In Modeling and Simulation of Functional Nanomaterials for Forensic Investigation; Rakha, A. et al., Eds.; IGI Global Scientific Publishing: Hershey, PA, 2023, pp. 290–310. https://doi. org/10.4018/978-1-6684-8325-1.ch015
- [90] Gupta, R.K., Abd, E.l. Gawadm F., Ali, E.A.E., Karunanithim S., Yugianim P., Srivastav, P.P., Nanotechnology: current applications and future scope in food packaging systems. Meas Food. 13: 100131, 2024. https://doi.org/10.1016/j.meafoo.2023.100131
- [91] Meierhofer, F., Fritsching, U., Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics. Energy Fuels. 35(7): 5495–5537, 2021. https://doi.org/10.1021/acs.energyfuels.0c04054
- [92] Verma, R.K., Nagar, V., Aseri, V., Mavry, B., Pandit, P.P., Chopade, R.L., et al. Zinc oxide (ZnO) nanoparticles: Synthesis properties and their forensic applications in latent fingerprints development. Mater Today Proc. 69: 36–41, 2022. https://doi.org/10.1016/j.matpr.2022.08.074
- [93] Singhal, M., Sharma, A., Jain, D., Nagar, V., Sonone, S.S., Jadhav, S.V., et al., Unveiling the power of nanoparticles: a comprehensive review on revolutionary techniques for development of latent fingerprints. 2024. https://doi.org/10.33263/lianbs133.110
- [94] Çetli, E., Özkoçak, V., Tatar, D., The role of silica nanoparticle in fingerprint visualization studies. Aksaray Univ J Sci Eng. 6(1): 27-41, 2022. https://doi.org/10.29002/asujse.1035557
- [95] Swati, G., Mishra, S., Luminescent nanomaterials for developing high-contrast latent fingerprints. Nanotechnology. 36(3): 32001, 2024. https://doi.org/10.1088/1361-6528/ad84fc
- [96] Malik, A.H., Zehra, N., Ahmad, M., Parui, R., Iyer, P.K. Advances in conjugated polymers for visualization of latent fingerprints: a critical perspective. New J Chem. 44(45): 19423-19439, 2020. https://doi.org/10.1039/ d0nj04131a
- [97] Mavry, B., Nagar, V., Soni, V., Divakaran, A.M., Awasthi, K.K., Yadav, C.S., Visualization of latent fingerprint using conjugated polymer nanoparticles. In: Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint

- Development. Springer: New York, NY, 2023, pp. 157–168. https://doi.org/10.1007/978-981-99-4028-8_10
- [98] Prabakaran, E., Pillay, K., Synthesis and characterization of fluorescent N-CDs/ZnONPs nanocomposite for latent fingerprint detection by using powder brushing method. Arab J Chem. 13(2): 3817–3835, 2020. https://doi.org/10.1016/j.arabjc.2019.01.004
- [99] Naik, E.I., Naik, H.S.B., Swamy, B.E.K., Viswanath, R., Gowda, I.K.S., Prabhakara, M.C., et al., Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chem Data Collect. 33: 100671, 2021. https://doi.org/10.1016/j. cdc.2021.100671
- [100] Bhardwaj, V., Thangaraj, A., Varddhan, S., Kumar, S.K.A., Crisponi, G., Sahoo, S.K., An aggregation-induced emission active vitamin B6 cofactor derivative: application in pH sensing and detection of latent fingerprints. Photochem Photobiol Sci. 19: 1402–1409, 2020. https://doi.org/10.1039/d0pp00262c
- [101] Zhang, Z., Zhao, X., Zhang, X., Hou, X., Ma, X., Tang, S., et al., In-sensor reservoir computing system for latent finger-print recognition with deep ultraviolet photo-synapses and memristor array. Nat Commun. 13(1): 6590, 2022. https://doi.org/10.1038/s41467-022-34230-8
- [102] Horie, M., Tabei, Y., Role of oxidative stress in nanoparticles toxicity. Free Radic Res. 55(4): 331–342, 2021. https://doi.org/10.1080/10715762.2020.1859108
- [103] Liu, Y., Zhu, S., Gu, Z., Chen, C., Zhao, Y., Toxicity of manufactured nanomaterials. Particuology. 69: 31–48, 2022. https://doi.org/10.1016/j.partic.2021.11.007
- [104] Attarilar, S., Yang, J., Ebrahimi, M., Wang, Q., Liu, J., Tang, Y., et al., The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotechnol. 8: 822, 2020. https://doi.org/10.3389/fbioe.2020.00822
- [105] Nikzamir, M., Akbarzadeh, A., Panahi, Y., An overview on nanoparticles used in biomedicine and their cytotoxicity.

- J Drug Deliv Sci Technol. 61: 102316, 2021. https://doi.org/10.1016/j.jddst.2020.102316
- [106] Ahmed, H.M., Roy, A., Wahab, M., Ahmed, M., Othman-Qadir, G., Elesawy, B.H., et al. Applications of nanomaterials in agrifood and pharmaceutical industry. J Nanomater. 2021(1): 1472096, 2021. https://doi.org/10.1155/2021/1472096
- [107] Jakubowicz, I., Yarahmadi, N., Review and assessment of existing and future techniques for traceability with particular focus on applicability to ABS plastics. Polymers (Basel). 16(10): 1343, 2024. https://doi.org/10.3390/ polym16101343
- [108] Klöckner, M., Schmidt, C.G., Fink, A., Flückiger, L., Wagner, S.M., Exploring the physical-digital interface in block-chain applications: insights from the luxury watch industry. Transp Res Logist Transp Rev. 179: 103300, 2023. https://doi.org/10.1016/j.tre.2023.103300
- [109] Abdelrahman, M.S., Khattab, T.A., Recent advances in photoresponsive printing inks for security encoding applications. Luminescence. 39(6): e4800, 2024. https:// doi.org/10.1002/bio.4800
- [110] Buja I, Sabella E, Monteduro A.G., Chiriacò, M.S., De Bellis, L., Luvisi, A., Maruccio, G., Advances in plant disease detection and monitoring: from traditional assays to in-field diagnostics. Sensors. 21(6): 2129, 2021. https://doi.org/10.3390/s21062129
- [111] Singh S., Nanotechnology: a powerful tool in forensic science for solving criminal cases. 2021. https://doi. org/10.26735/yddj4516
- [112] Kesarwani, S., Parihar, K., Sankhla, M.S., Kumar, R., Nanoforensic: new perspective and extensive applications in solving crimes. Latent Appl Nanobiosci. 10(1): 1792–1798, 2020. https://doi.org/10.33263/lianbs101.17921798
- [113] Ali, B.S., The application of nanotechnology in criminology and forensic sciences. Int J Electron Crime Investig. 6: 13–18, 2022. https://doi.org/10.54692/ijeci.2022.0604120