
Warith Scientific Journal of Engineering and Technology, vol.1 (2025) 
 

 

Warith Scientific Journal of Engineering and Technology 
 

Journal homepage: wsjet.uowa.edu.iq 

 
 

 
https://doi.org/10.57026/wsjet.v1i1.14  
Received 13 August 2025; Received in revised form 08 October 2025; Accepted 09 October 2025; Available online 15 October 2025. 
© 2025 Warith Scientific Journal of Engineering and Technology. Published by University of Warith Al-Anbiyaa. All rights reserved. 
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/). 

Federated Learning for 6G Networks: A Comprehensive Review of 
Challenges, Techniques, and Future Directions 

Zinah Tareq Nayyef1,*, Iman Subhi Mahmood2 
1 Environmental Engineering Department, College of Engineering, University of Baghdad 

2 Criminal and Fornensic Evidence Techniques, Institute of Medical Technology - Al-Mansour, Middle 
Technical University 

 
*Corresponding author E-mail address: zinaht.nayyef@coeng.uobaghdad.edu.iq 
 

A R T I C L E I N F O 

Keywords: 
Federated Learning 
Sixth-Generation (6G) 
Communication Networks 
Communication-Efficient 
Quantum-Secure Federated 
Learning 

A B S T R A C T 

The convergence of Federated Learning (FL) and sixth-generation (6G) 
communication systems promise to revolutionize distributed 
intelligence by addressing emerging demands for data privacy, real-
time processing, and massive connectivity. However, integrating FL 
within 6G introduces complex challenges ranging from heterogeneous 
data and devices to communication bottlenecks, energy constraints, and 
stringent security demands. This review provides a comprehensive 
examination of FL techniques and their applicability in terms of 6G 
communication models. The review also emphasizes how these 
technologies are used in real-world fields like healthcare, autonomous 
systems, and digital twins—areas where privacy, reliability, and latency 
are mission-critical. Unlike earlier surveys that treat FL and 6G as 
separate research tracks, this paper critically reviews their convergence, 
identifying how FL techniques must evolve to meet the architectural, 
functional, and regulatory demands of 6G systems. It discusses ongoing 
challenges and emerging directions such as quantum-safe protocols, 
interpretable federated learning, and energy-aware orchestration. By 
synthesizing cross disciplinary insights and mapping current gaps, this 
review aims to guide future research in developing robust, adaptive, and 
secure FL frameworks. 

________________________________________________________________________________ 

1. Introduction  
The rapid advancement in wireless communication technologies is ushering in the era of sixth-generation 

(6G) networks. These next-generation networks aim to provide ultra-fast data speeds over 1 terabit per second 
along with near-zero latency, and the ability to connect a massive number of devices simultaneously [1]. These 
capabilities are essential for enabling emerging applications like holographic communication, digital twins, 
extended reality (XR), and autonomous systems all of which require highly reliable, secure, and adaptable 
connections. To reach these goals, researchers are focusing on key technologies such as Terahertz (THz) 
communication, intelligent reflecting surfaces (IRS), edge artificial intelligence (AI), distributed intelligence, 
and block-chain as fundamental parts of the 6G infrastructure [2]. Historically, distributed learning systems 
have always been known to go through a process of being divided into centralized and decentralized 
approaches. Centralized training is where the raw data is collected at a central server for model training. This 
method of training is efficient; however, it poses a lot of privacy issues, causes bandwidth congestion and 
creates a single point of failure. The practices of decentralized approaches like peer-to-peer and fully 
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decentralized algorithms let the system work with no dependency on the central server, however, they face 
challenges like scalability, convergence in heterogeneous environments, and that of being invulnerable to 
adversarial attacks. Federated Learning (FL) is a model that allows for the combination of decentralization, 
which means that models will be trained on edge devices without the data being transferred. Privacy of the 
data during training is also taken into consideration [3, 4]. This approach naturally helps protect privacy, 
reduces the amount of data that needs to be transmitted, and adapts well to environments that are constantly 
changing and spread out over large areas making it especially suitable for 6G networks, which are expected to 
be extremely dense and filled with a wide variety of devices. Despite all these benefits, using federated 
learning in 6G systems introduces several challenges. These include the high costs of communication because 
of sending lots of model updates often, differences between devices and data, and security threats such as 
malicious attacks [5, 6]. To address these issues and unlock the full potential of FL, Researchers have 
proposed a range of intelligent strategies to enhance communication efficiency among distributed nodes. 
These include creating layered system architectures that allow for better information flow, enabling devices to 
send updates asynchronously thus avoiding delays, and data compressing techniques to minimize bandwidth 
usage. Concurrently, considerable efforts are being made to improve privacy protection in federated learning 
systems. Techniques such as secure data protocols and differential privacy, which introduces controlled noise 
to prevent personal disclosure of sensitive data. These techniques are being developed to ensure robust privacy 
guarantees. Several model compression techniques such as SVDFed [7] use low-rank approximations via 
Singular Value Decomposition (SVD) to compress model parameters before transmission. This strategy 
effectively reduces communication costs while maintaining model accuracy. Collectively, these initiatives aim 
to establish a federated learning environment that is not only more secure, faster, and more flexible but also 
meets the practical requirements of 6G networks [5, 8]. While several prior works have surveyed federated 
learning (FL) or 6G communication separately, few have thoroughly explored their intersection with sufficient 
depth and critical analysis. Most existing studies usually give a general overview or focus on the technical 
details of algorithms, but they often don’t look closely at how everything fits together as part of the bigger 6G 
system. In addition, limited attention has been paid to the joint implications of privacy, scalability, and latency 
under real-world constraints such as edge-cloud coordination, device heterogeneity, and quantum-safe 
communication protocols. Unlike existing surveys that primarily catalog algorithms and architectures, this 
review provides several new insights into the role of federated learning (FL) in 6G networks. The main 
contributions are as follows: 

1. Systematic evaluation framework: We introduce a structured protocol for assessing FL in 6G 
environments, incorporating quantitative metrics such as communication cost, convergence speed, 
robustness to non-independent and identically distributed (non-IID) data, and computational 
overhead. Explicit thresholds for Low/Medium/High performance levels are provided, enabling 
reproducible and comparable assessments. 

2. Refined taxonomy: A novel taxonomy is proposed that distinguishes the functional roles of edge, 
fog, and cloud layers. This taxonomy maps representative FL algorithmic strategies to 6G 
enablers, including ultra-reliable low-latency communication (URLLC), terahertz (THz) 
connectivity, and reconfigurable intelligent surfaces (RIS). 

3. Identification of underexplored challenges: We highlight issues insufficiently addressed in prior 
surveys, such as quantum-resilient privacy preservation, cross-layer orchestration of resources, 
and large-scale scalability across heterogeneous devices. 

4. Evidence-based recommendations: A systematic comparison of representative FL algorithms 
(FedAvg, FedProx, SCAFFOLD, and FedNova) is presented under 6G-like conditions. Based on 
this evaluation, we provide practical guidelines and recommendations for algorithm selection and 
deployment in next-generation wireless systems. 

Collectively, these contributions demonstrate how the paper goes beyond literature compilation by 
providing benchmarks, clarifying taxonomies, and outlining concrete research directions. 

2. Background and Foundations  

2.1. Evolution to 6G Networks 

The transition to 6G networks is being driven by emerging communication paradigms, increasingly 
intelligent network design, and the rising demand for data-intensive applications. AI-powered networks are the 
basis of this transformation. These networks offer the ability to autonomously learn, make quick decisions, and 
use resources more efficiently to ensure seamless operations [9, 10]. New ideas like quantum information 
processing, integrated sensing and communication, and very high-frequency bands like terahertz are paving 
the way toward data speeds exceeding 1Tbps. These techniques also enable ultra-reliable and low latency 
connections, which are really important for time-critical applications [11]. This evolution signifies a future 
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where networks are becoming more decentralized and autonomous, focusing on edge intelligence to minimize 
latency and maximize bandwidth efficiency. Technologies like fog and edge computing will become essential 
enabling distributed processing and scalable, privacy-protecting. AI models particularly federated learning, 
which is well-suited for deployment at the network edge [9, 12, 13]. Federated learning's ability to allow 
devices to collaboratively train models without sharing raw data aligns with 6G's core objectives of data 
control, security, and privacy protection. It helps build a strong and reliable foundation for future smart 
services. Furthermore, the proliferation of intelligent, context-aware, and adaptive IoT systems like 
holographic communication, digital twins, and the tactile internet require extremely high levels of network 
reliability, scalability, and security that have never been needed before [10, 14]. Addressing these 
requirements necessitates the integration of advanced physical-layer technologies like terahertz 
communications with smart AI-driven network management and lightweight, secure ways for devices to learn 
and collaborate, such as federated learning [15, 16]. Consequently, federated learning is expected to become a 
key technology in 6G networks, helping to create sustainable, privacy-focused, and highly flexible systems 
that can support the wide variety of new and emerging applications. Table1 summarizes various FL techniques 
and their applicability in 6G environments. 

Table1. Key Enabling Technologies in 6G and Their Roles 
Technology Description 6G Role and Benefits References 

Terahertz (THz) 
Communication 

Operates at 100 GHz–10 THz frequency 
bands. 

Supports ultra-high data rates (>1 Tbps) for 
XR, holograms, and digital twins. 

[1], [8], 
[15] 

Intelligent Reflecting Surfaces 
(IRS) 

Reconfigurable surfaces that control 
signal propagation. 

Enhances spectral efficiency, coverage, and 
energy savings. 

[2], [9] 

Edge AI and Distributed 
Intelligence 

Embeds AI at edge nodes for local 
processing. 

Reduces latency and enables real-time 
decision-making. 

[9], [14] 

Quantum Communication Uses quantum mechanics to encode and 
transmit information. 

Provides ultra-secure communication 
channels. 

[3] 

Integrated Sensing and 
Communication (ISAC) 

Combines radar and communication 
functionalities. 

Enables environment-aware and context-
adaptive services. 

[9], [10] 

Blockchain for Trust and 
Privacy 

Distributed ledger ensuring transparent 
and tamper-proof records. 

Facilitates secure FL, data sharing, and 
decentralized identity. 

[17] 

 

2.2. Principles of Federated Learning  

Federated Learning (FL) is a collaborative way of training machine learning models where many devices 
such as smartphones, IoT sensors, or autonomous vehicles, work together to improve a shared model without 
sharing their private data. This approach is perfectly suited for 6G networks, as it helps ensure privacy, 
reduces delays, and can scale to support the huge number of connected devices. The core FL process typically 
involves the following iterative steps [18]. 

1. Model Initialization 
A central server initializes a global model and distributes it to selected edge clients. 

2. Local Training 
 Clients perform local training on their private data and generate updated model weights or gradients. 

3. Model Upload 
Clients send only model updates (not raw data) to the server.  

4. Aggregation 
The server performs model aggregation (commonly using FedAvg) to update the global model: 

                                                     𝑤𝑤(𝑡𝑡+1) = �
𝑛𝑛𝑘𝑘
𝑛𝑛

.𝑤𝑤𝑘𝑘
(𝑡𝑡+1)                    

𝑘𝑘

𝑘𝑘=1

                                                    (1) 

Where wk is the local model from client k, and nk is its dataset size. 

5. Redistribution 
The updated model is redistributed to clients for the next round. This process is repeated until 

convergence. While the FedAvg algorithm is simple and widely used, it faces limitations in 6G scenarios with 
high device mobility and intermittent connectivity, where convergence slows and global models may become 
biased under non-IID data [19]. In addition, the computational complexity of local training is a concern, since 
even lightweight CNNs may exceed the memory and energy budgets of IoT sensors [20]. To consolidate the 
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discussion of representative FL algorithms, Table 2 summarizes their computational complexity and 
communication characteristics, highlighting the trade-offs between local training cost, communication 
overhead, and suitability for 6G devices.  

Table 2. Computational Complexity and Communication Characteristics of Representative FL Variant. 
FL Algorithm Local Training Complexity Communication Cost per Round Suitability for 6G Devices 
FedAvg [21] 𝒪𝒪(𝐸𝐸.𝑛𝑛.𝑑𝑑) High (full model, size = d) Limited under non-IID, high 

mobility 
FedProx [22] 𝒪𝒪(𝐸𝐸.𝑛𝑛.𝑑𝑑) +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 High More stable under heterogeneity 

SCAFFOLD [22] 𝒪𝒪(𝐸𝐸.𝑛𝑛.𝑑𝑑) +  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 Medium Faster convergence, extra device-
side memory 

Quantized FL [20] 𝒪𝒪(𝐸𝐸.𝑛𝑛.𝑑𝑑) Low (compressed gradients) Energy-efficient, slight accuracy 
drop 

Hierarchical FL [23] 𝒪𝒪(𝐸𝐸.𝑛𝑛.𝑑𝑑) per tier Medium (multi-tier aggregation) Scalable for massive 6G 
deployments 

Where 𝐸𝐸 is the number of local epochs, 𝑛𝑛 is the number of samples per device, and 𝑑𝑑 is the model 
dimension (parameters) [21]. 

2.3. Types of Federated Learning 

Federated Learning can be categorized based on how the data is distributed among the participants [21]: 
• Horizontal FL, different clients have similar types of data features but different data samples (e.g., 

smart phones with similar applications collecting different user information).  
• Vertical Federated Learning is like two companies (e.g., a bank and a retailer) working together 

on the same group of customers. The bank and retailer each have different types of information 
about these customers, but they share the same data samples. They collaborate to learn from each 
other's data without giving away their private details.  

• Federated Transfer Learning, on the other hand, is useful when businesses have disparate data and 
feature sets, which makes cooperation more challenging. It focuses on a limited number of shared 
characteristics that enable both sides to modify their models and collaborate productively in spite 
of their differences. 
 

2.4. Advanced Variants and Enhancements 

To make Federated Learning more effective and better suited to real-world situations; it has developed into 
several different forms: 

• Asynchronous Federated Learning allows clients to send their updates at varying times, instead of 
waiting for all devices to finish. This reduces delay from slow or unreliable devices and 
improving scalability [21]. 

• Personalized FL, where each client gets a tailored version of the model optimized for its unique 
data distribution [24].  

• Hierarchical FL introduces an intermediate step where nearby edge servers gather and summarize 
updates before sending them to the central server, which helps reduce the overall communication 
workload and improving scalability [25]. 

These advancements enhance FL's ability to function efficiently in dynamic and resource-constrained 
environments typical of 6G networks. 

2.5. Relevance of FL to 6G Networks 

Federated Learning aligns closely with architectural vision and functional requirements of 6G networks as 
outlined in Table 3, FL offers distinct advantages aligned with 6G’s key features, including edge computing, 
privacy, scalability, and AI-native networking [14, 19, 22]. 

Table 3. Advantages of Federated Learning in Relation to Key 6G Features. 
6G Feature Federated Learning Advantage 

Edge computing & low latency Local training reduces cloud dependency and supports real-time tasks 
Privacy & data sovereignty Raw data remains on-device, enhancing user privacy 

Ultra-massive device connectivity Scales to billions of heterogeneous edge devices 
AI-native networking Supports decentralized, adaptive, and privacy-preserving intelligence 

Figure 1 show how FL fits into the emerging 6G network environment. It enables intelligent decision-
making while maintaining data privacy and minimizing redundant data transmission. This approach helps 
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safeguard sensitive information and reduce network congestion, making the process more efficient and secure. 
The ability of FL to support scalable, on-device learning is especially critical in ultra-dense 6G environments. 
In addition to supporting secure and efficient network operations, FL enables real-time collaboration among 
smart vehicles, urban infrastructure, and various IoT devices. Collectively, these attributes position FL as a 
foundational element for the implementation of AI-driven applications in future 6G systems. To provide 
further context, Figure 2 presents a timeline showing the major milestones in the development and adoption of 
FL in wireless communication systems. 

 
Figure 1. Taxonomy of Federated learning in 6G: communication strategies, system architectures, privacy 

Techniques. 

 
Figure 2. Timeline of FL in Wireless Networks. 

3. Challenges of FL in 6G Environments 

Despite its promise, the deployment of FL in 6G networks faces several critical challenges due to the 
intrinsic characteristics of decentralized learning and the demanding nature of 6G environments. These 
challenges must be systematically addressed to realize efficient, secure, and scalable FL systems in next-
generation networks. 

3.1.  Communication Efficiency 

Communication overhead remains one of the most pressing limitations in FL, particularly in large-scale 6G 
networks. Frequent transmission of model updates can overwhelm bandwidth-constrained links and increase 
latency [25, 26]. Strategies to improve communication efficiency include gradient compression, update 
sparsification, and periodic averaging [27, 28].  Reducing duplicate traffic is another potential benefit of 
hierarchical federated topologies that make use of client-edge-cloud coordination [10]. 

3.2. Device and Resource Heterogeneity  

In 6G environments, devices exhibit considerable disparities in processing capabilities, memory, energy 
availability, and network bandwidth. This heterogeneity complicates synchronization and may lead to clients 
dropping out during training. Lightweight model designs, efficient client selection algorithms, and 
asynchronous training strategies have been proposed to accommodate such variability [13, 10, 24]. In addition, 
adaptive techniques like model pruning and quantization are critical for enabling edge devices with limited 
resources to participate meaningfully in FL tasks [27]. 
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3.3. Latency Sensitivity 

Timing is also critical in FL because the process depends on regular updates from devices to keep the 
system synchronized. In scenarios that require ultra-reliable, low-latency communication like those expected 
in 6G delays in receiving model updates can hurt performance. To minimize these issues, approaches such as 
asynchronous learning, where devices send updates whenever they can, and event-triggered methods, which 
only communicate when a significant change occurs, are being explored to help reduce the impact of delays. 
[13, 29]. 

3.4. Privacy Preservation and Security Threats 

While FL inherently improves privacy by avoiding raw data transmission, it remains vulnerable to a range 
of privacy and security threats. Gradient leakage, model inversion, and membership inference attacks can 
reveal sensitive user information [3, 16, 18]. Researchers widely study privacy-preserving techniques such as 
differential privacy [16], secure aggregation [3], and federated encryption protocols to combat these risks. In 
addition, the threat of poisoning attacks, where compromised clients intentionally corrupt global model 
updates, necessitates reliable defense mechanisms and anomaly detection algorithms [30, 31]. 

3.5. Data Imbalance and Non-IID Distribution 

The main challenge in FL is the presence of non-independent and equally distributed (non-IID) data across 
participating devices. Each client may have limited and biased local datasets, leading to models that generalize 
poorly when aggregated globally. This statistical heterogeneity results in slower convergence, reduced 
accuracy, and inconsistencies in training outcomes [6, 9, 32]. Techniques such as hierarchical clustering [33] 
[34] and personalized FL approaches [28] aim to mitigate this issue by customizing models to local data 
distributions or grouping similar clients. 

3.6. Scalability and System Management 

With the rise of 6G networks and billions of interconnected devices, maintaining accurate and reliable 
federated models becomes increasingly complex. Many devices may join or leave unexpectedly, creating a 
highly dynamic and unstable environment. To handle these issues with scaling and keeping everything running 
smoothly, researchers are investigating solutions such as hierarchical (layered) architectures and cross-device 
learning paradigms, aiming to ensure FL remains reliable as network conditions change [12, 27]. Also, 
Blockchain integration [17], incentive mechanisms [35], and policy-based orchestration are proposed to 
enhance trust, transparency, and scalability in decentralized FL environments. 

3.7. Standardization Roadmap and Interoperability  

As FL moves from theoretical research to practical deployment in 6G environments, interoperability across 
devices, platforms, and communication protocols becomes essential. The sheer scale and heterogeneity of 6G 
networks spanning smart phones, IoT sensors, edge servers, autonomous vehicles, and more necessitate 
standardized frameworks for model exchange, privacy preservation, device authentication, and communication 
orchestration. Emerging initiatives are addressing these challenges: 

• The IEEE P4006 standard [36] defines models for personal data AI agents, promoting responsible 
handling  

• The ETSI ISG PDL working group focuses on using permission distributed ledgers to ensure 
auditability and trust in federated training and aggregation workflows [37]. 

• The ITU-T FG-AI4H (Focus Group on Artificial Intelligence for Health) recommends 
interoperability protocols and model validation pipelines specifically for FL-based medical 
applications [38]. 

• Industry-backed platforms such as FATE (Federated AI Technology Enabler) and Intel’s OpenFL 
are pioneering cross-platform FL orchestration using gRPC APIs, secure aggregation, and 
modular architecture [39, 40]. 

However, several gaps persist, including: 
• The lack of common formats for transmitting models (e.g., ONNX, TF Lite). 
• No unified API standards for FL orchestration across heterogeneous clients. 
• Limited benchmarked testbeds to validate cross-vendor compatibility. 

Future research and industry collaboration are needed to define standards that address: 
• Privacy-compliant model sharing. 
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• Protocols for trust, explainability, and reproducibility. 
• Secure FL deployment over satellite and mobile 6G links. 

As FL systems scale across 6G networks, standardization will be pivotal in ensuring interoperability, 
accountability, and secure collaboration at the edge. 

4. Enabling Technologies for Communication-Efficient FL in 6G 
The integration FL into 6G networks relies on multiple enabling technologies that collectively address the 

challenges of computation, communication, scalability, and privacy. This section outlines key pillars including 
distributed computing, secure coordination mechanisms, intelligent orchestration, and communication-efficient 
protocols while emphasizing their roles within the 6G–FL ecosystem. 

4.1. Edge and Fog Computing 

Edge and fog computing provide the computational backbone for FL in 6G systems by processing data 
close to its source, thereby minimizing latency and bandwidth usage. In an FL context, edge servers act as 
local aggregators, coordinating decentralized training and sending intermediate models to higher-tier nodes or 
the cloud [10, 12, 14]. A hierarchical edge–cloud architecture allows computationally intensive tasks to be 
offloaded to intermediate fog layers, enabling energy efficiency, scalability, and context-aware model 
specialization [29, 41]. This multi-tier design aligns well with 6G’s distributed architecture, supporting 
applications such as autonomous vehicles and remote healthcare that require ultra-reliable, low-latency 
communication (URLLC). 

4.2. Blockchain and Distributed Ledger Technologies 

Blockchain provides a decentralized trust layer for FL by ensuring immutability and transparency in model 
update logging, participation tracking, and incentive distribution [42]. The integration of smart contracts can 
automate reputation scoring, penalize malicious behavior, and enforce access control. For resource-constrained 
edge devices, permissioned blockchains defined by bodies like ETSI [38] can offer lightweight, energy-
efficient solutions without compromising auditability critical for sensitive domains such as healthcare or 
financial services. 

4.3. Artificial Intelligence and Automation 

Artificial Intelligence (AI) enhances the orchestration of FL in 6G networks by enabling intelligent client 
selection, adaptive learning rate scheduling, and personalized model delivery [3, 9]. Advanced AI techniques, 
such as reinforcement learning and meta-learning, allow the FL system to adapt dynamically to fluctuating 
device availability, non-IID data distributions, and varying network conditions [7, 28]. Embedding these AI 
functions into the 6G management plane improves both resource allocation and fault tolerance. 

4.4. Communication-Efficient FL Protocols 

Communication overhead remains one of the main bottlenecks in large-scale FL deployments, particularly 
in bandwidth-constrained 6G edge environments. Several strategies have been developed to address this 
challenge: 

4.4.1. Dimensionality Reduction with SVD (SVDFed Framework) 
A notable approach, SVDFed, employs Singular Value Decomposition (SVD) to compress model updates 

at both the server and client sides [7, 28]. The global model is decomposed before distribution, with only a 
low-rank approximation sent to clients. Clients train locally and apply SVD again to compress their updates 
before transmission. This bidirectional compression reduces communication costs by 40–60% while 
maintaining accuracy in tasks such as image classification and anomaly detection. Figure 3 illustrates this 
process, where high-dimensional parameter matrices are transformed into compact representations. 

4.4.2. Asynchronous and Event-Driven Updates 
To mitigate the straggler effect in synchronous FL, asynchronous protocols enable clients to upload 

updates at different times, reducing idle periods [32, 43]. Event-driven FL triggers communication only when 
local models exceed a divergence threshold or exhibit a significant drop in loss. Asynchronous SGD 
(AsyncSGD) accommodates intermittent connectivity and mobility, making it well-suited for URLLC 
applications in 6G. 
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Figure 3. Dimensionality reduction in SVDFed using Singular Value Decomposition (SVD) at both global and 

local levels. 

4.4.3. Hierarchical and Multi-Tier FL Architectures 
Hierarchical FL introduces intermediate aggregation points, such as base stations or fog servers, before 

updates reach the central server [13, 44]. This reduces core network congestion and accelerates model 
convergence. Such multi-tier designs complement 6G’s inherent fog–edge–cloud structure, enabling scalable 
deployment in high-density IoT and smart city environments. 

4.5. System-Level Integration 

The enabling technologies discussed above are interdependent and should be viewed as components of a 
unified 6G–FL architecture:  

• Edge/fog computing reduces latency and distributes training loads.  
• Blockchain secures interactions between distributed nodes. 
• AI enhances orchestration and adaptability. 
• Communication-efficient protocols ensure scalability in bandwidth-limited environments. 

These technologies operate within a multi-layered network in which edge nodes perform localized 
learning; fog servers coordinate regional aggregation, and cloud or satellite layers conduct global optimization. 
By incorporating lightweight AI models, privacy-preserving protocols, and energy-aware designs, such 
systems can meet 6G’s strict performance and sustainability goals. The full interaction of these components is 
depicted in Figure 4. 

 
Figure 4. System architecture for federated learning in 6G networks integrating edge/fog computing, 

blockchain, and AI orchestration. 

5. Federated Learning in 6G Networks 

5.1.  Application Domains of Federated Learning in 6G Networks 

The integration of FL with 6G technologies presents transformative potential across a wide range of 
application domains. By enabling collaborative training directly on devices, FL supports privacy-preserving 
intelligence in ultra-dense, latency-sensitive, and data-rich environments all hallmarks of future 6G 
ecosystems. Table 4 presents the main application domains of FL in 6G, empathizing benefits and domain-
specific challenges. 
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5.1.1. Autonomous and Connected Vehicles (V2X) 
FL enables cooperative training among vehicles, roadside units (RSUs), and cloud platforms, facilitating 

tasks such as obstacle detection, route planning, and traffic pattern recognition. Its decentralized nature ensures 
that sensitive sensor data remains localized, enhancing privacy and responsiveness in real-time decision-making 
scenarios [10]. 

5.1.2. Smart Healthcare and Internet of Medical Things (IoMT) 
Hospitals, wearable devices, and health-monitoring sensors can use FL to collaboratively train models for 

disease diagnosis, anomaly detection, and remote patient monitoring. This approach enables compliance with 
data privacy regulations (e.g., HIPAA, GDPR), while reducing latency in diagnostics [14]. 

5.1.3. Industrial IoT and Smart Manufacturing 
In smart factories, distributed edge nodes can train models for predictive maintenance, fault detection, and 

quality control. FL helps preserve operational data confidentiality and supports real-time responses in mission-
critical environments [31]. 

5.1.4. Extended Reality (XR), Augmented Reality (AR), and the Metaverse 
FL provides personalized model training on user preferences, gestures, or visual input, enhancing 

immersive experiences. In the context of the metaverse, it allows scalable and secure learning for real-time 
avatar rendering, behavior prediction, and network adaptation [10, 39]. 

5.1.5. Smart Cities and Infrastructure 
Urban infrastructure (e.g., smart traffic lights, surveillance, and environmental sensors) can participate in 

federated training to optimize energy use, improve traffic flow, and enhance public safety. This localized 
learning reduces communication overhead and complies with local data policies [9, 44]. 

5.1.6. Agriculture and Environmental Monitoring 
Sensor networks in agriculture and remote ecosystems can collaboratively learn models for crop yield 

prediction, soil health assessment, and pollution tracking. FL avoids the transmission of sensitive geospatial 
data and supports deployment in bandwidth-constrained rural areas [12, 33]. 

Table 4.  Application domains of federated learning in 6G. 
Domain Key Benefits of Using Federated Learning Main Challenges in 6G Environments 

Autonomous Vehicles Enables real-time model updates and privacy-
preserving vehicle-to-vehicle (V2X) learning 

Managing constant mobility, unreliable connections, and 
keeping updates synchronized 

Smart Healthcare Protects patient privacy, supports distributed 
diagnostics, and keeps data localized 

Must follow strict regulations (like HIPAA/GDPR), handle 
varied data formats, and work on low-power devices with 

secure protocols 
Industrial IoT Allows fast, on-site learning and keeps 

sensitive company data secure 
Devices often vary by factory, and syncing data across sites 

is complex 
AR/VR & Metaverse Offers personalized experiences, supports 

smooth rendering, and saves bandwidth 
Requires ultra-low latency, consistent high frame rates, and 

handles fragmented user data 
Smart Cities Supports decentralized decision-making, 

reduces dependence on cloud, and respects 
public data privacy 

Balancing energy use, device diversity, and large-scale 
coordination while keeping data meaningful but private 

Agriculture & 
Environmental 

Monitoring 

Trains models locally even in remote or offline 
areas, with minimal risk of data leaks 

Limited connectivity, unreliable sensors, and energy 
limitations are common issues 

 

5.2. Comparative Evaluation of Federated Learning Algorithms in 6G Contexts 

Although many FL algorithms have been developed, their performance in real 6G scenarios can vary 
greatly based on factors like network conditions, device diversity, and privacy requirements [3]. Table 5 
enabling an informed choice of algorithms for various 6G deployment scenarios. It focuses on aspects such as 
overall suitability for 6G environments, privacy protections, device-to-device data differences, and 
communication efficiency. This comparison is intended to assist in choosing or developing FL techniques that 
satisfy the needs of ultra-dense, low-latency, and privacy-sensitive applications. 

In Table 5, the classification into Low, Medium, and High levels is based on quantitative thresholds 
defined in this study to ensure consistent interpretation of results. Communication overhead is categorized as 
Low (<10 MB per round), Medium (10–50 MB), and High (>50 MB). Convergence speed is classified as Low 
(<50 global rounds to reach target accuracy), Medium (50–150 rounds), and High (>150 rounds). Robustness 
to non-IID data is evaluated on a 0–1 scale, where values below 0.4 indicate Low robustness, 0.4–0.4 
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correspond to Medium, and values above 0.4 denote High robustness. Similar ranges are applied to 
computational overhead (<1 GFLOP = Low, 1–5 GFLOPs = Medium, >5 GFLOPs = High) and scalability 
(<1,000 clients = Low, 1k–100k = Medium, >100k = High). By applying these thresholds, the comparative 
analysis in Table 4 offers a reproducible benchmark that highlights not only absolute performance values but 
also the relative efficiency and practicality of each algorithm in 6G-like environments. Due to their simplicity 
and scalability, classic algorithms like FedAvg [3] are frequently used; however, they suffer under non-IID 
distributions, which is a common occurrence in 6G networks with billions of diverse devices. 

Table 5. Comparison of Federated Learning Techniques in 6G Contexts 
FL Method Communication 

Overhead 
Robustness to 
Non-IID Data 

Privacy 
Mechanisms Scalability 6G 

Suitability Key Limitations 

FedAvg [3] Medium Low None – 
Baseline 

High Moderate Sensitive to data heterogeneity 

FedProx [9] Medium Medium None – 
Regularized 

Moderate Good Requires tuning of regularization 
term 

FedNova [24] Low High None High Good Less explored in cross-device FL 
FedMA [3] Medium High None Moderate Moderate Complex model alignment 

process 
FedDF [3], 

[16] 
High High Differential 

Privacy 
Low Limited High server-side computation cost 

SCAFFOLD 
[3], [25] 

Medium High None Moderate Good Requires correction terms at 
clients 

FedSGD [3] High Low None Moderate Limited High communication per round 
Secure 

Aggregation 
[16], [18] 

Medium N/A Homomorphic 
Encryption 

Moderate Good Adds cryptographic overhead 

 
By adding a proximal term that restricts model divergence during local updates, FedProx [9] enhances 

convergence and provides moderate robustness to data heterogeneity. FedNova [24] addresses the issue of 
update normalization, reducing the adverse effects of partial client participation. Methods like SCAFFOLD 
[45] use control variates to correct client drift caused by non-IID data, while FedMA [3] aligns layers across 
models rather than aggregating weights, which improves accuracy but requires model architecture consistency. 
On the other hand, FedDF [3], which makes use of knowledge distillation, offers robustness and privacy 
preservation but comes at a high computational and communication cost. Although client updates are 
encrypted during transmission thanks to privacy-preserving methods like Secure Aggregation [16, 17], they 
come with cryptographic overhead that can be significant for low-power devices. Figure 5 shows relative 
communication overhead of common FL algorithms. FedAvg exhibits high overhead due to frequent full-
model updates, while asynchronous and hierarchical FL approaches reduce this burden by leveraging partial or 
delayed communication. Although conceptually simple, FedSGD requires a frequent bidirectional 
communication for every update, which limits its practicality in 6G networks [3]. In general, there’s no one-
size-fits-all algorithm that can handle every need of 6G on its own. Moving forward, the most promising 
approach will be to blend different strategies combining techniques that are efficient with communication, 
adjust to individual users, and respectful of privacy to create a more effective and flexible FL system for the 
future of 6G. 

 
Figure 5. Relative communication overhead of common FL algorithms, comparing FedAvg, FedProx, FedSGD, and 

hierarchical methods. 

6. Open Research Directions and Opportunities 
The integration of FL into 6G networks presents a rich avenue for research, with several open challenges 

that must be addressed to realize its full potential. This section outlines critical areas for future exploration, 
emphasizing their importance to emerging 6G scenarios. Table 6 summarizes the key research directions 
discussed in this section, along with representative works addressing each theme. 
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6.1. Cross-Layer System Integration in 6G 

Conventional FL primarily operates at the application layer, but 6G’s stringent performance demands 
require tight cross-layer integration involving the physical, MAC, network, and transport layers. Cross-layer 
optimization can jointly address spectral allocation, energy efficiency, and model update scheduling, leading 
to improved convergence speed and reliability. For instance, adaptive resource allocation strategies have been 
shown to reduce FL convergence delays by up to 55% in mobile network scenarios [33]. The primary 
challenge lies in dynamically adapting training schedules to fluctuating wireless conditions, including channel 
fading and intermittent connectivity in terahertz (THz) frequency bands [1, 27]. 

6.2. Hierarchical and Decentralized FL Architectures 

The centralized aggregate used in traditional FL designs has the potential to become a bottleneck. Device-
edge-cloud tiers are used by newly developed hierarchical federated learning (HFL) frameworks to increase 
fault tolerance, scalability, and latency [10, 44]. In addition, by removing the sole point of failure, 
decentralized aggregation techniques like blockchain-based FL allow safe cooperation in insecure situations 
[39, 40]. In 6G settings, multi-tier aggregation and dynamical task partitioning can maximize resource usage 
and model correctness 

6.3. Quantum-Resistant and Privacy-Preserving FL 

With the advent of quantum computing, existing cryptographic precautions in FL, such as differential 
privacy (DP) and homomorphic encryption (HE), may be compromised. Post-quantum cryptography (PQC) 
approaches, such as lattice-based encryption schemes, are being studied to secure FL models from quantum-
capable adversaries [46]. Integrating PQC with privacy-preserving approaches while maintaining training 
efficiency and accuracy is a major challenge, especially in heterogeneous data situations [17, 47]. 

6.4. Cross-Silo and Cross-Device Collaboration 

In 6G, FL must operate smoothly across cross-silo (e.g., hospitals, enterprises) and cross-device (e.g., IoT 
nodes, smartphones, vehicular systems) settings [6]. These environments differ in trust levels, computational 
capabilities, and data volumes, making fairness and personalization key research priorities. Benchmarks such 
as the LEAF dataset are instrumental in evaluating the robustness of FL algorithms under these heterogeneous 
conditions. 

6.5.  Integration of FL with Core 6G Technologies 

The successful adoption of FL in 6G will depend on its integration with emerging enablers, including: 
• Terahertz (THz) communication for ultra-high-speed model updates exchanges [1, 26]. 
• Reconfigurable Intelligent Surfaces (RIS) to dynamically manage propagation environments 

and enhance communication reliability [2, 15]. 
• Ambient backscatter communications for energy-constrained FL deployments. 

Recent studies demonstrate how RIS can be employed to optimize user-side energy consumption while 
maintaining learning performance [47]. 

6.6. Explainable and Auditable Federated Learning 

Given the increasing use of FL in safety-critical domains such as healthcare, explainability and auditability 
have become vital requirements. Techniques such as SHAP and LIME can provide model interpretability 
while safeguarding data privacy [48]. The integration of explainable AI (XAI) into FL pipelines is necessary to 
ensure transparency, trust, and compliance with ethical and regulatory frameworks. 

6.7. Standardization and Real-World Testbeds 

Even though there's been a lot of progress in the theories, we still don’t have a clear, standard platform for 
6G FL. Initiatives such as FATE [49], OpenFL [50], and IEEE P4006 [51] are working toward platform 
standardization, privacy protection, and interoperability. However, large-scale, latency-aware 6G-specific 
testbeds and simulators are still underdeveloped, representing a key opportunity for future research [52]. 
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Table 6. Key Research Directions and Representative Works 
Research Direction Focus Representative Works 

Cross-Layer FL Integration Joint optimization of communication and learning parameters [34] 
Hierarchical / Decentralized FL Multi-tier and blockchain-enabled FL [17], [25], [39], [42] 

Quantum-Safe FL Post-quantum cryptography and privacy preservation [18], [26], [50] 
Cross-Silo & Cross-Device FL Fairness, personalization, and heterogeneity handling [8] 

FL with Emerging 6G Technologies THz, RIS, and energy-efficient communication [1], [2], [46] 
Explainable and Auditable FL Interpretability and compliance [50] 

Standards and Platforms Standardized frameworks and testbeds [40], [41], [51], [52] 

7. Conclusion 
This paper looks at both the design of 6G systems and how to include federated learning, unlike previous 

research that usually focused on just one part. It covers the key technologies like edge and fog computing, 
blockchain, and AI management, while also tackling big-picture issues such as security, how well the system 
can grow, and making communication more efficient. The analysis further identifies several critical avenues 
for future research. These include the development of quantum-resistant privacy-preserving mechanisms, the 
design of energy-efficient training paradigms, and the implementation of scalable multi-tier architectures that 
align with the inherently distributed characteristics of 6G. Such research directions represent significant 
opportunities for innovation that may shape the evolution of next-generation intelligent wireless 
communication systems. These research areas present significant opportunities for innovations that could 
fundamentally transform future smart wireless communication systems. As 6G develops, FL is likely to 
become a key way to enable smart, private cooperation right at the network’s edge. Addressing the identified 
challenges through advanced enabling technologies and interdisciplinary approaches will be essential to 
establishing secure, sustainable, and high-performance AI-driven communication ecosystems. In essence, 
combining FL with 6G represents more than a technological upgrade. It’s a big step toward creating AI that’s 
more centered on people, more trustworthy, and built so that’s decentralized. This shift will be a key part of 
the super-connected digital world we’re heading into. 
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