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The convergence of Federated Learning (FL) and sixth-generation (6G)
communication systems promise to revolutionize distributed
Communication Networks intelligence by addressing emerging demands for data privacy, real-
Communication-Efficient time processing, and massive connectivity. However, integrating FL
OQuantum-Secure Federated within 6G introduces complex challenges ranging from heterogeneous
Learning data and devices to communication bottlenecks, energy constraints, and
stringent security demands. This review provides a comprehensive
examination of FL techniques and their applicability in terms of 6G
communication models. The review also emphasizes how these
technologies are used in real-world fields like healthcare, autonomous
systems, and digital twins—areas where privacy, reliability, and latency
are mission-critical. Unlike earlier surveys that treat FL and 6G as
separate research tracks, this paper critically reviews their convergence,
identifying how FL techniques must evolve to meet the architectural,
functional, and regulatory demands of 6G systems. It discusses ongoing
challenges and emerging directions such as quantum-safe protocols,
interpretable federated learning, and energy-aware orchestration. By
synthesizing cross disciplinary insights and mapping current gaps, this
review aims to guide future research in developing robust, adaptive, and
secure FL frameworks.

1. Introduction

The rapid advancement in wireless communication technologies is ushering in the era of sixth-generation
(6G) networks. These next-generation networks aim to provide ultra-fast data speeds over 1 terabit per second
along with near-zero latency, and the ability to connect a massive number of devices simultaneously [1]. These
capabilities are essential for enabling emerging applications like holographic communication, digital twins,
extended reality (XR), and autonomous systems all of which require highly reliable, secure, and adaptable
connections. To reach these goals, researchers are focusing on key technologies such as Terahertz (THz)
communication, intelligent reflecting surfaces (IRS), edge artificial intelligence (Al), distributed intelligence,
and block-chain as fundamental parts of the 6G infrastructure [2]. Historically, distributed learning systems
have always been known to go through a process of being divided into centralized and decentralized
approaches. Centralized training is where the raw data is collected at a central server for model training. This
method of training is efficient; however, it poses a lot of privacy issues, causes bandwidth congestion and
creates a single point of failure. The practices of decentralized approaches like peer-to-peer and fully
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decentralized algorithms let the system work with no dependency on the central server, however, they face
challenges like scalability, convergence in heterogeneous environments, and that of being invulnerable to
adversarial attacks. Federated Learning (FL) is a model that allows for the combination of decentralization,
which means that models will be trained on edge devices without the data being transferred. Privacy of the
data during training is also taken into consideration [3, 4]. This approach naturally helps protect privacy,
reduces the amount of data that needs to be transmitted, and adapts well to environments that are constantly
changing and spread out over large areas making it especially suitable for 6G networks, which are expected to
be extremely dense and filled with a wide variety of devices. Despite all these benefits, using federated
learning in 6G systems introduces several challenges. These include the high costs of communication because
of sending lots of model updates often, differences between devices and data, and security threats such as
malicious attacks [5, 6]. To address these issues and unlock the full potential of FL, Researchers have
proposed a range of intelligent strategies to enhance communication efficiency among distributed nodes.
These include creating layered system architectures that allow for better information flow, enabling devices to
send updates asynchronously thus avoiding delays, and data compressing techniques to minimize bandwidth
usage. Concurrently, considerable efforts are being made to improve privacy protection in federated learning
systems. Techniques such as secure data protocols and differential privacy, which introduces controlled noise
to prevent personal disclosure of sensitive data. These techniques are being developed to ensure robust privacy
guarantees. Several model compression techniques such as SVDFed [7] use low-rank approximations via
Singular Value Decomposition (SVD) to compress model parameters before transmission. This strategy
effectively reduces communication costs while maintaining model accuracy. Collectively, these initiatives aim
to establish a federated learning environment that is not only more secure, faster, and more flexible but also
meets the practical requirements of 6G networks [5, 8]. While several prior works have surveyed federated
learning (FL) or 6G communication separately, few have thoroughly explored their intersection with sufficient
depth and critical analysis. Most existing studies usually give a general overview or focus on the technical
details of algorithms, but they often don’t look closely at how everything fits together as part of the bigger 6G
system. In addition, limited attention has been paid to the joint implications of privacy, scalability, and latency
under real-world constraints such as edge-cloud coordination, device heterogeneity, and quantum-safe
communication protocols. Unlike existing surveys that primarily catalog algorithms and architectures, this
review provides several new insights into the role of federated learning (FL) in 6G networks. The main
contributions are as follows:

1. Systematic evaluation framework: We introduce a structured protocol for assessing FL in 6G
environments, incorporating quantitative metrics such as communication cost, convergence speed,
robustness to non-independent and identically distributed (non-1ID) data, and computational
overhead. Explicit thresholds for Low/Medium/High performance levels are provided, enabling
reproducible and comparable assessments.

2. Refined taxonomy: A novel taxonomy is proposed that distinguishes the functional roles of edge,
fog, and cloud layers. This taxonomy maps representative FL algorithmic strategies to 6G
enablers, including ultra-reliable low-latency communication (URLLC), terahertz (THz)
connectivity, and reconfigurable intelligent surfaces (RIS).

3. Identification of underexplored challenges: We highlight issues insufficiently addressed in prior
surveys, such as quantum-resilient privacy preservation, cross-layer orchestration of resources,
and large-scale scalability across heterogeneous devices.

4. Evidence-based recommendations: A systematic comparison of representative FL algorithms
(FedAvg, FedProx, SCAFFOLD, and FedNova) is presented under 6G-like conditions. Based on
this evaluation, we provide practical guidelines and recommendations for algorithm selection and
deployment in next-generation wireless systems.

Collectively, these contributions demonstrate how the paper goes beyond literature compilation by
providing benchmarks, clarifying taxonomies, and outlining concrete research directions.

2. Background and Foundations

2.1. Evolution to 6G Networks

The transition to 6G networks is being driven by emerging communication paradigms, increasingly
intelligent network design, and the rising demand for data-intensive applications. Al-powered networks are the
basis of this transformation. These networks offer the ability to autonomously learn, make quick decisions, and
use resources more efficiently to ensure seamless operations [9, 10]. New ideas like quantum information
processing, integrated sensing and communication, and very high-frequency bands like terahertz are paving
the way toward data speeds exceeding 1Tbps. These techniques also enable ultra-reliable and low latency
connections, which are really important for time-critical applications [11]. This evolution signifies a future
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where networks are becoming more decentralized and autonomous, focusing on edge intelligence to minimize
latency and maximize bandwidth efficiency. Technologies like fog and edge computing will become essential
enabling distributed processing and scalable, privacy-protecting. Al models particularly federated learning,
which is well-suited for deployment at the network edge [9, 12, 13]. Federated learning's ability to allow
devices to collaboratively train models without sharing raw data aligns with 6G's core objectives of data
control, security, and privacy protection. It helps build a strong and reliable foundation for future smart
services. Furthermore, the proliferation of intelligent, context-aware, and adaptive IoT systems like
holographic communication, digital twins, and the tactile internet require extremely high levels of network
reliability, scalability, and security that have never been needed before [10, 14]. Addressing these
requirements necessitates the integration of advanced physical-layer technologies like terahertz
communications with smart Al-driven network management and lightweight, secure ways for devices to learn
and collaborate, such as federated learning [15, 16]. Consequently, federated learning is expected to become a
key technology in 6G networks, helping to create sustainable, privacy-focused, and highly flexible systems
that can support the wide variety of new and emerging applications. Tablel summarizes various FL techniques
and their applicability in 6G environments.

Tablel. Key Enabling Technologies in 6G and Their Roles

Technology Description 6G Role and Benefits References
Terahertz (THz) Operates at 100 GHz—10 THz frequency Supports ultra-high data rates (>1 Tbps) for [11, [8],
Communication bands. XR, holograms, and digital twins. [15]

Intelligent Reflecting Surfaces Reconfigurable surfaces that control Enhances spectral efficiency, coverage, and [21, [9]
(IRS) signal propagation. energy savings.
Edge Al and Distributed Embeds Al at edge nodes for local Reduces latency and enables real-time [91, [14]

Intelligence processing. decision-making.

Quantum Communication Uses quantum mechanics to encode and Provides ultra-secure communication [3]
transmit information. channels.
Integrated Sensing and Combines radar and communication Enables environment-aware and context- [9], [10]
Communication (ISAC) functionalities. adaptive services.
Blockchain for Trust and Distributed ledger ensuring transparent Facilitates secure FL, data sharing, and [17]
Privacy and tamper-proof records. decentralized identity.

2.2. Principles of Federated Learning

Federated Learning (FL) is a collaborative way of training machine learning models where many devices
such as smartphones, IoT sensors, or autonomous vehicles, work together to improve a shared model without
sharing their private data. This approach is perfectly suited for 6G networks, as it helps ensure privacy,
reduces delays, and can scale to support the huge number of connected devices. The core FL process typically
involves the following iterative steps [18].

1. Model Initialization
A central server initializes a global model and distributes it to selected edge clients.

2. Local Training
Clients perform local training on their private data and generate updated model weights or gradients.

3. Model Upload
Clients send only model updates (not raw data) to the server.

4. Aggregation
The server performs model aggregation (commonly using FedAvg) to update the global model:

k

Ny t+1
wt+D = Z;Wé ) €Y

k=1
Where wy is the local model from client &, and ny is its dataset size.

5. Redistribution

The updated model is redistributed to clients for the next round. This process is repeated until
convergence. While the FedAvg algorithm is simple and widely used, it faces limitations in 6G scenarios with
high device mobility and intermittent connectivity, where convergence slows and global models may become
biased under non-IID data [19]. In addition, the computational complexity of local training is a concern, since
even lightweight CNNs may exceed the memory and energy budgets of IoT sensors [20]. To consolidate the
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discussion of representative FL algorithms, Table 2 summarizes their computational complexity and
communication characteristics, highlighting the trade-offs between local training cost, communication
overhead, and suitability for 6G devices.

Table 2. Computational Complexity and Communication Characteristics of Representative FL Variant.

FL Algorithm Local Training Complexity Communication Cost per Round Suitability for 6G Devices
FedAvg [21] O(E.n.d) High (full model, size = d) Limited under non-IID, high
mobility
FedProx [22] O(E.n.d) + proximal term High More stable under heterogeneity
SCAFFOLD [22] O(E.n.d) + control variates Medium Faster convergence, extra device-
side memory
Quantized FL [20] O(E.n.d) Low (compressed gradients) Energy-efficient, slight accuracy
drop
Hierarchical FL [23] O(E.n.d) per tier Medium (multi-tier aggregation) Scalable for massive 6G

deployments

Where E is the number of local epochs, n is the number of samples per device, and d is the model
dimension (parameters) [21].

2.3. Types of Federated Learning

Federated Learning can be categorized based on how the data is distributed among the participants [21]:

e Horizontal FL, different clients have similar types of data features but different data samples (e.g.,
smart phones with similar applications collecting different user information).

e Vertical Federated Learning is like two companies (e.g., a bank and a retailer) working together
on the same group of customers. The bank and retailer each have different types of information
about these customers, but they share the same data samples. They collaborate to learn from each
other's data without giving away their private details.

e Federated Transfer Learning, on the other hand, is useful when businesses have disparate data and
feature sets, which makes cooperation more challenging. It focuses on a limited number of shared
characteristics that enable both sides to modify their models and collaborate productively in spite
of their differences.

2.4. Advanced Variants and Enhancements

To make Federated Learning more effective and better suited to real-world situations; it has developed into
several different forms:

e Asynchronous Federated Learning allows clients to send their updates at varying times, instead of
waiting for all devices to finish. This reduces delay from slow or unreliable devices and
improving scalability [21].

e Personalized FL, where each client gets a tailored version of the model optimized for its unique
data distribution [24].

e Hierarchical FL introduces an intermediate step where nearby edge servers gather and summarize
updates before sending them to the central server, which helps reduce the overall communication
workload and improving scalability [25].

These advancements enhance FL's ability to function efficiently in dynamic and resource-constrained
environments typical of 6G networks.

2.5. Relevance of FL to 6G Networks

Federated Learning aligns closely with architectural vision and functional requirements of 6G networks as
outlined in Table 3, FL offers distinct advantages aligned with 6G’s key features, including edge computing,
privacy, scalability, and Al-native networking [14, 19, 22].

Table 3. Advantages of Federated Learning in Relation to Key 6G Features.

6G Feature Federated Learning Advantage
Edge computing & low latency Local training reduces cloud dependency and supports real-time tasks
Privacy & data sovereignty Raw data remains on-device, enhancing user privacy
Ultra-massive device connectivity Scales to billions of heterogeneous edge devices
Al-native networking Supports decentralized, adaptive, and privacy-preserving intelligence

Figure 1 show how FL fits into the emerging 6G network environment. It enables intelligent decision-
making while maintaining data privacy and minimizing redundant data transmission. This approach helps
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safeguard sensitive information and reduce network congestion, making the process more efficient and secure.
The ability of FL to support scalable, on-device learning is especially critical in ultra-dense 6G environments.
In addition to supporting secure and efficient network operations, FL enables real-time collaboration among
smart vehicles, urban infrastructure, and various IoT devices. Collectively, these attributes position FL as a
foundational element for the implementation of Al-driven applications in future 6G systems. To provide
further context, Figure 2 presents a timeline showing the major milestones in the development and adoption of

FL in wireless communication systems.
Federated Learning
in 6G

Communication- Privacy- lable EL
{ Efficient FL ’ Preserving FLJ { szl

Data Differentical Hierarchical
Compresssion Privacy Design
Asynchronous Secure Multi-Layer

Updates Aggregation Design

Hierarchical
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Figure 1. Taxonomy of Federated learning in 6G: communication strategies, system architectures, privacy
Techniques.
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Figure 2. Timeline of FL in Wireless Networks.

3. Challenges of FL in 6G Environments

Despite its promise, the deployment of FL in 6G networks faces several critical challenges due to the
intrinsic characteristics of decentralized learning and the demanding nature of 6G environments. These
challenges must be systematically addressed to realize efficient, secure, and scalable FL systems in next-
generation networks.

3.1. Communication Efficiency

Communication overhead remains one of the most pressing limitations in FL, particularly in large-scale 6G
networks. Frequent transmission of model updates can overwhelm bandwidth-constrained links and increase
latency [25, 26]. Strategies to improve communication efficiency include gradient compression, update
sparsification, and periodic averaging [27, 28]. Reducing duplicate traffic is another potential benefit of
hierarchical federated topologies that make use of client-edge-cloud coordination [10].

3.2. Device and Resource Heterogeneity

In 6G environments, devices exhibit considerable disparities in processing capabilities, memory, energy
availability, and network bandwidth. This heterogeneity complicates synchronization and may lead to clients
dropping out during training. Lightweight model designs, efficient client selection algorithms, and
asynchronous training strategies have been proposed to accommodate such variability [13, 10, 24]. In addition,
adaptive techniques like model pruning and quantization are critical for enabling edge devices with limited
resources to participate meaningfully in FL tasks [27].
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3.3. Latency Sensitivity

Timing is also critical in FL because the process depends on regular updates from devices to keep the
system synchronized. In scenarios that require ultra-reliable, low-latency communication like those expected
in 6G delays in receiving model updates can hurt performance. To minimize these issues, approaches such as
asynchronous learning, where devices send updates whenever they can, and event-triggered methods, which
only communicate when a significant change occurs, are being explored to help reduce the impact of delays.
[13,29].

3.4. Privacy Preservation and Security Threats

While FL inherently improves privacy by avoiding raw data transmission, it remains vulnerable to a range
of privacy and security threats. Gradient leakage, model inversion, and membership inference attacks can
reveal sensitive user information [3, 16, 18]. Researchers widely study privacy-preserving techniques such as
differential privacy [16], secure aggregation [3], and federated encryption protocols to combat these risks. In
addition, the threat of poisoning attacks, where compromised clients intentionally corrupt global model
updates, necessitates reliable defense mechanisms and anomaly detection algorithms [30, 31].

3.5. Data Imbalance and Non-IID Distribution

The main challenge in FL is the presence of non-independent and equally distributed (non-I1ID) data across
participating devices. Each client may have limited and biased local datasets, leading to models that generalize
poorly when aggregated globally. This statistical heterogeneity results in slower convergence, reduced
accuracy, and inconsistencies in training outcomes [6, 9, 32]. Techniques such as hierarchical clustering [33]
[34] and personalized FL approaches [28] aim to mitigate this issue by customizing models to local data
distributions or grouping similar clients.

3.6. Scalability and System Management

With the rise of 6G networks and billions of interconnected devices, maintaining accurate and reliable
federated models becomes increasingly complex. Many devices may join or leave unexpectedly, creating a
highly dynamic and unstable environment. To handle these issues with scaling and keeping everything running
smoothly, researchers are investigating solutions such as hierarchical (layered) architectures and cross-device
learning paradigms, aiming to ensure FL remains reliable as network conditions change [12, 27]. Also,
Blockchain integration [17], incentive mechanisms [35], and policy-based orchestration are proposed to
enhance trust, transparency, and scalability in decentralized FL environments.

3.7. Standardization Roadmap and Interoperability

As FL moves from theoretical research to practical deployment in 6G environments, interoperability across
devices, platforms, and communication protocols becomes essential. The sheer scale and heterogeneity of 6G
networks spanning smart phones, IoT sensors, edge servers, autonomous vehicles, and more necessitate
standardized frameworks for model exchange, privacy preservation, device authentication, and communication
orchestration. Emerging initiatives are addressing these challenges:

o The IEEE P4006 standard [36] defines models for personal data Al agents, promoting responsible
handling

e The ETSI ISG PDL working group focuses on using permission distributed ledgers to ensure
auditability and trust in federated training and aggregation workflows [37].

e The ITU-T FG-AI4H (Focus Group on Artificial Intelligence for Health) recommends
interoperability protocols and model validation pipelines specifically for FL-based medical
applications [38].

e Industry-backed platforms such as FATE (Federated Al Technology Enabler) and Intel’s OpenFL
are pioneering cross-platform FL orchestration using gRPC APIs, secure aggregation, and
modular architecture [39, 40].

However, several gaps persist, including:
e The lack of common formats for transmitting models (e.g., ONNX, TF Lite).
e No unified API standards for FL orchestration across heterogeneous clients.
e Limited benchmarked testbeds to validate cross-vendor compatibility.

Future research and industry collaboration are needed to define standards that address:
e  Privacy-compliant model sharing.
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e  Protocols for trust, explainability, and reproducibility.
e Secure FL deployment over satellite and mobile 6G links.

As FL systems scale across 6G networks, standardization will be pivotal in ensuring interoperability,
accountability, and secure collaboration at the edge.

4. Enabling Technologies for Communication-Efficient FL in 6G

The integration FL into 6G networks relies on multiple enabling technologies that collectively address the
challenges of computation, communication, scalability, and privacy. This section outlines key pillars including
distributed computing, secure coordination mechanisms, intelligent orchestration, and communication-efficient
protocols while emphasizing their roles within the 6G—FL ecosystem.

4.1. Edge and Fog Computing

Edge and fog computing provide the computational backbone for FL in 6G systems by processing data
close to its source, thereby minimizing latency and bandwidth usage. In an FL context, edge servers act as
local aggregators, coordinating decentralized training and sending intermediate models to higher-tier nodes or
the cloud [10, 12, 14]. A hierarchical edge—cloud architecture allows computationally intensive tasks to be
offloaded to intermediate fog layers, enabling energy efficiency, scalability, and context-aware model
specialization [29, 41]. This multi-tier design aligns well with 6G’s distributed architecture, supporting
applications such as autonomous vehicles and remote healthcare that require ultra-reliable, low-latency
communication (URLLC).

4.2. Blockchain and Distributed Ledger Technologies

Blockchain provides a decentralized trust layer for FL by ensuring immutability and transparency in model
update logging, participation tracking, and incentive distribution [42]. The integration of smart contracts can
automate reputation scoring, penalize malicious behavior, and enforce access control. For resource-constrained
edge devices, permissioned blockchains defined by bodies like ETSI [38] can offer lightweight, energy-
efficient solutions without compromising auditability critical for sensitive domains such as healthcare or
financial services.

4.3. Artificial Intelligence and Automation

Artificial Intelligence (AI) enhances the orchestration of FL in 6G networks by enabling intelligent client
selection, adaptive learning rate scheduling, and personalized model delivery [3, 9]. Advanced Al techniques,
such as reinforcement learning and meta-learning, allow the FL system to adapt dynamically to fluctuating
device availability, non-1ID data distributions, and varying network conditions [7, 28]. Embedding these Al
functions into the 6G management plane improves both resource allocation and fault tolerance.

4.4. Communication-Efficient FL Protocols

Communication overhead remains one of the main bottlenecks in large-scale FL deployments, particularly
in bandwidth-constrained 6G edge environments. Several strategies have been developed to address this
challenge:

4.4.1. Dimensionality Reduction with SVD (SVDFed Framework)
A notable approach, SVDFed, employs Singular Value Decomposition (SVD) to compress model updates
at both the server and client sides [7, 28]. The global model is decomposed before distribution, with only a
low-rank approximation sent to clients. Clients train locally and apply SVD again to compress their updates
before transmission. This bidirectional compression reduces communication costs by 40-60% while
maintaining accuracy in tasks such as image classification and anomaly detection. Figure 3 illustrates this
process, where high-dimensional parameter matrices are transformed into compact representations.

4.4.2. Asynchronous and Event-Driven Updates
To mitigate the straggler effect in synchronous FL, asynchronous protocols enable clients to upload
updates at different times, reducing idle periods [32, 43]. Event-driven FL triggers communication only when
local models exceed a divergence threshold or exhibit a significant drop in loss. Asynchronous SGD
(AsyncSGD) accommodates intermittent connectivity and mobility, making it well-suited for URLLC
applications in 6G.
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Figure 3. Dimensionality reduction in SVDFed using Singular Value Decomposition (SVD) at both global and
local levels.

4.4.3. Hierarchical and Multi-Tier FL Architectures
Hierarchical FL introduces intermediate aggregation points, such as base stations or fog servers, before
updates reach the central server [13, 44]. This reduces core network congestion and accelerates model
convergence. Such multi-tier designs complement 6G’s inherent fog—edge—cloud structure, enabling scalable
deployment in high-density IoT and smart city environments.

4.5. System-Level Integration

The enabling technologies discussed above are interdependent and should be viewed as components of a
unified 6G—FL architecture:
o Edge/fog computing reduces latency and distributes training loads.
e Blockchain secures interactions between distributed nodes.
e Al enhances orchestration and adaptability.
e Communication-efficient protocols ensure scalability in bandwidth-limited environments.

These technologies operate within a multi-layered network in which edge nodes perform localized
learning; fog servers coordinate regional aggregation, and cloud or satellite layers conduct global optimization.
By incorporating lightweight Al models, privacy-preserving protocols, and energy-aware designs, such
systems can meet 6G’s strict performance and sustainability goals. The full interaction of these components is
depicted in Figure 4.

Communications

— (S@A)) Advanced 6G

* Low-latency

I 6G model trans
+ High-bandwidth

Blockchain/DL aggregation
« Secure aggre- : Su;:)pﬁrt fo(; |
gation mobility andscale

* Trust mehanisms

Artificial Intelligence

+ Adaptive training
orchestration

Edge/Fog Computing
« Distributed training
+ Energy-efficient mo-

del updates
« Context-aware

personalization
[+ |
]

Edge node Fog node

Figure 4. System architecture for federated learning in 6G networks integrating edge/fog computing,
blockchain, and Al orchestration.
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5. Federated Learning in 6G Networks

5.1. Application Domains of Federated Learning in 6G Networks

The integration of FL with 6G technologies presents transformative potential across a wide range of
application domains. By enabling collaborative training directly on devices, FL supports privacy-preserving
intelligence in ultra-dense, latency-sensitive, and data-rich environments all hallmarks of future 6G
ecosystems. Table 4 presents the main application domains of FL in 6G, empathizing benefits and domain-
specific challenges.
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5.1.1. Autonomous and Connected Vehicles (V2X)

FL enables cooperative training among vehicles, roadside units (RSUs), and cloud platforms, facilitating
tasks such as obstacle detection, route planning, and traffic pattern recognition. Its decentralized nature ensures
that sensitive sensor data remains localized, enhancing privacy and responsiveness in real-time decision-making
scenarios [10].

5.1.2. Smart Healthcare and Internet of Medical Things (IoMT)
Hospitals, wearable devices, and health-monitoring sensors can use FL to collaboratively train models for
disease diagnosis, anomaly detection, and remote patient monitoring. This approach enables compliance with
data privacy regulations (e.g., HIPAA, GDPR), while reducing latency in diagnostics [14].

5.1.3. Industrial IoT and Smart Manufacturing
In smart factories, distributed edge nodes can train models for predictive maintenance, fault detection, and
quality control. FL helps preserve operational data confidentiality and supports real-time responses in mission-
critical environments [31].

5.1.4. Extended Reality (XR), Augmented Reality (AR), and the Metaverse
FL provides personalized model training on user preferences, gestures, or visual input, enhancing
immersive experiences. In the context of the metaverse, it allows scalable and secure learning for real-time
avatar rendering, behavior prediction, and network adaptation [10, 39].

5.1.5. Smart Cities and Infrastructure
Urban infrastructure (e.g., smart traffic lights, surveillance, and environmental sensors) can participate in
federated training to optimize energy use, improve traffic flow, and enhance public safety. This localized
learning reduces communication overhead and complies with local data policies [9, 44].

5.1.6. Agriculture and Environmental Monitoring
Sensor networks in agriculture and remote ecosystems can collaboratively learn models for crop yield
prediction, soil health assessment, and pollution tracking. FL avoids the transmission of sensitive geospatial
data and supports deployment in bandwidth-constrained rural areas [12, 33].

Table 4. Application domains of federated learning in 6G.

Domain Key Benefits of Using Federated Learning Main Challenges in 6G Environments
Autonomous Vehicles Enables real-time model updates and privacy- Managing constant mobility, unreliable connections, and
preserving vehicle-to-vehicle (V2X) learning keeping updates synchronized
Smart Healthcare Protects patient privacy, supports distributed Must follow strict regulations (like HIPAA/GDPR), handle
diagnostics, and keeps data localized varied data formats, and work on low-power devices with
secure protocols
Industrial IoT Allows fast, on-site learning and keeps Devices often vary by factory, and syncing data across sites
sensitive company data secure is complex
AR/VR & Metaverse Offers personalized experiences, supports Requires ultra-low latency, consistent high frame rates, and
smooth rendering, and saves bandwidth handles fragmented user data
Smart Cities Supports decentralized decision-making, Balancing energy use, device diversity, and large-scale
reduces dependence on cloud, and respects coordination while keeping data meaningful but private
public data privacy
Agriculture & Trains models locally even in remote or offline Limited connectivity, unreliable sensors, and energy
Environmental areas, with minimal risk of data leaks limitations are common issues
Monitoring

5.2. Comparative Evaluation of Federated Learning Algorithms in 6G Contexts

Although many FL algorithms have been developed, their performance in real 6G scenarios can vary
greatly based on factors like network conditions, device diversity, and privacy requirements [3]. Table 5
enabling an informed choice of algorithms for various 6G deployment scenarios. It focuses on aspects such as
overall suitability for 6G environments, privacy protections, device-to-device data differences, and
communication efficiency. This comparison is intended to assist in choosing or developing FL techniques that
satisfy the needs of ultra-dense, low-latency, and privacy-sensitive applications.

In Table 5, the classification into Low, Medium, and High levels is based on quantitative thresholds
defined in this study to ensure consistent interpretation of results. Communication overhead is categorized as
Low (<10 MB per round), Medium (10-50 MB), and High (>50 MB). Convergence speed is classified as Low
(<50 global rounds to reach target accuracy), Medium (50—-150 rounds), and High (>150 rounds). Robustness
to non-IID data is evaluated on a 0-1 scale, where values below 0.4 indicate Low robustness, 0.4-0.4
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correspond to Medium, and values above 0.4 denote High robustness. Similar ranges are applied to
computational overhead (<1 GFLOP = Low, 1-5 GFLOPs = Medium, >5 GFLOPs = High) and scalability
(<1,000 clients = Low, 1k—100k = Medium, >100k = High). By applying these thresholds, the comparative
analysis in Table 4 offers a reproducible benchmark that highlights not only absolute performance values but
also the relative efficiency and practicality of each algorithm in 6G-like environments. Due to their simplicity
and scalability, classic algorithms like FedAvg [3] are frequently used; however, they suffer under non-1ID
distributions, which is a common occurrence in 6G networks with billions of diverse devices.

Table 5. Comparison of Federated Learning Techniques in 6G Contexts

Communication  Robustness to Privacy - 6G N
FL Method Overhead Non-IID Data Mechanisms Scalability Suitability Key Limitations
FedAvg [3] Medium Low None — High Moderate Sensitive to data heterogeneity
Baseline
FedProx [9] Medium Medium None — Moderate Good Requires tuning of regularization
Regularized term
FedNova [24] Low High None High Good Less explored in cross-device FL
FedMA [3] Medium High None Moderate ~ Moderate Complex model alignment
process
FedDF [3], High High Differential Low Limited High server-side computation cost
[16] Privacy
SCAFFOLD Medium High None Moderate Good Requires correction terms at
[31, [25] clients
FedSGD [3] High Low None Moderate Limited High communication per round
Secure Medium N/A Homomorphic =~ Moderate Good Adds cryptographic overhead
Aggregation Encryption

[16], [18]

By adding a proximal term that restricts model divergence during local updates, FedProx [9] enhances
convergence and provides moderate robustness to data heterogeneity. FedNova [24] addresses the issue of
update normalization, reducing the adverse effects of partial client participation. Methods like SCAFFOLD
[45] use control variates to correct client drift caused by non-IID data, while FedMA [3] aligns layers across
models rather than aggregating weights, which improves accuracy but requires model architecture consistency.
On the other hand, FedDF [3], which makes use of knowledge distillation, offers robustness and privacy
preservation but comes at a high computational and communication cost. Although client updates are
encrypted during transmission thanks to privacy-preserving methods like Secure Aggregation [16, 17], they
come with cryptographic overhead that can be significant for low-power devices. Figure 5 shows relative
communication overhead of common FL algorithms. FedAvg exhibits high overhead due to frequent full-
model updates, while asynchronous and hierarchical FL approaches reduce this burden by leveraging partial or
delayed communication. Although conceptually simple, FedSGD requires a frequent bidirectional
communication for every update, which limits its practicality in 6G networks [3]. In general, there’s no one-
size-fits-all algorithm that can handle every need of 6G on its own. Moving forward, the most promising
approach will be to blend different strategies combining techniques that are efficient with communication,
adjust to individual users, and respectful of privacy to create a more effective and flexible FL system for the
future of 6G.

FedAygnous FedProx

Asynchronous FL Hierarchical FL

Figure 5. Relative communication overhead of common FL algorithms, comparing FedAvg, FedProx, FedSGD, and
hierarchical methods.

6. Open Research Directions and Opportunities

The integration of FL into 6G networks presents a rich avenue for research, with several open challenges
that must be addressed to realize its full potential. This section outlines critical areas for future exploration,
emphasizing their importance to emerging 6G scenarios. Table 6 summarizes the key research directions
discussed in this section, along with representative works addressing each theme.
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6.1. Cross-Layer System Integration in 6G

Conventional FL primarily operates at the application layer, but 6G’s stringent performance demands
require tight cross-layer integration involving the physical, MAC, network, and transport layers. Cross-layer
optimization can jointly address spectral allocation, energy efficiency, and model update scheduling, leading
to improved convergence speed and reliability. For instance, adaptive resource allocation strategies have been
shown to reduce FL convergence delays by up to 55% in mobile network scenarios [33]. The primary
challenge lies in dynamically adapting training schedules to fluctuating wireless conditions, including channel
fading and intermittent connectivity in terahertz (THz) frequency bands [1, 27].

6.2. Hierarchical and Decentralized FL Architectures

The centralized aggregate used in traditional FL designs has the potential to become a bottleneck. Device-
edge-cloud tiers are used by newly developed hierarchical federated learning (HFL) frameworks to increase
fault tolerance, scalability, and latency [10, 44]. In addition, by removing the sole point of failure,
decentralized aggregation techniques like blockchain-based FL allow safe cooperation in insecure situations
[39, 40]. In 6G settings, multi-tier aggregation and dynamical task partitioning can maximize resource usage
and model correctness

6.3. Quantum-Resistant and Privacy-Preserving FL

With the advent of quantum computing, existing cryptographic precautions in FL, such as differential
privacy (DP) and homomorphic encryption (HE), may be compromised. Post-quantum cryptography (PQC)
approaches, such as lattice-based encryption schemes, are being studied to secure FL. models from quantum-
capable adversaries [46]. Integrating PQC with privacy-preserving approaches while maintaining training
efficiency and accuracy is a major challenge, especially in heterogeneous data situations [17, 47].

6.4. Cross-Silo and Cross-Device Collaboration

In 6G, FL must operate smoothly across cross-silo (e.g., hospitals, enterprises) and cross-device (e.g., [oT
nodes, smartphones, vehicular systems) settings [6]. These environments differ in trust levels, computational
capabilities, and data volumes, making fairness and personalization key research priorities. Benchmarks such
as the LEAF dataset are instrumental in evaluating the robustness of FL algorithms under these heterogeneous
conditions.

6.5. Integration of FL with Core 6G Technologies

The successful adoption of FL in 6G will depend on its integration with emerging enablers, including:
e Terahertz (THz) communication for ultra-high-speed model updates exchanges [1, 26].
e Reconfigurable Intelligent Surfaces (RIS) to dynamically manage propagation environments
and enhance communication reliability [2, 15].
e Ambient backscatter communications for energy-constrained FL deployments.

Recent studies demonstrate how RIS can be employed to optimize user-side energy consumption while
maintaining learning performance [47].

6.6. Explainable and Auditable Federated Learning

Given the increasing use of FL in safety-critical domains such as healthcare, explainability and auditability
have become vital requirements. Techniques such as SHAP and LIME can provide model interpretability
while safeguarding data privacy [48]. The integration of explainable Al (XAI) into FL pipelines is necessary to
ensure transparency, trust, and compliance with ethical and regulatory frameworks.

6.7. Standardization and Real-World Testbeds

Even though there's been a lot of progress in the theories, we still don’t have a clear, standard platform for
6G FL. Initiatives such as FATE [49], OpenFL [50], and IEEE P4006 [51] are working toward platform
standardization, privacy protection, and interoperability. However, large-scale, latency-aware 6G-specific
testbeds and simulators are still underdeveloped, representing a key opportunity for future research [52].
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Table 6. Key Research Directions and Representative Works

Research Direction Focus Representative Works
Cross-Layer FL Integration Joint optimization of communication and learning parameters [34]
Hierarchical / Decentralized FL Multi-tier and blockchain-enabled FL [17], [25], [39], [42]
Quantum-Safe FL Post-quantum cryptography and privacy preservation [18], [26], [50]
Cross-Silo & Cross-Device FL Fairness, personalization, and heterogeneity handling [8]
FL with Emerging 6G Technologies THz, RIS, and energy-efficient communication [1], [2], [46]
Explainable and Auditable FL Interpretability and compliance [50]
Standards and Platforms Standardized frameworks and testbeds [40], [41], [51], [52]

7. Conclusion

This paper looks at both the design of 6G systems and how to include federated learning, unlike previous
research that usually focused on just one part. It covers the key technologies like edge and fog computing,
blockchain, and Al management, while also tackling big-picture issues such as security, how well the system
can grow, and making communication more efficient. The analysis further identifies several critical avenues
for future research. These include the development of quantum-resistant privacy-preserving mechanisms, the
design of energy-efficient training paradigms, and the implementation of scalable multi-tier architectures that
align with the inherently distributed characteristics of 6G. Such research directions represent significant
opportunities for innovation that may shape the evolution of next-generation intelligent wireless
communication systems. These research areas present significant opportunities for innovations that could
fundamentally transform future smart wireless communication systems. As 6G develops, FL is likely to
become a key way to enable smart, private cooperation right at the network’s edge. Addressing the identified
challenges through advanced enabling technologies and interdisciplinary approaches will be essential to
establishing secure, sustainable, and high-performance Al-driven communication ecosystems. In essence,
combining FL with 6G represents more than a technological upgrade. It’s a big step toward creating Al that’s
more centered on people, more trustworthy, and built so that’s decentralized. This shift will be a key part of
the super-connected digital world we’re heading into.
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