Assessment of Serum Neudesin Levels in Type 1 Diabetic Iraqi Children

Noor Thair Tahir, Israa Qusay Falih¹, Hiba Shakir Ahmed²

National Diabetes Center, Mustansiriyah University, Baghdad, 1Department of Chemistry, College of Science, University of Misan, Maysan, 2Department of Microbiology, College of Science, Al-Karkh University of Science, Baghdad, Iraq

Abstract

Background: Diabetes is a common chronic metabolic disorder. Symptoms of diabetes may occur suddenly, and its complications lead to severe pathological conditions. Objectives: This study aims to evaluate Neudesin as a novel secretory protein, in addition to determining other biochemical parameters in type 1 diabetic Iraqi children. Materials and Methods: Ninety Iraqi children from both genders fought the experiment (60 with type 1 diabetes and 30 without diabetes); their ages ranged from 8 to 17 years. The sampling tests included measurement of Neudesin as neurotrophic factor level, fasting serum glucose, glycated hemoglobin, C-peptide, homeostasis model assessment for insulin resistance-2, β -cell function, lipid profiles, and renal function test. Results: An increasing value was recorded for Neudesin level in patients according to age. A highly significant increase (P < 0.0001 and 0.001) for fasting serum glucose, glycated hemoglobin, total cholesterol, and low-density lipoprotein between type 1 diabetes mellitus patients and the control group. Our statistical analysis data disclose a highly significant increase (P < 0.001) of Neudesin levels among children with type 1 diabetes when compared to the control group. Neudesin had a strong positive correlation (P = 0.6, 0.7) with fasting serum glucose and glycated hemoglobin, respectively. Conclusion: The present study concluded from the data set the involvement of Neudesin as a regulating hormone for metabolic disorders. Thus, it was involved in one way or another for neuropathy peripheral generation in future cases by its high levels during patients' growing status. In addition, it indicates involvement through the inability of nerves to transmit nerve signals to the brain.

Keywords: C-peptide, insulin resistance, lipids profile, neudesin, type 1 diabetes mellitus

INTRODUCTION

Most cells need insulin for glucose phosphorylation, direct it to the cell membranes, obtain energy as adenosine triphosphate, and sustain cells. Insulin also introduces excess glucose into adipose tissue or stimulates liver enzymes to store glucose as glycogen. When the beta cells of the pancreas are unable to produce insulin, an autoimmune reaction causes their demise. It is one of the hyperglycemia kinds called type 1 diabetes. Overall, 10% of people with type 1 diabetes have a genetic predisposition to make autoantibodies that destroy β cells. Health centers attempt to lower and normalize the elevated glucose level in these individuals by subcutaneous insulin injection to avoid ketoacidosis, diabetic coma, and then death. In 21

Neuropathy complications include diabetic polyneuropathy, such as common dysfunction that

Quick Response Code:

Website:
https://journals.lww.com/mjby

DOI:
10.4103/MJBL.MJBL_826_23

particularly targets sensory neurons with long axons, focal neuropathies, or mononeuropathies. Peripheral neuritis is the most common complication in patients with diabetes. The severity of diabetes objectives the peripheral nervous system with various forms of injury. Peripheral neuropathy is nerve damage triggered by chronic hyperglycemia and diabetes. It leads to loss of sensation and sometimes pain in the feet, legs, or hands, and it is the most common complication of diabetes. These damaged

Address for correspondence: Dr. Israa Qusay Falih,
Department of Chemistry, College of Science,
University of Misan, Maysan 62001, Iraq.
E-mail: israaqusai@uomisan.edu.iq

Submission: 23-Jun-2023 Accepted: 30-Oct-2023 Published: 30-Sep-2025

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Tahir NT, Falih IQ, Ahmed HS. Assessment of serum Neudesin levels in type 1 diabetic Iraqi children. Med J Babylon 2025;22:740-4.

nerves cannot transfer messages between the brain and the rest of the body.

Increasing knowledge of regulatory peptides will enable the evaluation of their role in linking food intake processes, nutritional status, and body growth, primarily through the regulation of glucose metabolism and insulin resistance (IR).[5] Neudesin is a protein containing 172 amino acids and has a unique composition with neurotrophic activity. Neudesin neurotrophic factor is a secreted protein that is necessary for various biological processes, comprising neuronal function, adipogenesis, and tumorigenesis. [6] Studies confirm that Neudesin secreted from the hypothalamus is a protein that regulates food intake.[7] Numerous reports revealed that Neudesin is a significant factor for accurate neuronal progress and function. Nevertheless, Neudesin was found and expressed in different peripheral tissues comprising adipose tissue, skeletal muscle, heart, and kidney.[8] Neudesin is implicated as a nerve hormone that sends activation signals into phosphatidylinositol-3kinase(PI3K) and mitogen-activated protein kinase (MAPK) pathways. [9] Neudesin has a role in the phosphorylation reactions of the extracellular signalregulated kinase 1/2, while the activations were inhibited by the pertussis toxin, [10] an inhibitor of the Gi/Go-protein, suggesting that its activity is intermediated by activation of the MAP and PI3K pathways, which are possibly combined with the Gi/Go-protein-coupled signaling pathway. The classification of the MAPR family has been inserted Neudesin as an organ^[11] showing multifunctional roles in understanding neuronal development and evaluation, and it is such a unique protein with a preserved heme/steroid binding domain similar to cytochrome 5. This protein has neurotrophic activity; it is thus similar to fibroblast growth factor, epidermal growth factors, and insulin-like growth and plays important roles in synaptic plasticity.[12] The current research aims to evaluate serum Neudesin levels for early diagnosis of peripheral neuritis in children with type 1 diabetes mellitus (T1DM).

MATERIALS AND METHODS

Patients and control

Sixty Iraqi patients with T1DM (30 boys and 30 girls) participated in this study; they were compared with 30 healthy subjects in the control group (15 boys and 15 girls); their ages ranged from 8 to 17 years. They attended the National Diabetes Center (NDC), Mustansiriyah University, during the period from October to December 2022. All subjects underwent full clinical examination to determine the existence of other diseases. Demographic characteristics such as sex, age, height, and weight of all participants were noted.

Methods

Blood samples were taken for laboratory investigations, which comprised the following examinations: fasting

serum glucose (FSG), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), lowdensity lipoprotein cholesterol (LDL-C), serum urea, and creatinine were evaluated using an automated analyzer (Cobas e111). The Bio-Rad VARIANT hemoglobin A1C employs automated and precise ion-exchange highperformance liquid chromatography principles to separate glycated hemoglobin (Hb1Ac). Also, C-peptide level was estimated, and homeostasis model assessment for insulin resistance-2 (HOMA2-IR), HOMA2-sensitivity%, and β cell function were deliberated using HOMA2-Calculator software downloaded freely from the website http://www. dtu.ox.ac.uk/homacalculator/download.php. Neudesin level was determined by an enzyme immunoassay for quantitative ELISA in vitro diagnostic assessment using a kit of Fine (Catalog-EH4312). In addition, BMI-forage was calculated by programs at https://www.cdc.gov/ healthyweight/bmi/calculator.html.

Statistical analysis

All data are shown as means \pm SD. The t test and ANOVA were deliberated to compare between the trial groups. A P value of less than 0.05 was revealed as significant.

Ethical approval

The study was reflected in harmony with the Declaration of Helsinki. It was performed with patients' verbal and analytical consent before sample collection. The study protocol, subject information, and consent form were reviewed and approved by the local ethics committee (no. 367 on January 10, 2022).

RESULTS

The results of the current study are in Table 1, including a comparison of a group of biochemical parameters that illustrate the difference between type 1 diabetics and healthy children. The obtained mean values were analyzed statistically, giving a very highly significant increase (P < 0.0001) for FSG, Hb1Ac, TC, and LDL had highly significant differences (P < 0.01) between T1DM patients and the control group, while the values indicated a significant difference (P < 0.05) for C-Peptide, HOMA2-IR, and TG. The B-cell, HOMA2-Sensitivity %, and HDL-C are significantly decreased (P < 0.05) in T1DM patients as compared to the control. Table 2 shows highly significant differences (P < 0.01) in Neudesin values as a comparison between T1DM patients and control.

Figures 1 and 2 provide details of Neudesin levels according to gender and age of the patients participating in the study; it was found that the rate of Neudesin is equal when comparing boys and girls, while it was increased among patients over 12 years old. Furthermore, Neudesin has a positive correlation with FSG, Hb1Ac, C-peptide, and HOMA2-IR, respectively ($r^2 = 0.6, 0.7, 0.51, 0.53$), as

Parameters	Mean ± SD		<i>P</i> -value
	T1DM patients	Control	
Number	60	30	-
Sex (boy/girl)	(30/30)	(15/15)	-
Age (years)	13.65 ± 3.09	13.83 ± 1.08	0.115
BMI (kg/m²)	20.05 ± 3.60	18.65 ± 4.12	0.137
FSG (mg/dL)	259.18 ± 81.23	82.83 ± 4.60	0.0001
HbA1C%	11.92 ± 12.14	4.83 ± 031	0.0001
C-Peptide (ng/mL)	3.63 ± 1.05	1.82 ± 0.33	0.05
HOMA2-IR	3.50 ± 1.10	1.37 ± 0.22	0.05
B-cell%	37.14 ± 13.28	90.27 ± 23.23	0.05
HOMA2-S %	30.77 ± 17.93	96.97 ± 15.07	0.05
TC (mg/dL)	183.15 ± 35.17	145.60 ± 20.65	0.01
TG (mg/dL)	91.78 ± 7.90	77.30 ± 8.67	0.05
HDL-C (mg/dL)	44.38 ± 8.67	52.26 ± 5.33	0.05
LDL-C (mg/dL)	120.41 ± 36.91	75.87 ± 3.30	0.01
S. urea (mg/dL)	25.58 ± 4.43	25.30 ± 3.33	0.128
S. creatinine (ng/mL)	0.72 ± 0.20	0.63 ± 0.16	0.142

n: number; T1DM: type 1 diabetes mellitus

Data are presented as mean \pm SD; NS is no significant; P-value is significant at P < 0.05, and high significant at P < 0.01 and P < 0.001

Table 2: Neudesin levels between groups of study type 1 diabetes mellitus patients and control

Parameters	Mean ± SD		P-value
	Type 1 diabetes mellitus patients	Control	
Neudesin (ng/mL)	6.13 ± 2.57	1.37 ± 0.55	0.001

n: number

Data are presented as mean \pm SD; *P*-value is high significant at P < 0.001

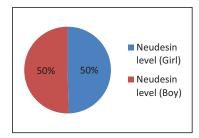
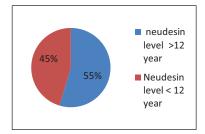



Figure 1: Comparison of Neudesin according

Figure 2: Comparison of Neudesin according to gender in type 1 diabetes mellitus (T1DM) patients ages in T1DM patients

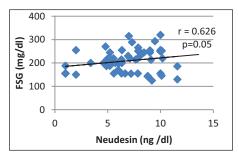


Figure 3: Correlation coefficient of Neudesin

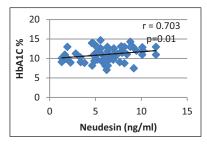


Figure 4: Correlation coefficient of Neudesin with FSG in type 1 diabetes mellitus (T1DM) Iraqi patients with HbA1c% in T1DM Iraqi patients

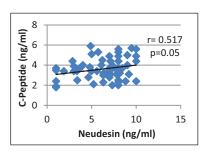
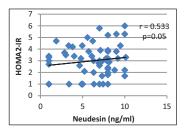



Figure 5: Correlation coefficient of Neudesin

Figure 6: Correlation coefficient of Neudesin with C-Peptide in type 1 diabetes mellitus Iraqi patients with HOMA2-IR in T1DM Iraqi patients

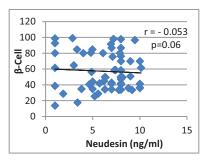
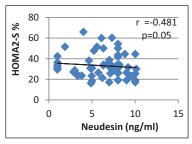



Figure 7: Correlation coefficient of Neudesin

Figure 8: Correlation coefficient of Neudesin with β -cell in type 1 diabetes mellitus (T1DM) Iraqi patients with HOMA2-Sensitivity % in T1DM Iraqi patients

shown in Figures 3–6. In contrast, there was no correlation relation with the other parameters in Figures 7 and 8.

DISCUSSION

The present study hypothesized that Nuedesin is a primary predictor in general for metabolic disorder and a special factor to show the complications of peripheral neuropathy before any other complications such as nephropathy, retinopathy, or cardiovascular symptoms.^[13]

In indicating its sensitive role in the emergence of peripheral neuropathy problems in the near future, this is the first study that provides information about those factors. An important note was shown: a study suggests that Neudesin may be involved in weight loss and improved glucose control. [14] This was confirmed by the positive association between serum Nuedesin and insulin, which is particularly significant compared to the other effector pathways comprising activation of MAPK and PI3K signaling cascades. [7]

The correlation of Neudesin with a set of parameters was determined to represent a basic criterion for the repercussions

of T1DM. Besides, Neudesin has a positive correlation with HOMA2-IR values and C-peptide levels in the present work. These data appearance how Neudesin dysregulation may have a role in the pathogenesis of carbohydrate metabolism illnesses in humans. Neudesin has been reported to be expressed in hypothalamic paraventricular and arcuate nuclei and is known to be complicated in food intake and energy metabolism. Neudesin has homeostasis modeling assessment feature metabolic disorder; the study of Byerly et al.[15] shown Neudesin involvement in reducing food intake and weight loss reported in a mice model fed with Neudesin composed from the cerebral ventricle. Then, followed a high-fat diet, thus found that the effect of Neudesin on food intake disappeared due to changed melanocortin signals. Therefore, this study proposed that was one of the reasons for the thinness in type I diabetic patients. Neudesin has a neural precursor cell that directly effect on the phosphorylation of serine-threonine protein kinase (AKT) and cyclic adenosine monophosphate (cAMP) response element binding protein.[16] The c-AMP levels had been increased in neural precursor cytosols by Neudesin activity, indicating that its potentially exerted activity was by the Gs protein-coupled signaling pathway, and its mechanism action in cytosols is distancing from that in the neurons.[17]

The Neudesin-heme binding is necessary for activation of this neurotrophic factor, where the activity of Neudesin appeared in primary cultured neurons, while it has disappeared in primary cultured astrocytes, so it confirms that it has a neural activity.^[18]

Moreover, patients with T1DM and T2DM are hugely influenced by IR due to uncontrolled clinical factors and metabolic pathways.^[19,20] Children with T1DM have higher IR levels in comparison to their healthy peers.^[21]

A number of clinical and experimental studies defend the regulatory role of Neudesin management in glucose metabolism and insulin sensitivity. Kimura *et al.*^[5] was consistent with the current data, which was examining serum Neudesin concentrations among children with T1DM, it was found a higher significant increase in children with T1DM compared to the control group. Neudesin has a positive correlation coefficient with lipids profile, especially with TC, TG, and LDL in children with T1DM. The reason is due to the high level of Nuedesin, which is directly associated, generally, with metabolism regulation and particularly in carbohydrate metabolism.^[22]

CONCLUSION

Neudesin is a neurohormone, so its elevation can accelerate the onset of peripheral neuritis symptoms before the rest of other complications of diabetes. Through the current results, the following conclusions were recorded. Age has an effect on increasing Neudesin secretion, especially after puberty. An increase in lipid profiles as a result of raised insulin resistance and positive correlation with Neudesin. There are no differences in Neudesin levels between boys and girls.

Acknowledgments

The authors appreciate all support provided by the National Diabetes Center/Mustansiriyah University, Baghdad, Iraq.

Financial Support and Sponsorship

Nil.

Conflicts of Interest

There are no conflicts of interest.

REFERENCES

- Suleiman RR, Salih SF, Abdullah BI, Ibrahim IH, Saeed ZA. Triglyceride glucose index, its modified indices, and triglyceride HDL-C ratio as predictor markers of insulin resistance in prediabetic individuals. Med J Babylon 2023;20:268-73.
- American College of Obstetricians and Gynecologists. ACOG practice bulletin no 190: Gestational diabetes mellitus. Obstet Gynecol 2018;131:49-64.
- 3. Zochodne DW. Diabetes mellitus and the peripheral nervous system: Manifestations and mechanisms. Muscle Nerve 2007;36:144-66.
- Polkowska A, Pasierowska IE, Pasławska M, Pawluczuk E, Bossowski A. Assessment of serum concentrations of adropin, afamin, and neudesin in children with type 1 diabetes. Biomed Res Int 2019;2019:1-6.
- Kimura I, Nakayama Y, Zhao Y, Konishi M, Itoh N. Neurotrophic effects of neudesin in the central nervous system. Front Neurosci 2013;7:111.
- Su X, Wang Y, Li A, Zan L, Wang H. Neudesin neurotrophic factor promotes bovine preadipocyte differentiation and inhibits myoblast myogenesis. Animals 2019;9:1109.
- Ohta H, Kimura I, Konishi M, Itoh N. Neudesin as a unique secreted protein with multi-functional roles in neural functions, energy metabolism, and tumorigenesis. Front Mol Biosci 2015;2:1-5.
- Krott LM, Piscitelli F, Heine M, Borrino S, Scheja L, Sivestri C, et al. Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation. J Lipid Res 2016;57:464-73.

- 9. Ohta H. Role of the secretory protein neudesin in energy metabolism. J Phys Fitness Sports Med 2016;5:229-33.
- Kratochvilova H, Lacinova Z, Klouckova J, Kavalkova P, Cinkajzlova A, Trachta P, et al. Neudesin in obesity and type 2 diabetes mellitus: The effect of acute fasting and weight reducing interventions. Diabetes Metab Syndrome Obes 2019;12:423-30.
- Eren EC, Kaya S, Argun D. The assessment of maternal and umbilical cord neudesin levels in pregnancies with gestational diabetes mellitus. J Obstet Gynaecol 2022;42:2941-5.
- Kimura I, Yoshioka M, Konishi M, Miyake A, Itoh N. Neudesin, a novel secreted protein with a unique primary structure and neurotrophic activity. J Neurosci Res 2005;79:287-94.
- Tahir NT, Falih IQ, AL-Husaini FK, Zeghair SA. Study the effect of chemerin level in type II diabetic patients with and without retinopathy. Syst Rev Pharmacy 2020;11:1856-63.
- Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414:799-806.
- Byerly MS, Swanson RD, Semsarzadeh NN, McCulloh PS, Kwon K, Aja S, et al. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite. Am J Physiol Regul Integr Comp Physiol 2013;304:R1085-95.
- Kimura I, Konishi M, Miyake A, Fujimoto M, Itoh N. Neudesin, a secreted factor, promotes neural cell proliferation and neuronal differentiation in mouse neural precursor cells. J Neurosci Res 2006;83:1415-24.
- 17. Kimura I, Konishi M, Asaki T, Furukawa N, Ukai K, Mori M, et al. Neudesin, an extracellular heme-binding protein, suppresses adipogenesis in 3T3-L1 cells via the MAPK cascade. Biochem Biophys Res Commun 2009;381:75-80.
- 18. Kratochvilova H, Lacinova Z, Klouckova J. Neudesin, a novel regulator of energy metabolism in obesity and type 2 diabetes mellitus—The effect of acute fasting and endoscopic duodenaljejunal bypass liner implantation. Diabetes 2018;67:2449.
- Kadium TE, Alrubaie A, Ghanim SA. The link between serum omentin level and insulin resistance biomarkers, lipid profile, and atherogenic indices in Iraqi obese patients. Baghdad Sci J 2023;20:74-81.
- 20. Selman NA, Albayati AHA, Alsaffar Y, Farhan AH. The risk impact and benefits of Ramadan Fasting on patients with type 2 diabetes in a sample of Iraqi patients. Med J Babylon 2023;20:352-6.
- 21. Cho YH, Craig ME, Donaghue KC. Puberty as an accelerator for diabetes complications. Pediatr Diabetes 2014;15:18-26.
- Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol 2014;2:152-64.