Molecular Detection of $PAIsII_{J96}$ and $PAIs_{III536}$ Genes among Escherichia coli Isolates, Babylon, Iraq

Yasameen Riyadh Saeed Al-Azzawi^{1,2}, Ibtisam Habeeb Al-Azawi¹

¹Department of Medical Microbiology, College of Medicine, Al-Qadisiyah University, Al Diwaniyah, Iraq, ²Department of Anesthesia Technologies, College of Health and Medical Technologies, University of Hilla, Babylon, Iraq

Abstract

Background: Pathogenicity islands (PAIs) are distinct genetic elements of pathogens encoding various virulence factors such as protein secretion systems, host invasion factors, iron uptake systems, and toxins. Objective: Identification of the PAIsIII₃₉₆ and PAIsIII₃₃₆ genes through molecular analysis in Escherichia coli isolates. Materials and Methods: One hundred fifty urine samples were collected from urinary tract infection (UTI) patients at Maternity and Children Babylon Hospital were sampled. Healthy controls provided 100 stool samples. Results: One hundred fifty urine samples were collected from UTI patients and 25 healthy stool samples were collected between November 2021 and May 2022 at Al-Maternity Hilla's. 110 samples (73.4%) grew bacteria on varied media. The remaining 40 (26.6%) samples showed no growth. In Eosin methylene blue, 110 E. coli-positive cultures. 35 (70.0%) female isolates, 15 (30.0%) male isolates, and 60 (54.5%) other bacteria isolates grew suspected E. coli. (60%) of 100 control stool isolates were E. coli, 60 (60%) E. coli isolates, and 40 (40%) other microorganisms. 50 E. coli isolates were studied. 30 E. coli isolates were multiple drug resistant (MDR). All 50 isolates were confirmed with ID massage confidence levels ranging from excellent (probability percentages from 94% to 99.7%). PALIIj96 gene was found in 5/30 (16.7%) MDR E. coli urine isolates (190 bp) and (100%) stool isolates. PAIsIII₃₃₆ gene was discovered in only 1/30 (6.7%) MDR E. coli isolates from urine samples (550 bp), whereas it was not detected in any stool samples (0%). Conclusions: PAIsIII₃₃₆ genes showed increased E. coli pathogenicity.

Keywords: E. coli, molecular gene, PAIsII₁₉₆ and PAIsIII₅₃₆ genes

INTRODUCTION

Escherichia coli is one of the few multitasking bacteria. It is employed in recombinant DNA technology because it is a part of the gut microbiota of humans and other animals. [1] However, E. coli can both be a deadly disease and a lab instrument. [2]

Several studies have shown that pathogenic *E. coli* strains may be derived from commensal strains by the acquisition of virulence genes. These virulence genes on the chromosome are typically found in specific regions called pathogenicity islands (PAIs). PAIs were described for the first time in uropathogenic *E. coli* strain 536 in the late 1980s by Desvaux *et al.* [4]

PAIs are distinct genetic elements of pathogens encoding various virulence factors such as protein secretion systems, host invasion factors, iron uptake systems, and

Access this article online

Quick Response Code:

Website:
https://journals.lww.com/mjby

DOI:
10.4103/MJBL.MJBL_497_23

toxins.^[5] PAIs are a subset of genomic islands and can be identified by the large size (>10 kb), frequent association with tRNA encoding genes, a G+C content different from host bacterial core genome, etc. These elements are frequently flanked by repeated sequences and carry many fragments of other mobile and accessory genetic elements such as bacteriophages, plasmids and insertion sequence elements.^[6,7]

Seven PAIs have been identified in the prototype strain 536 which was isolated from a patient suffering from pyelonephritis. They had been designated as PAI I_{536} to

Address for correspondence: Dr. Yasameen Riyadh Saeed Al-Azzawi,
Department of Medical Microbiology, College of Medicine,
Al-Qadisiyah University, Al Diwaniyah, Iraq.
E-mail: yasmeenalazawi1@gmail.com

Submission: 03-May-2023 Accepted: 30-May-2023 Published: 30-Sep-2025

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Al-Azzawi YRS, Al-Azawi IH. Molecular detection of $PAIsII_{196}$ and $PAIs_{11536}$ genes among *Escherichia coli* isolates, Babylon, Iraq. Med J Babylon 2025;22:711-6.

PAI VII₅₃₆. [8] A sequence analysis of PAI I₅₃₆ indicated the presence of α -hemolysin gene cluster along with two genes showing homology to an F17-like and a CS12-like adhesin that exists in enterotoxigenic E. coli.[9] Pathogenicity-associated genes (PAGs), such as those that encode P fimbriae, P-related fimbriae, and hemolysin, and that distinguish pathogenic from nonpathogenic strains of a given species by the presence or absence of such PAGs, tend to be clustered in PAIs at relatively few loci in the chromosomes of pathogenic bacteria, as was previously shown for several PAIs in uropathogenic E. coli.[10] Pap and P fimbriae, hemolysin, and cytotoxic necrotizing factor 1 toxin are encoded on the E. coli J96 chromosome. These J96 PAI-specific DNA sequences may express novel uropathogenic E. coli adhesins. Because of the vast number of adhesins, E. coli pap knockout mutants in a mouse model of ascending urinary tract infection (UTI) have struggled to colonize or be virulent.[9]

Aim of study

The identification of the $PAIsII_{196}$ and $PAIsIII_{536}$ genes through molecular analysis in $E.\ coli$ isolates.

MATERIALS AND METHODS

A total of 150 samples were collected from patients suffering from UTIs were admitted and visit in Maternity and Children Babylon Hospital in Al-Hilla city, during a period from November 2021 to May 2022. One hundred stool samples were collected from healthy persons (as control).

Ethical approval

Before sample collection, all subjects were informed and gave consent for studies and publication. The College of Medicine, University of Al-Qadisiyah, provided guidelines for this study. The study excluded banned biological materials and genetically modified organisms. This study's *E. coli* isolates came from hospitalized patients without any additives.

Clinical specimens

The specimens collected for bacteriological analysis were collected in proper ways to avoid any possible contamination.^[11]

Identification of Escherichia coli with Vitek2 system

The automatic identification (ID) equipment used in medical microbiology is a Vitek 2 system.

DNA extraction

This method was made according to the genomic DNA purification kit supplemented by the manufacturing company (Geneaid Biotech Ltd, New Taipei City, Taiwan). Primer was provided from Macrogene Company, Korea [Table 1].

RESULTS

Patients with UTIs admitted to Al-Maternity Hilla's and Children's Hospital between November 2021 and May 2022 supplied 150 samples and 100 healthy stool samples.

All samples were aerobically cultured on various media, and 110 (73.4%) showed positive bacterial growth. The fact that no growth was detected in the remaining 40 (26.6%) samples suggests that viruses, fungi, and anaerobic agents are difficult to culture or that the samples varied in size and content. 110 positive cultures showed E. coli. 50 (45.5%) of the isolates grew suspected E. coli in Eosin methylene blue (selective media), including 35 (70.0%) from women, 15 (30.0%) from men, and 60 (54.5%) from other bacteria. 60 (60%) of the 100 control stool isolates were E. coli. Table 2 shows that 60 (60%) of the isolates were E. coli and 40 (40%) were other bacteria. This study employed 50 E. coli isolates. 30 (60%) E. coli isolates were multiple drug resistant (MDR), whereas 20(40%) were not. A Vitek 2 system with GN-ID cards and 64 biochemical experiments confirmed the isolates were E. coli. All 50 isolates were confirmed with ID massage confidence

Table 1: The	primers sequences used in this study			
Genes	Primer sequence (5'-3')	Size (bp)	Condition	Reference
PAIs II ₁₉₆	F: GA TCC ATG AAA ACA TGG TTA ATG GG R: GAT ATT TTT GTT GCC ATT GGT TAC C	190	95°C/4 min 95°C/30 s	Sabaté <i>et al.</i> (2006)
	R. GAT ATT TIT GIT GCC ATT GGT TAC C		55°C/1 min	
			72°C/70 s	
			72°C/5 min	
		4°C/forever	4°C/forever	
PAIs III 536	F: CGG GCA TGC ATC AAT TAT CTT TG	AAT TAT CTT TG 550 95°C/4 min	95°C/4 min	Sabaté et al. (2006)
550	R: TGT GTA GAT GCA GTC ACT CCG		95°C/30 s	
			55°C/1 min	
			72°C/70 s	
			72°C/5 min	
			4°C/forever	

levels ranging from excellent (probability percentages from 94% to 99.7%), confirming the quick detection of bacteria by this approach.

The results showed a high percentage of *E. coli* in the urine and stool 50/110 (45.5%) and 15/25 (60%), respectively. Approximately (38.8%) of all clinically relevant urine isolates in this investigation were found to be *E. coli*. *Escherichia coli* is the most prevalent bacterial pathogen in cases of UTI.

 $PAIsII_{J96}$ gene was detected in 5/30 (16.7%) MDR E. coli isolates from urine samples, the positive results were detected by the presence of (190 bp) as shown in Figure 1, while this gene was detected in all (100%) of E. coli isolates from stool samples as shown in Figure 2.

Table 2: Escherichia coli isolates from patients with UTIs						
No. of samples	Positive growth	MO isolates	No. of isolates (%)			
150 urine samples	110 (73.4%)	E coli	50 (45.5%)			
95 female	88 (80%)	2. 0011	35 (70.0%)			
55 male	22 (20%)		15 (30.0%)			
		Others	60 (54.5%)			
		No growth	40 (26.6%)			
100 stool samples	60 (60%) E. coli,	40 (40%) other	M.O			

However, $PAIsIII_{536}$ gene was detected in only 1/30 (6.7%) MDR *E. coli* isolates from urine samples, the positive results were detected by the presence of (550 bp) as shown in Figure 3, whereas this gene was not detected in all (0%) of *E. coli* isolates from stool samples.

In light of the data discussed above, the distribution of toxins encoded and pathogenicity island markers among *E. coli* isolates is shown in Figures 4 and 5.

DISCUSSION

UTIs are the most common diseases encountered in clinical practice worldwide. Despite many efforts, around 150 million people worldwide per year were still affected by UTIs, with considerable morbidity and high medical costs. The uropathogenic *Escherichia coli* (UPEC) mechanism of pathogenesis needs the coordinated expression of a number of virulence genes which cooperate to the establishment of long lasting infections.

The results showed a high percentage of *E. coli* in the urine and stool (45.5%) and (60%), respectively. This may be because the bacteria are naturally present in the gut and urinary tract as part of the normal flora, have adapted to live there, and have strong and potent virulence factors that increase their ability to infect

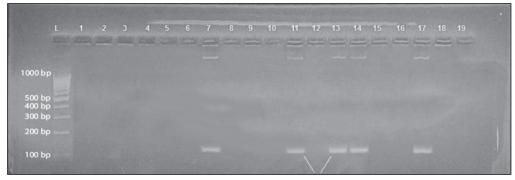


Figure 1: Gel electrophoresis of PCR product of *PAIsII*_{J96} gene at (190 bp) of MDR *E. coli* isolates from urine samples. L: ladder, lines (7, 11, 13, 14 and 17) positive results for amplification, the electrophoresis was at 70 volt for 80 min

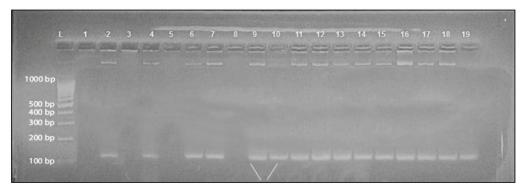
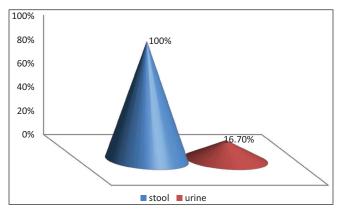



Figure 2: Gel electrophoresis of PCR product of $PAlsII_{J96}$ gene at (190 bp) of *E. coli* isolates from stool samples. L: ladder, lines (2, 4, 6, 7, and 9–19) positive results for amplification, the electrophoresis was at 70 volt for 80 min

Figure 3: Gel electrophoresis of PCR product of PAIsIII₅₃₆ gene at (550 bp) of MDR *E. coli* isolates from urine samples. L: ladder, line (10) positive results for amplification, the electrophoresis was at 70 volt for 80 min

Figure 4: Prevalence of $PAlsII_{J96}$ gene among uropathogenic and intestinal $E.\ coli$

Figure 5: Prevalence of $PAIs \ III_{536}$ gene among uropathogenic and intestinal $E. \ coli$

people.^[12] All of the isolates in this investigation tested negative for the oxidase assay and produced gas during glucose fermentation on Triple Sugar Iron Agar (acid/acid). Additionally, the isolates tested positively for catalase and indole, findings that are consistent with those of Osuntokun.^[13]

Approximately (38.8%) of all clinically relevant urine isolates in this investigation were found to be *E. coli*. This

is in line with the results of a previous study by Choi *et al.*, $^{[14]}$ which found that *E. coli* was the most common pathogen isolated from patients with UTIs.

González-Villalobos *et al.*^[15] observed that *E. coli* was isolated from UTI infections in (32%) of cases, while Hasan^[16] reported that *E. coli* accounted for (76%) of UTI cases. According to research by Lyer *et al.*^[17], *E. coli* accounts for a very high percentage (70%) of UTIs. When compared to earlier research, the data presented here were roughly in line with Tornic *et al.*^[18] findings that *E. coli* was prevalent among UTI infections at a rate of (32%)

Escherichia coli is the most prevalent bacterial pathogen in cases of UTI, which is one of the most common bacterial diseases in humans. [19] It was discovered by Al-Shami *et al.* [20] that *E. coli* makes up the largest percentage of the genus *E. coli* (36.28%) because of its ability to thrive in the human urinary tract. This adaptation is the result of *E. coli* resistance to the harsh conditions found there and its ability to stick to the surface of the urinary tract.

PAI IV536 is the most common PAIs in both commensal and UPEC isolates, and is said to be the most common PAIs in all of the Enterobacteriaceae family. PAI IV536, also known as high-pathogenicity island (HPI), was found in 30% of *E. coli* isolates in a prior research of Zakaria *et al.* Ohosh *et al.* Dhas been hypothesized that, HPI is a fitness island rather than a pathogenicity island due to the prevalence of PAI IV536 in commensal isolates. HPI is not essential for the virulence of *E. coli* that causes disease outside of the intestines, although *in vivo* investigations conducted by Galardini *et al.* Dhave demonstrated otherwise. PAI IV was shown to be stable in *E. coli* 536 by Gati *et al.* Death of the prevalence.

All the other PAI markers were found in equal numbers in both commensal and UPEC isolates, albeit at much greater frequencies in the latter.

Sabaté *et al.*^[25] observed PAI-like domains in 92% of UPEC isolates; Najafi *et al.*^[26] discovered PAI IIJ96 in

24%, and PAI I536 in 1%; however, Navidinia et al.[27] discovered no evidence of PAI II536 or PAI IJ96 in any E. coli isolates from UTIs. Consistent with the current study, Ostblom et al. [28] found that, PAI IV536 was extremely common, but that PAI I536 was far less common (19% vs. 73%) and that PAI IIJ96 was significantly more common. PAI II536 and PAI IJ96 may not play a significant role in the development of UTIs, it has been hypothesized. Gultekin et al.[29] developed two novel multiplex PCR techniques for the detection of eight PAIs linked to pathogenic E. coli isolates. The percentage of commensal isolates with PAIs was high (40%); however, it was significantly lower than the rate for UPEC isolates (93%). Intestinal niche may be home to E. coli isolates, predominantly from phylogenetic Group B2 that have amassed a high number of PAIs, according to some research.[21]

Equal numbers of PAIs were found in *E. coli* isolates from both healthy women and patients with UTIs, and these isolates showed the same combination of PAIs regardless of whether they were from the same or different phylogenetic groups.^[30-33]

Gultekin *et al.*^[29] found that, a PCR-positive for a specific region of PAI III536 was present in 64.5% of isolates producing UTIs and in 39.3% of nonpathogenic *E. coli*, drawing the conclusion that PAIs III536 was more prevalent than PAIs II536 or PAI I536. These discrepancies may be explained by the observation that PAIs II and III of *E. coli* 536 are the most unstable and therefore the easiest to lose.^[4]

CONCLUSION

PAIsII₁₉₆ and PAIsIII₅₃₆ genes were increased E. coli pathogenicity.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Barroso-Batista J, Pedro MF, Sales-Dias J, Pinto CJ, Thompson JA, Pereira H, et al. Specific eco-evolutionary contexts in the mouse gut reveal Escherichia coli metabolic versatility. Curr Biol 2020;30:1049-1062.e7.
- Shaler CR, Elhenawy W, Coombes BK. The unique lifestyle of Crohn's disease-associated adherent-invasive *Escherichia coli*. J Mol Biol 2019:431:2970-81
- Rezatofighi SE, Mirzarazi M, Salehi M. Virulence genes and phylogenetic groups of uropathogenic *Escherichia coli* isolates from patients with urinary tract infection and uninfected control subjects: A case–control study. BMC Infect Dis 2021;21:1-11.
- Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity factors of genomic islands in intestinal and extraintestinal *Escherichia coli*. Front Microbiol 2020;11:2065.

- Gebisa ES, Gerasu MA, Leggese DT. A review on virulence factors of *Escherichia coli*. Anim Vet Sci 2019;7:83-93.
- Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic *Escherichia coli*. Nat Rev Microbiol 2021;19:37-54.
- Al-Azawi IH, Al-Bidiri MS. Distribution of integron III and phylogenic clade among mdr uropathogenic *E. coli* from patient in Al-Diwaniyah city, Iraq. Wiadomosci lekarskie 2022;75:1254-60.
- Zakaria AS, Edward ÉA, Mohamed NM. Pathogenicity islands in uropathogenic *Escherichia coli* clinical isolate of the globally disseminated O25: H4-ST131 pandemic clonal lineage: First report from Egypt. Antibiotics 2022;11:1620.
- Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic *Escherichia coli*. EcoSal Plus 2004;1. Doi: 10.1128/ ecosalplus.8.6.1.4.
- Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathogens 2019;11:1-16.
- Colle J, Fraser A, Marmion P, Simmans A. MackiaMacartnre Practical Medical Microbiology. 14th ed. New York: Churchill Living Stone; 1996.
- Al-Saadi ZHA, Abdullah RM. Phenotypic and molecular detection of *Escherichia coli* efflux pumps from UTI patients. Biochem Cellular Arch 2019;19:2371-6.
- Osuntokun OT. Gram negative bacteria (GNB) isolated from used home-made and surgical nose/face mask by local residents of Akungba Akoko, Ondo State, a threat to life and false sense of protection against SARS-CoV-2 (COVID-19). Asian J Adv Res Rep 2021;15:1-17.
- Choi HJ, Jeong SH, Shin KS, Kim YA, Kim YR, Kim HS, et al. Characteristics of Escherichia coli urine isolates and risk factors for secondary bloodstream infections in patients with urinary tract infections. Microbiol Spectr 2022;10:e01660-22.
- 15. González-Villalobos E, Ribas-Aparicio RM, Montealegre GER, Belmont-Monroy L, Ortega-García Y, Aparicio-Ozores G, et al. Isolation and characterization of novel bacteriophages as a potential therapeutic option for Escherichia coli urinary tract infections. Appl Microbiol Biotechnol 2021;105:5617-29.
- Hasan TH. Extended spectrum beta lactamase E. coli isolated from UTI patients in Najaf Province, Iraq. Int J Pharm Res 2020:12:4.
- 17. Lyer JK, Dickey A, Rouhani P, Kaul A, Govindaraju N, Singh RN, et al. Nanodiamonds facilitate killing of intracellular uropathogenic *E. coli* in an in vitro model of urinary tract infection pathogenesis. PLoS ONE 2018;13:e0191020.
- Tornic J, Wöllner J, Leitner L, Mehnert U, Bachmann LM, Kessler TM. The challenge of asymptomatic bacteriuria and symptomatic urinary tract infections in patients with neurogenic lower urinary tract dysfunction. J Urol 2020;203:579-84.
- Borgio J, Rasdan A, Sonbol B, Alhamid G, Almandil N, AbdulAzeez S. Emerging status of multidrug-resistant bacteria and fungi in the Arabian peninsula. Biology 2021;10:1144.
- Al-Shami SA, Jawad AH, Jamil QT, Hamza RR, editors. The effect of some factors on virulence of *E. coli* bacteria isolated from UTI infection. IOP Conf Ser: Earth Environ Sci 2021;735: 012012.
- Peerayeh SN, Navidinia M, Fallah F, Bakhshi B, Jamali J. Pathogenicity determinants and epidemiology of uropathogenic E. coli (UPEC) strains isolated from children with urinary tract infection (UTI) to define distinct pathotypes. Biomed Res 2018;29:2035-43.
- Ghosh A, Mukherjee M. Incidence of multidrug resistance, pathogenicity island markers, and pathoadaptive FimH mutations in uropathogenic *Escherichia coli* isolated from asymptomatic hospitalized patients. Folia Microbiol 2019;64:587-600.
- Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S, et al. Major role of iron uptake systems in the intrinsic extraintestinal virulence of the genus *Escherichia* revealed by a genomewide association study. PLoS Genet 2020;16:e1009065.

- Gati NS, Middendorf-Bauchart B, Bletz S, Dobrindt U, Mellmann A. Origin and evolution of hybrid Shiga toxin-producing and uropathogenic *Escherichia coli* strains of sequence type 141. J Clin Microbiol 2019;58:e01309-19.
- Sabaté M, Moreno E, Pérez T, Andreu A, Prats G. Pathogenicity island markers in commensal and uropathogenic *Escherichia coli* isolates. Clin Microbiol Infect 2006;12:880-6.
- Najafi A, Hasanpour M, Askary A, Aziemzadeh M, Hashemi N. Distribution of pathogenicity island markers and virulence factors in new phylogenetic groups of uropathogenic *Escherichia coli* isolates. Folia Microbiol 2018;63:335-43.
- Navidinia M, Peerayeh SN, Fallah F, Bakhshi B. Phylogenetic groups and pathogenicity island markers in *Escherichia coli* isolated from children. Jundishapur J Microbiol 2013;6:e8362.
- Ostblom A, Adlerberth I, Wold AE, Nowrouzian FL. Pathogenicity island markers, virulence determinants malX and usp, and the capacity of *Escherichia coli* to persist in infants' commensal microbiotas. Appl Environ Microbiol 2011;77:2303-8.

- Gultekin EO, Ulger ST, Delialioğlu N. Distribution of pathogenicity island markers and virulence factors genes of extraintestinal pathogenic *Escherichia coli* isolates. Jundishapur J Microbiol 2022;15:1-8.
- 30. El-Shaer S, Abdel-Rhman SH, Barwa R, Hassan R. Genetic characterization of extended-spectrum β-lactamase-and carbapenemase-producing *Escherichia coli* isolated from Egyptian hospitals and environments. PLoS ONE 2021;16:e0255219.
- Jebur HQ, Al-Charrakh AH. The effect of carbonyl cyanide m-chlorophenyl-hydrazine on antibiotic susceptibility in MDR Enterobacteriaceae isolates in Babylon, Iraq. Med J Babylon 2024;21:179-85. Doi: 10.4103/MJBL.MJBL_834_23.
- Alzaidi JR, Kareem AA. The impact of urogenital tract infectious bacteria on male fertility. Med J Babylon 2024;21:476-80.
- 33. Khulaif M, Al-Charrakh AH. Detection of class 1 integron and antibiotic resistance of β-lactamase-producing Escherichia coli isolated from four hospitals in Babylon, Iraq. Med J Babylon 2023;20:375-82.