

#### **Iragi National Journal of Earth Science**



www.earth.mosuliournals.com

# Drought Analysis in The Kurdistan Region-Iraq Using Standardized Precipitation Indices (SPI): A Case Study with in Duhok, Erbil and Sulaimaniyah Regions.

Shevan Jameel Jirjees 1\* , Masoud Hussein Hamed 2

<sup>1,2</sup>Department of Earth science and petroleum, College of Science, University of Salahaddin, Erbil, Iraq.

#### **Article information**

Received: 11-Jul-2024

Revised: 18-Aug-2024

Accepted: 22-Sep-2024

Available online: 01-Oct-2025

#### Keywords:

SPI Drought indices

PET

Duhok, Erbil, and Sulaimaniyah

Meteorological Station Kurdistan Region.

#### Correspondence: Name: Shevan Jameel

Email: shevan.jirjees@su.edu.krd

#### **ABSTRACT**

Drought indices are frequently utilized to identify, observe, and assess drought occurrences. The Standardized Precipitation Index (SPI) represents one of the most commonly utilized drought measures. This article analyzes drought occurrences for three chosen meteorological stations in the Kurdistan region, including Duhok, Erbil, and Sulaimaniyah governorates, and analyzes the impact of theoretical distribution choices on SPI values. The annual time-scale SPI formula was calculated for the period (1980-2023) in the governorates. Analysis with SPI method results showed that the extremely wet represents only in Erbil governorate in frequency 2 years with probability events (4.55%). Drought ranged from mild drought to severe drought in each governorate. Mild drought shows in Erbil governorate in a 16-year frequency with a 36.36% probability of events. Also, in Sulaimaniyah governorate, in a 13-year frequency with a 30.23% probability of events. However, in Duhok governorate, in a 15-year frequency with a (34.09%) probability of events. The moderate drought shows in governorates such as 7-year frequency with (15.91%) probability events, 4-year frequency with (90.30%) probability events, and 6-year frequency with (13.64) probability events, respectively. The severe drought also shows in governorates such as 1-year frequency with (2.27%) probability events, 3-year frequency with (6.98%) probability events, and 2-year frequency with (4.55%) probability events, respectively.

DOI: 10.33899/earth.2024.151762.1319, ©Authors, 2025, College of Science, University of Mosul. This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

## تحليل الجفاف في محافظات إقليم كردستان العراق (دهوك وأربيل والسليمانية) باستخدام المؤشرات القياسية لهطول الأمطار (SPI)

شيڤان جميل جرجيس \*\* 📵 ، مسعود حسين حميد 1

2.1 قسم علوم الأرض والنفط، كلية العلوم، جامعة صلاح الدين، أربيل، العراق

#### الملخص

## تُستخدم مؤشرات الجفاف بشكل واسع في تحديد حالات الجفاف ومراقبتها وتقييمها بحيث يمثل دليل المطر القياسي (SPI) أحد مقاييس الجفاف الأكثر استخدامًا وفعالية. في هذه الدراسة تم دراسة حالات الجفاف لثلاث محافظات مختارة في إقليم كردستان وهو دهوك وأربيل والسليمانية اذكر عدد المحطات، وتم تحليل تأثير خيارات التوزيع النظرية على قيم المؤشر المعياري للسواقط. معادلة المؤشر الزمني السنوى المحسوب للفترة (1980-2023) في المحافظات المذكورة. أظهرت النتائج من خلال استخدام طريقة SPI أن الرطوبة الشديدة تمثل فقط في محافظة أربيل بتكرار 2 سنة مع أحداث احتمالية (4.55٪). ويتراوح الجفاف من جفاف خفيف إلى جفاف شديد في كل محافظة. يظهر الجفاف المعتدل في محافظة أربيل بتكرار 16 سنة مع نسبة احتمالية حدوثها (36.36%). وأيضاً في محافظة السليمانية بتكرار 13 سنة وبنسبة احتمالية (30.23%). أما في محافظة دهوك فشهدت تكرار 15 سنة مع احتمالية (34.09%). ويظهر الجفاف المعتدل في المحافظات مثل تكرار 7 سنوات باحتمالية (15.91%)، وتكرار 4 سنوات باحتمالية (90.30%)، وتكرار 6 سنوات باحتمالية (13.64%)، على التوالي. يظهر الجفاف الشديد أيضًا في المحافظات مثل تكرار السنة الواحدة بأحداث احتمالية (2.27%)، وتكرار 3 سنوات بأحداث احتمالية (6.98%)، وتكرار سنتين بأحداث احتمالية (4.55%)، على التوالي.

#### معلومات الارشفة

تاريخ الاستلام: 11- يوليو-2024

تاريخ المراجعة: 18- أغسطس-2024

تاريخ القبول: 22- سبتمبر -2024

تاريخ النشر الالكتروني: 01- يناير -2025

الكلمات المفتاحية:

مؤشرات الجفافSPI PET محطة المناخية دهوك وأربيل والسليمانية

المراسلة:

إقليم كردستان

الاسم: شيقان جميل جرجيس

Email: shevan.jirjees@su.edu.krd

DOI: 10.33899/earth.2024.151762.1319, @Authors, 2025, College of Science, University of Mosul. This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

#### Introduction

A drought is an occurrence led by a prolonged period of low water availability. It generally happens when rainfall is below normal in a particular region or area. Insufficient precipitation, whether in the form of snow or rain, may lead to a decrease in the moisture content of soil or groundwater, a reduction in the flow of streams, a harmful impact on industrial, agricultural, and ecological situations too, and a greater shortage of water (Al-Quraishi et al., 2021; Daniel, 2008; Danshvar et al., 2006). The phenomenon of drought differs from other types of natural disasters. Because these phenomena have developed gradually over a considerable amount of time and sometimes over years, they have persisted. Furthermore, these phenomena may spread across dry regions without being influenced by morphological or geological causes (Smith, 2001). When it comes to modifying designs that resist drought management, the monitoring system is essential. For this reason, the phenomena have been shown quantitatively using the drought indices. Standardized precipitation indices have been used to analyze precipitation over various time intervals ranging from 1 to 48 months (McKee, 1995; Jirjees et al., 2023; Hamed, 2023). A positive SPI value indicated that the precipitation was above the mean, while a negative value indicated that the quantity of rainfall dropped short of the mean. According to the previous study (Akhtari, 2006; Jirjees et al., 2023), the SPI technique indicates that a drought phase begins when the SPI is consistently negative, reaches

-1 or below, and ends when the SPI is positive (Ekwezuo and Madu, 2020; Nedham and Hassan, 2019).

## Aim of the study

The main goals of current research are to evaluate the climate types and determine the drought status in Northern Iraq (Erbil, Duhok, and Sulaimaniyah). Using the Standardized Precipitation Index (SPI) during the period 1980-2023.

## Description of study area

The provinces of Erbil, Duhok, and Sulaimaniyah are situated in the northeast of Iraq (Fig. 1). They cover an area of approximately (2728, 6641, and 17564 km²), respectively.

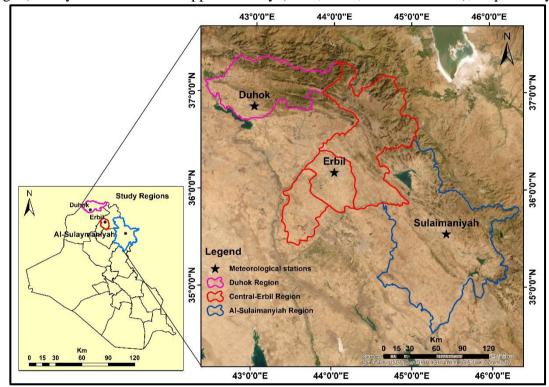



Fig.1. Location map of study area.

#### **Materials and Methods**

The climate data, which include rainfall and temperature such as mean monthly rainfall, annual rainfall, and mean monthly temperature from Erbil, Duhok, and Sulaimaniyah metrological stations, about (43-years) for a period (1980 to 2023), are used. All meteorological stations are situated at these locations (Table 1). Thornthwaite's (1944) method was used to estimate the potential evapotranspiration (PET) dependent on the temperature variable. Climate data were used to determine the types of climates in the study areas. In addition, the main classification was proposed such as (Al-Kubaisi, 2004). Moreover, the Standardized Precipitation Index (SPI) was used to calculate the drought analysis in the long term (12 months). According to the SPI drought severity categorization, the state of drought is considered to begin when the SPI continuously falls below zero. While the level of severity values became positive, the SPI stopped (McKee et al., 1993; Hayes et al., 1999). The flow chart below shows the methodological process of data obtaining and calculation (Fig. 2). The SPI indices were calculated from the equation below (Jirjees et al., 2020; Dara et al., 2021; Jirjees et al., 2022):

$$SPI = \frac{Pi - P(Average)}{S}$$

Where Pi is annual rainfall in given years; P (average) is the mean annual rainfall for 43 years of annual rainfall data for each Meteorological Station (Duhok, Erbil, and Sulaimaniyah); S is the standard deviation.

According to a previous study (McKee et al., 1993), SPI was classified into different classes, which are summarized in Table 2.

| Table 1. Casamanhinal | lacation of made and | laaiaalakakiamaim k   | la a a4 dia di a a-i a a |
|-----------------------|----------------------|-----------------------|--------------------------|
| Table 1: Geographical | Tocation of meleoro  | iogicai stations in i | ne silialea regions.     |
| Tubic II Geographica  | iocarion of microito | object stations in t  | iic staaica i chioiist   |

| Regions      | Easting (E) | Northing (N) | Altitude (m a.s.l) |
|--------------|-------------|--------------|--------------------|
| Erbil        | 411729.66   | 4005018.72   | 420                |
| Duhok        | 320684.52   | 4080843.71   | 583                |
| Sulaimaniyah | 539438.96   | 3934781.31   | 885                |

Table 2: The drought classification using SPI, according to (McKee et al., 1993).

| SPI values     | Category SPI values |
|----------------|---------------------|
| $\geq 2$       | Extremely wet       |
| 1.50 to 1.99   | Severely wet        |
| 1 to 1.49      | Moderately wet      |
| 0 to 0.99      | Mildly wet          |
| -0.99 to 0     | Mildly drought      |
| -1.49 to -1    | Moderate drought    |
| -1.99 to -1.50 | Severe drought      |
| >-2            | Extremely drought   |
|                |                     |

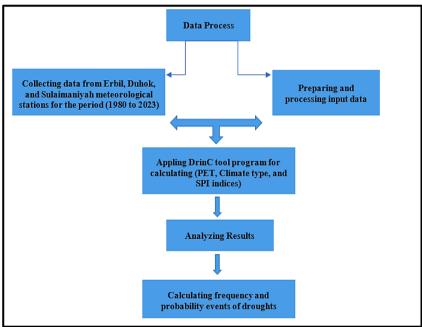



Fig. 2. Flow chart representing the methodology process.

#### **Results and Discussion**

#### **Meteorological data (Precipitation and Temperature)**

This study represents the results of potential evapotranspiration (PET) and the climate type for each region shown in Table 3 and Fig. 3. Also, the correlation of annual rainfall for the period (1980 to 2023) is shown in Fig. 4.

Table 3: Estimation of PET and climate type for each region.

| Regions      | P (mm) | Mean T (°C) | Al-Khubaisi<br>(2004) AI-1 | Climate Types  | Al-Khubaisi<br>(2004) AI-2 | Climate Types  |
|--------------|--------|-------------|----------------------------|----------------|----------------------------|----------------|
| Erbil        | 410.29 | 20.66       | 1.7                        | Humid to moist | 2.0                        | Humid to moist |
| Duhok        | 604.75 | 18.86       | 2.8                        | Humid to moist | 2.6                        | Humid to moist |
| Sulaimaniyah | 686.31 | 19.53       | 3.0                        | Humid to moist | 2.7                        | Humid to moist |

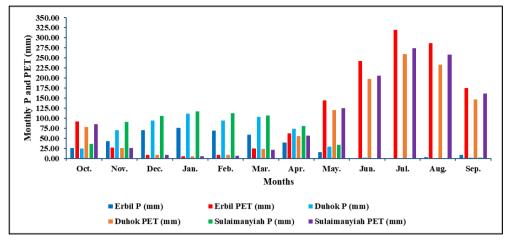



Fig. 3. Relationship between mean monthly rainfall and PET during the period (1980 to 2023) for each region (Ministry of Communication and transportation in Kurdistan Region-Iraq).

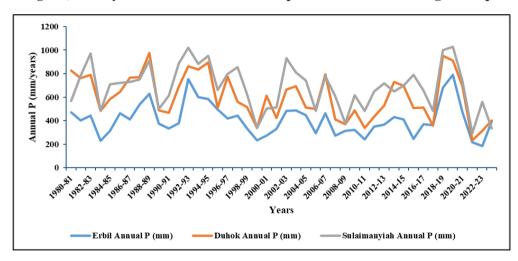



Fig. 4. Annual rainfall data used to estimate SPI indices during the period (1980 to 2023) for each region (Ministry of Communication and transportation in Kurdistan Region-Iraq).

#### Meteorological drought indices (Standardized Precipitation Indices (SPI))

### **Standardized Precipitation Indices in Duhok Region**

The SPI drought analysis, frequency, and probability event happen results values were summarized in Tables 4, 5, and Fig. 5. Accordingly, severe wet with 4-frequency and 9.09% probability of 9.09% were shown in the years (1988, 1994, 2018, and 2019). On the other hand, severe drought with 2-frequency and 4.55% probability events was happening in the years 2021 and 2022.

Table 4: Frequency and probability of events happening during (1980-2023) in the Duhok region.

| SPI value      | Category         | Frequency | Probability event (%) |
|----------------|------------------|-----------|-----------------------|
| ≥ 2            | Extremely wet    | 0         | 0                     |
| 1.50 to 1.99   | Severely wet     | 4         | 9.09                  |
| 1 to 1.49      | Moderately wet   | 4         | 9.09                  |
| 0 to 0.99      | Mildly wet       | 13        | 29.55                 |
| 0 to -0.99     | Mildly drought   | 15        | 34.09                 |
| -1 to -1.49    | Moderate drought | 6         | 13.64                 |
| -1.50 to -1.99 | Severe drought   | 2         | 4.55                  |
| ≤ -2           | Extreme drought  | 0         | 0                     |

Table 5: Annual SPI drought analysis for the period (1980-2023) in Duhok region.

| Years | Rainfall (mm) | SPI   | SPI Categories | Years | Rainfall (mm) | SPI   | SPI Categories |
|-------|---------------|-------|----------------|-------|---------------|-------|----------------|
| 1980  | 826           | 1.168 | Moderately wet | 2002  | 664           | 0.312 | Mildly wet     |

| 1981 | 763 | 0.836  | Mildly wet         | 2003 | 693 | 0.463  | Mildly wet         |
|------|-----|--------|--------------------|------|-----|--------|--------------------|
| 1982 | 788 | 0.968  | Mildly wet         | 2004 | 511 | -0.495 | Mild drought       |
| 1983 | 483 | -0.643 | Mild drought       | 2005 | 499 | -0.557 | Mild drought       |
| 1984 | 585 | -0.104 | Mild drought       | 2006 | 795 | 1.006  | Moderately wet     |
| 1985 | 644 | 0.207  | Mildly wet         | 2007 | 412 | -1.017 | Moderately drought |
| 1986 | 764 | 0.841  | Mildly wet         | 2008 | 370 | -1.239 | Moderately drought |
| 1987 | 768 | 0.862  | Mildly wet         | 2009 | 488 | -0.617 | Mild drought       |
| 1988 | 974 | 1.950  | Severely wet       | 2010 | 338 | -1.409 | Moderately drought |
| 1989 | 486 | -0.627 | Mild drought       | 2011 | 434 | -0.902 | Mild drought       |
| 1990 | 467 | -0.727 | Mild drought       | 2012 | 529 | -0.399 | Mild drought       |
| 1991 | 691 | 0.455  | Mildly wet         | 2013 | 729 | 0.658  | Mildly wet         |
| 1992 | 862 | 1.358  | Moderately wet     | 2014 | 699 | 0.498  | Mildly wet         |
| 1993 | 836 | 1.221  | Moderately wet     | 2015 | 506 | -0.522 | Mild drought       |
| 1994 | 894 | 1.527  | Severely wet       | 2016 | 511 | -0.494 | Mild drought       |
| 1995 | 513 | -0.484 | Mild drought       | 2017 | 358 | -1.301 | Moderately drought |
| 1996 | 774 | 0.894  | Mildly wet         | 2018 | 953 | 1.839  | Severely wet       |
| 1997 | 559 | -0.242 | Mild drought       | 2019 | 909 | 1.609  | Severely wet       |
| 1998 | 514 | -0.479 | Mild drought       | 2020 | 696 | 0.482  | Mildly wet         |
| 1999 | 340 | -1.398 | Moderately drought | 2021 | 232 | -1.97  | Severe drought     |
| 2000 | 614 | 0.049  | Mildly wet         | 2022 | 313 | -1.542 | Severe drought     |
| 2001 | 423 | -0.962 | Mild drought       | 2023 | 402 | -1.072 | Moderately drought |
|      |     |        |                    |      |     |        |                    |

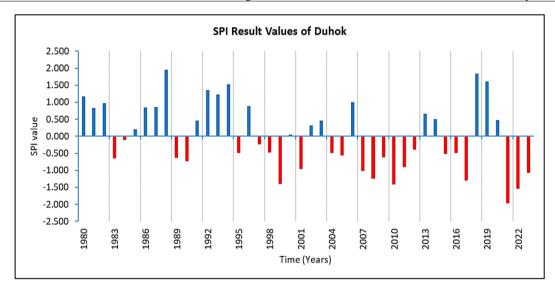



Fig. 5. SPI drought indices analysis in Duhok region.

#### **Standardized Precipitation Indices in Erbil Region**

The SPI drought analysis, frequency, and probability event results values were summarized in Tables 6, 7, and Fig. 6. Accordingly, extremely wet conditions were obtained with 2-frequency and 4.55% probability events in the years (1992 and 2019). However, severe drought shows with a 2.27% probability of events in the year 2022.

Table 6: Frequency and probability of events happening during (1980-2023) in the Erbil region.

| SPI value      | Category         | Frequency | Probability event (%) |
|----------------|------------------|-----------|-----------------------|
| ≥ 2            | Extremely wet    | 2         | 4.55                  |
| 1.50 to 1.99   | Severely wet     | 2         | 4.55                  |
| 1 to 1.49      | Moderately wet   | 2         | 4.55                  |
| 0 to 0.99      | Mildly wet       | 14        | 31.82                 |
| 0 to -0.99     | Mildly drought   | 16        | 36.36                 |
| -1 to -1.49    | Moderate drought | 7         | 15.91                 |
| -1.50 to -1.99 | Severe drought   | 1         | 2.27                  |
| <u>≤-2</u>     | Extreme drought  | 0         | 0.00                  |

Table 7: Annual SPI drought analysis for the period (1980-2023) in the Erbil region.

| Years  | Rainfall | CDI  | SDI Cotogories | Voore | Rainfall | SPI  | SPI Categories  |
|--------|----------|------|----------------|-------|----------|------|-----------------|
| 1 cars | (mm)     | 51 1 | SPI Categories | Years | (mm)     | 51 1 | Si i Categories |

| 1980 | 472 | 0.45  | Mildly wet         | 2002 | 481 | 0.52   | Mildly wet         |
|------|-----|-------|--------------------|------|-----|--------|--------------------|
| 1981 | 404 | -0.04 | Mild drought       | 2003 | 487 | 0.57   | Mildly wet         |
| 1982 | 444 | 0.25  | Mildly wet         | 2004 | 449 | 0.28   | Mildly wet         |
| 1983 | 230 | -1.32 | Moderately drought | 2005 | 295 | -0.85  | Mild drought       |
| 1984 | 316 | -0.69 | Mild drought       | 2006 | 462 | 0.38   | Mildly wet         |
| 1985 | 464 | 0.39  | Mildly wet         | 2007 | 274 | -1.00  | Moderately drought |
| 1986 | 412 | 0.01  | Mildly wet         | 2008 | 315 | -0.70  | Mild drought       |
| 1987 | 537 | 0.93  | Mildly wet         | 2009 | 321 | -0.65  | Mild drought       |
| 1988 | 627 | 1.59  | Severely wet       | 2010 | 241 | -1.24  | Moderately drought |
| 1989 | 373 | -0.27 | Mild drought       | 2011 | 352 | -0.43  | Mild drought       |
| 1990 | 335 | -0.55 | Mild drought       | 2012 | 366 | -0.32  | Mild drought       |
| 1991 | 377 | -0.25 | Mild drought       | 2013 | 432 | 0.16   | Mildly wet         |
| 1992 | 752 | 2.51  | Extremely wet      | 2014 | 410 | -0.001 | Mild drought       |
| 1993 | 602 | 1.41  | Moderately wet     | 2015 | 244 | -1.22  | Moderately drought |
| 1994 | 583 | 1.27  | Moderately wet     | 2016 | 370 | -0.30  | Mild drought       |
| 1995 | 494 | 0.62  | Mildly wet         | 2017 | 364 | -0.34  | Mild drought       |
| 1996 | 419 | 0.06  | Mildly wet         | 2018 | 682 | 1.99   | Severely wet       |
| 1997 | 442 | 0.23  | Mildly wet         | 2019 | 789 | 2.78   | Extremely wet      |
| 1998 | 334 | -0.56 | Mild drought       | 2020 | 474 | 0.47   | Mildly wet         |
| 1999 | 233 | -1.31 | Moderately drought | 2021 | 216 | -1.43  | Moderately drought |
| 2000 | 272 | -1.01 | Moderately drought | 2022 | 184 | -1.66  | Severe drought     |
| 2001 | 329 | -0.60 | Mild drought       | 2023 | 394 | -0.12  | Mild drought       |
|      |     |       |                    |      |     |        |                    |

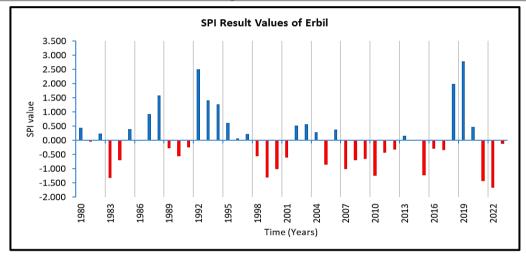



Fig. 6. SPI drought analysis in the Erbil region.

#### Standardized Precipitation Indices in Sulaimaniyah Region

The SPI drought analysis, frequency, and probability event happen results values were summarized in Tables 8, 9, and Fig. 7. Accordingly, severe wet events occurred with a 4-frequency and 9.30% probability events in the years (1982, 1992, 2018, and 2019). However, severe drought showed in 3-year frequency with 6.98% probability events in years (1999, 2008, and 2023). According to Bety (2013), the topography has a great influence on the rainfall distribution. The rainy season starts in October and ends by the end of May, and the absence of precipitation during the summer is the main characteristic of rainfall distribution in the area.

Table 8: Frequency and probability of events happening during (1980-2023) in the Sulaimaniyah region.

| SPI value      | Category         | Frequency | Probability event (%) |
|----------------|------------------|-----------|-----------------------|
| ≥ 2            | Extremely wet    | 0         | 0.00                  |
| 1.50 to 1.99   | Severely wet     | 4         | 9.30                  |
| 1 to 1.49      | Moderately wet   | 5         | 11.63                 |
| 0 to 0.99      | Mildly wet       | 14        | 32.56                 |
| 0 to -0.99     | Mildly drought   | 13        | 30.23                 |
| -1 to -1.49    | Moderate drought | 4         | 9.30                  |
| -1.50 to -1.99 | Severe drought   | 3         | 6.98                  |
| <u>≤ -2</u>    | Extreme drought  | 0         | 0.00                  |

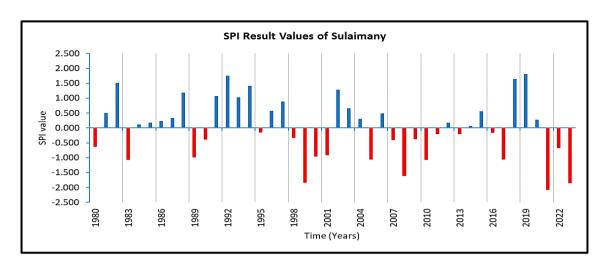



Fig. 7. SPI drought analysis in the Erbil region.

Table 9: Annual SPI drought analysis for the period (1980-2023) in the Sulaimaniyah region.

|       |               |       |                    |       | /                |       | ,                  |
|-------|---------------|-------|--------------------|-------|------------------|-------|--------------------|
| Years | Rainfall (mm) | SPI   | SPI Categories     | Years | Rainfall<br>(mm) | SPI   | SPI Categories     |
| 1980  | 566           | -0.63 | Mild drought       | 2002  | 930              | 1.29  | Moderately wet     |
| 1981  | 782           | 0.50  | Mildly wet         | 2003  | 811              | 0.66  | Mildly wet         |
| 1982  | 973           | 1.51  | Severely wet       | 2004  | 743              | 0.30  | Mildly wet         |
| 1983  | 484           | -1.07 | Moderately drought | 2005  | 485              | -1.07 | Moderately drought |
| 1984  | 710           | 0.13  | Mildly wet         | 2006  | 779              | 0.49  | Mildly wet         |
| 1985  | 721           | 0.18  | Mildly wet         | 2007  | 609              | -0.41 | Mild drought       |
| 1986  | 729           | 0.23  | Mildly wet         | 2008  | 380              | -1.62 | Severe drought     |
| 1987  | 749           | 0.33  | Mildly wet         | 2009  | 615              | -0.38 | Mild drought       |
| 1988  | 911           | 1.19  | Moderately wet     | 2010  | 484              | -1.07 | Moderately drought |
| 1989  | 498           | -0.99 | Mild drought       | 2011  | 648              | -0.20 | Mild drought       |
| 1990  | 613           | -0.39 | Mild drought       | 2012  | 719              | 0.17  | Mildly wet         |
| 1991  | 888           | 1.07  | Moderately wet     | 2013  | 647              | -0.21 | Mild drought       |
| 1992  | 1018          | 1.75  | Severely wet       | 2014  | 698              | 0.06  | Mildly wet         |
| 1993  | 881           | 1.03  | Moderately wet     | 2015  | 791              | 0.55  | Mildly wet         |
| 1994  | 953           | 1.41  | Moderately wet     | 2016  | 655              | -0.16 | Mild drought       |
| 1995  | 659           | -0.14 | Mild drought       | 2017  | 485              | -1.06 | Moderately drought |
| 1996  | 796           | 0.58  | Mildly wet         | 2018  | 998              | 1.65  | Severely wet       |
| 1997  | 855           | 0.89  | Mildly wet         | 2019  | 1028             | 1.81  | Severely wet       |
| 1998  | 624           | -0.33 | Mild drought       | 2020  | 740              | 0.28  | Mildly wet         |
| 1999  | 339           | -1.84 | Severe drought     | 2021  | 292              | -2.08 | Extreme drought    |
| 2000  | 505           | -0.96 | Mild drought       | 2022  | 559              | -0.67 | Mild drought       |
| 2001  | 513           | -0.92 | Mild drought       | 2023  | 334              | -1.86 | Severe drought     |

The Erbil governorate has been significantly impacted by drought, experiencing 23 instances of drought between the years 1980 and 2023. In comparison, the Sulaymaniyah governorate has faced slightly fewer droughts, with 22 occurrences, but it remains more affected than the Duhok governorate, which experienced drought 21 times during the same period. When analyzing the Standardized Precipitation Index (SPI) results, it is evident that 1998 marks a pivotal year for the increasing frequency of droughts across Erbil, Sulaymaniyah, and Duhok. Before 1998, drought events were relatively infrequent, but following this year, the frequency of droughts in these regions noticeably escalated. The findings of this study align with expectations and are consistent with the broader impacts of climate change, which have had severe consequences for Iraq as a whole, including these three governorates. The increasing drought occurrences underscore the vulnerability of these areas to shifting climatic patterns, highlighting the urgent need for adaptive measures to mitigate the effects of climate change on water resources.

#### Conclusion

Based on the information presented, it is possible to conclude that, as the Kurdistan region consists of both dry and semi-arid places, it is essential for the management of water resources to determine the trends in drought and the factors that have reduced precipitation in recent years.

The SPI result for Duhok province represented 52.28% of the probability event evaluated was in the Mild to Severe drought ranges. Also, in Erbil province, the SPI results show the probability event with 54.55% in the Mild drought to Severe drought ranges. However, the SPI result in Sulaimaniyah province was 46.51% of a probability event in the Mildly drought to Severely drought ranges. According to the significant results of this investigation, the drought pattern that has been happening in Kurdistan Governorate recently, compared to its previous forms, is concerning; as a result, plans for decreasing risks and managing the region's water resources are necessary.

## Acknowledgements

The authors expressed their appreciation to the Ministry of Transportation and Communication, Metrology and Seismology Directorate in Kurdistan Region for supplying the necessary metrological data to carry out and effectively execute this study.

#### **Conflict of Interest**

The authors declare that there is no conflict of interest related to the publication of this work.

#### References

- Akhtari, R., Mahdian, M.H., Morid, S., 2006. Locational analysis of EDI and SPI indexes in Tehran province. Journal of Research's Water Resources of Iran, 2(3): pp. 27-38.
- Al-Kubaisi, A.H., 2004. Copper (II), nickel (II) and palladium (II) complexes of 2-oximino-3-thiosemicarbazone-2, 3-butanedione. Bulletin of the Korean Chemical Society, 25(1), 37-41. https://doi.org/10.5012/bkcs.2004.25.1.037.
- Al-Quraishi, A.M., Gaznayee, H.A. and Crespi, M., 2021. Drought trend analysis in a semi-arid area of Iraq based on normalized difference vegetation index, normalized difference water index and standardized precipitation index. Journal of Arid Land, 13, pp. 413-430. <a href="https://doi.org/10.1007/s40333-021-0062-9">https://doi.org/10.1007/s40333-021-0062-9</a>.
- Bety, A.K.S., 2013. Urban Geomorphology of Sulaimani City, Using Remote Sensing and GIS Techniques, Kurdistan Region, Iraq. Unpublished PhD Thesis, Faculty of Science and Science Education, University of Sulaimani, 125 P.
- Daniel, O., 2008. Drought Analysis for Busia District (Uganda). Masters in Irrigation Problems in Developing Countries, pp. 1-27.
- Danshvar, M.R., Talvari, A.R., Tavakoli, M., Danayan, M.R., 2006. Analysis of drought return period in East and South East of the Iran country. Nivar Journal, 62: pp. 21-36.
- Dara, R.N., Jirjees, S., Fatah, K.K., and Javadinejad, S., 2021. Climatic Parameters Analysis of Koysinjaq Meteorological Station, Kurdistan Region, Northern Iraq. The Iraqi Geological Journal, pp. 99-109. https://doi.org/10.46717/igj.53.1E.6Ry-2020-07/06.
- Ekwezuo, C.S. and Madu, J.C., 2020. Evaluation of different rainfall-based drought indices detection of meteorological drought events in Imo state, Nigeria. Journal of Applied Sciences and Environmental Management, 24(4), pp. 713-717, <a href="DOI: 10.4314/jasem.v24i4.25">DOI: 10.4314/jasem.v24i4.25</a>
- Hamed, M.H., 2023. Climate Parameter Uses as Indices for Assessment of Climate Change and Water Balance in Erbil Sub-Basin North–Iraq. Iraqi Journal of Science, pp. 4518-4537. DOI: 10.24996/ijs.2023.64.9.19

- Hayes, M.J., Svoboda, M.D., Wiihite, D.A., and Vanyarkho, O.V., 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American meteorological society, 80(3), pp. 429-438. <a href="https://doi.org/10.1175/1520-0477(1999)080%3C0429:MTDUTS%3E2.0.CO;2">https://doi.org/10.1175/1520-0477(1999)080%3C0429:MTDUTS%3E2.0.CO;2</a>.
- Jirjees, S.J., Hassan, I.O., and Seeyan, S.O., 2022. Hydrometeorological Data Analysis and Drought Indices of Rawandoz Area, Iraqi-Kurdistan Region. Zanco Journal of Pure and Applied Sciences, 34(6), pp. 150-159. <a href="http://dx.doi.org/10.21271/zjpas">http://dx.doi.org/10.21271/zjpas</a>.
- Jirjees, S., Seeyan, S. and Fatah, K., 2020. Climatic analysis for Pirmam area, Kurdistan Region, Iraq. The Iraqi Geological Journal, pp. 75-92. <a href="https://doi.org/10.46717/igj.53.1E.6Ry-2020-07/06">https://doi.org/10.46717/igj.53.1E.6Ry-2020-07/06</a>.
- McKee, T.B., Doesken, N.J. and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Vol. 17, No. 22, pp. 179-183.
- Mckee, T.B., Doesken, N.J. and Kleist, J., 1995. Drought Monitoring with Multiple Time Scales. Proceedings Of the Conference on Applied Climatology, -(9), pp. 233-236. Sid. Https://Sid.Ir/Paper/603437/En.
- Nedham, U.S. and Hassan, A.S., 2019. Comparison of some drought indices in Iraq. Al-Mustansiriyah Journal of Science, 30(4), pp. 1-9. <u>DOI:</u> http://doi.org/10.23851/mjs.v30i4.674.
- Smith, K., 2001. Assessing Risk and Reducing Disaster, Routledge Press. Third Ed, London, UK.
- Thornthwait, C.W., 1948. An Approach toward a Relation Classification of Climate, Geographical Review, 32, 55 P.