

Iraqi National Journal of Earth Science

www.earth.mosuljournals.com

Hydrogeological Assessment of Aquifers in Al-Hawija City, Kirkuk, Northern Iraq

Hameed M. S. Al-bajari ^{1*} D, Omer S. Ibrahiem Al-Tamimi ² Department of Applied Geology, College of science, University of Kirkuk, Kirkuk, Iraq.

Article information

Received: 31- Jul -2024

Revised: 02- Sep -2024

Accepted: 06- Nov-2024

Available online: 01- Oct – 2025

Keywords:
Pumping test
Al Hawija city
Groundwater

Semi-Confined Hydraulic properties

Correspondence:

Name: Hameed M. S. Al-bajari

Email:

scgm22002@uokirkuk.edu.iq

ABSTRACT

Groundwater is a significant source of fresh water for drinking, agriculture, and various other uses worldwide. The current study intends to determine groundwater aquifer types and estimate the hydraulic properties of the aguifers within the study area. The pumping test process was applied on five pumping wells with monitoring wells where the hydraulic conductivity values varied (22.02-65.5) m/day, while the transmissivity values ranged between (695-3413) m2/day. The storage coefficient ranges between (0.00074-0.0037). The aquifer type is a semi-confined aquifer based on the results of the hydraulic properties (transmissivity, T; hydraulic conductivity, K; and storage coefficient, S). The study area has been classified as heterogeneous and anisotropic, and the main groundwater movements are from south to west and northwest, recharged from the Bai Hassan Formation (the lower aquifer in the study area) exposed in the away regions. When the precipitation occurs on the mountaintops, it infiltrates into the formation and continues to move toward the study area.

DOI: 10.33899/earth.2024.152450.1327, ©Authors, 2025, College of Science, University of Mosul. This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

التقييم الهيدر وجيولوجي للخزانات المائية في مدينة الحويجة، جنوب غربي كركوك، شمالي العراق

حميد محمد سعد البجاري $^{1^*}$ ، عمر صباح ابراهيم التميمي 2 10 قسم علوم الأرض التطبيقية، كلية العلوم، جامعة كركوك، كركوك، العراق.

الملخص

المياه الجوفية هي مصدر مهم للمياه العنبة للشرب والزراعة واستخدامات أخرى مختلفة في جميع أنحاء العالم. تهدف الدراسة الحالية إلى تحديد أنواع خزانات المياه الجوفية وتقدير الخصائص الهيدروليكية للخزانات المائية داخل منطقة الدراسة. تم تطبيق عملية اختبار الضخ على خمسة آبار ضخ مع آبار مراقبة حيث تراوحت قيم التوصيلية الهيدروليكية (22.02-65.0) م / يوم، بينما تراوحت قيمة النفاذية بين (65.003-0.00). الخزان م 2 / يوم، وتراوحت قيمة معامل التخزين ما بين (60.003-0.000). الخزان المائي الجوفي هو من النوع شبه المحصور . بناءً على نتائج الخصائص الهيدروليكية (الانتقالية 1)، التوصيلية الهيدروليكية 1)، معامل التخزين 1)، فقد تم تصنيف منطقة الدراسة على أنها غير متجانسة ومتباينة الخواص وحركة المياه الجوفية الرئيسة من الجنوب إلى الغرب والشمال الغربي وأن المصدر الرئيس لتغذية المياه الجوفية هو تكوين باي حسن وهو الخزان المائي السفلي في منطقة الدراسة وهو مكشوف في المناطق البعيدة. عندما تحدث الأمطار على قمم الجبال فإنها نتسرب إلى التكوين وستمر في التحرك نحو منطقة الدراسة.

معلومات الارشفة

تاريخ الاستلام: 31- يوليو -2024

تاريخ المراجعة: 02- سبتمبر -2024

تاريخ القبول: 06- نوفمبر -2024

تاريخ النشر الالكتروني: 01- اكتوبر -2025 الكلمات المفتاحية:

> اختبار الضخ مدينة الحويجة المياه الجوفية شبه محصورة

الخصائص الهيدروليكية

المراسلة:

الاسم: حميد محمد سعد البجاري

Email: scgm22002@uokirkuk.edu.iq

DOI: 10.33899/earth.2024.152450.1327, ©Authors, 2025, College of Science, University of Mosul. This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Groundwater represents all water located below the Earth's surface (Schwartz and Zhang, 2024). In Iraq, the scarcity of water resources, particularly surface water, has resulted in the inclination to utilize groundwater for domestic, agricultural, and industrial requirements (Al-Hayali et al., 2021). Groundwater is vital in regions where surface water is insufficient to fulfill daily requirements (Mohammed et al., 2021). The significance of an aquifer is determined by its primary attributes, including permeability, extent, and thickness (Jassim and Goff, 2006). Hydrogeological approaches are crucial for the development and management of groundwater resources and their exploitation (Agha and Al-Tamimi, 2022). An aquifer is a geological structure or formation that is permeable and porous, allowing water to move freely at different rates. It is bordered either from the bottom, top, or both, by layers of solid sediments that do not allow water to pass through (Maliva, 2016). The area is characterized by a semi-arid climate (Soran, 2008). This study focuses on investigating the depth and flow directions of groundwater, as well as determining the hydraulic properties such as transmissivity (T), hydraulic conductivity (K), and storage coefficient (S) of the aguifer in question using data obtained from pumping tests of the water-bearing units in the study area. The aim is to understand and effectively manage aquifers for long-term sustainability.

Location of the study area

Al-Hawija City is located in Kirkuk Province in northern Iraq. It is located within the geographical coordinates between longitudes 43°44′0″E to 43°49′0″E and latitudes 35°18′30″N to 35°21′30″N. Additionally, it has an elevation of 179-210 m above sea level. The location is situated 65 kilometers southwest of Kirkuk City. It represents the largest and most significant town in Kirkuk Province and Iraq (Al-Jumaily, 2007) (Fig. 1).

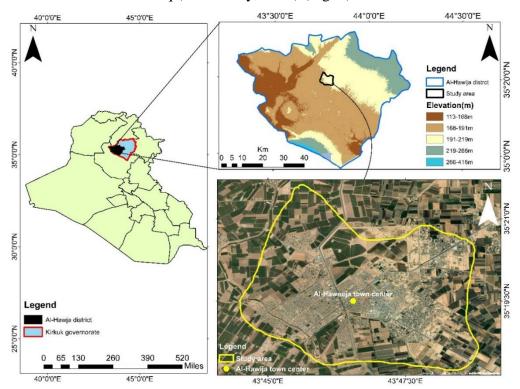


Fig. 1. Location map of the study area.

Geological setting

Tectonically, the city is located within the range of a low folded zone in the Hemrin-Makhul subzone (Jassim and Goff, 2006).

Stratigraphically, it is covered with Quaternary deposits that consist of river deposits forming floodplains, and there is no formation exposed on the surface (Buringh, 1960). Where Al-Hawija district consists of the Fatha Formation (Middle Miocene), Injana Formation (Upper Miocene), Mukdadyia Formation (Late Pliocene), Bai-Hassan Formation (Upper Pliocene), and Quaternary deposits, as shown in Figure 2 (Awadh et al., 2016; Gharib et al., 2024).

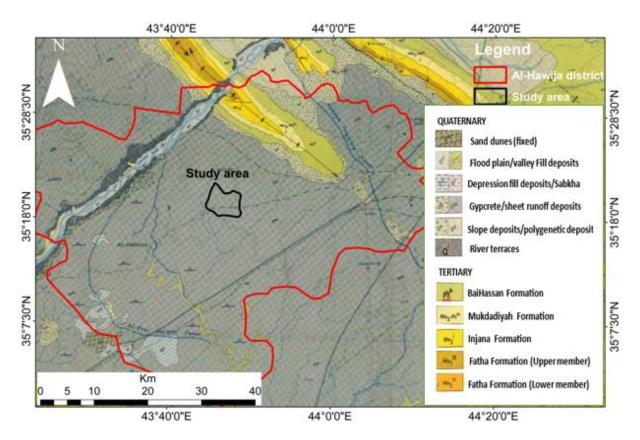


Fig 2. Geological map of the Al-Hawija district (Sissakian, 1992).

Materials and Methods

According to Darcy's law, the groundwater moves from the higher hydraulic head area to the lower hydraulic head area (Wang et al., 2022). The flow direction map is created by measuring the groundwater depths of 20 wells in the study area, as shown in Table 1 and Figure 3. The depths of groundwater were measured by a groundwater level meter (sounder device). The hydraulic properties of the aquifer were determined by performing a pumping test to determine (K, T, and S). Pumping tests were conducted in five pumping wells with monitoring wells (W10 with OW-1, W17 with OW-2, W18 with OW-3, W19 with OW-4, and W20 with OW-5) (Table 2 and Fig. 4). The pumping test was performed for at least 3 to 4 hours to reach a steady state condition. There are many methods for data analysis used for this purpose, such as Theis, Cooper-Jacob, Hantush, Walton, and Neuman (Kruseman and Ridder, 1979). (Theis, Hantush) methods are used in the current study for data analysis (Figs. 7-11; Tables 3-6). Because the aquifer is located in semi-confined conditions. The data for drawing the pumping wells correlation in the study area were taken from the Water Drilling Department, Governorate of Kirkuk, and drawn using the Starter software package, version 3 (Fig. 6).

24010 11	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	are stately at	200 (2112 22 22 22 22 22 22 22 22 22 22 22 22	
Wells Symbol	Longitude	Latitude	Elevation	Depth to water table	SWL
wens symbol	(E)	(N)	(m)	(m a.s.l)	(m a.s.l)
W1	43°47'35.00"E	35°19'58.60"N	196	26.43	169.57
W2	43°46'48.70"E	35°19'23.60"N	193	20.5	172.5
W3	43°47'50.10"E	35°19'18.38"N	192	21.65	170.35
W4	43°45'42.40"E	35°19'35.20"N	189	17.9	171.1
W5	43°45'44.40"E	35°19'35.40"N	189	17.9	171.1
W6	43°45'32.20"E	35°19'17.70"N	187	16.9	170.1
W7	43°45'34.70"E	35°19'18.70"N	187	16.9	170.1
W8	43°45'57.40"E	35°19'7.30"N	190	16.2	173.8
W9	43°45'44.50"E	35°19'5.90"N	189	15.8	173.2

193

173

35°19'15.60"N

W10

43°47'16.80"E

Table 1: Water wells basic data of the study area (SWL is defined).

W11	43°47'23.80"E	35°19'9.10"N	194	20.28	173.72
W12	43°47'21.30"E	35°20'0.90"N	196	25.15	170.85
W13	43°46'7.10"E	35°19'54.70"N	191	19.24	171.76
W14	43°45'13.90"E	35°19'21.40"N	186	16.7	169.3
W15	43°47'1.90"E	35°19'52.50"N	197	25.05	171.95
W16	43°47'15.40"E	35°19'35.90"N	193	21.65	171.35
W17	43°48'25.80"E	35°18'20.80"N	192.12	19.95	172.17
W18	43°48'12.00"E	35°19'57.00"N	198.12	27	171.12
W19	43°45'15.40"E	35°21'14.50"N	188	18.9	169.1
W20	43°44'54.40"E	35°18'57.30"N	184	13.32	170.68

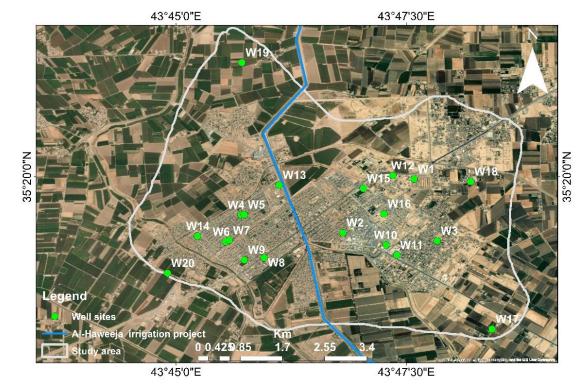


Fig. 3. Well sites of the study area.

Table 2: Observation and pumping wells basic data of the study area.

Wells Name	Wells Symbol	Longitude	Latitude	Discharge	Elevation	Depth to water table	SWL
	Symbol	(E)	(N)	L/Sec	(m)	(m a.s.l)	(m a.s.l)
Observation well-1	OW-1	43°47'16.37"E	35°19'12.23"N		192	19.9	172.1
Pumping well-1	W 10	43°47'16.80"E	35°19'15.60"N	7	193	20	173
Observation well-2	OW-2	43°48'26.77"E	35°18'21.70"N		192	19.97	172.03
Pumping well-2	W 17	43°48'25.80"E	35°18'20.80"N	23	192.12	19.95	172.17
Observation well-3	OW-3	43°48'11.74"E	35°19'56.35"N		198	27	171
Pumping well-3	W 18	43°48'12.00"E	35°19'57.00"N	17	198.12	27	171.12
Observation well-4	OW-4	43°45'42.82"E	35°21'13.4"N	-	188	18.95	169.05
Pumping well-4	W 19	43°45'15.40"E	35°21'14.50"N	24	188	18.9	169.1
Observation well-5	OW-5	43°44'54.40"E	35°18'57.30"N		184	13.4	170.6
Pumping well-5	W 20	43°44'54.40"E	35°18'57.30"N	23	184	13.32	170.68

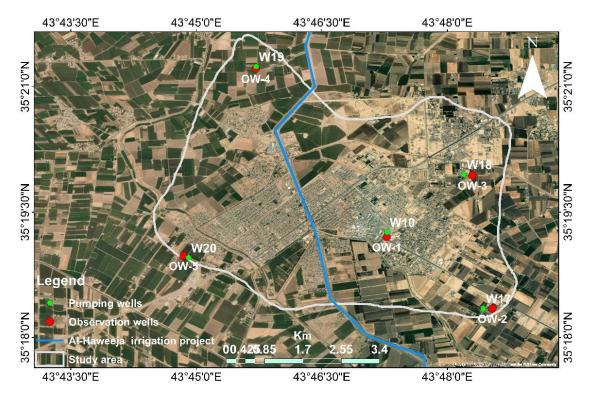


Fig. 4. Pumping and observation well sites of the study area.

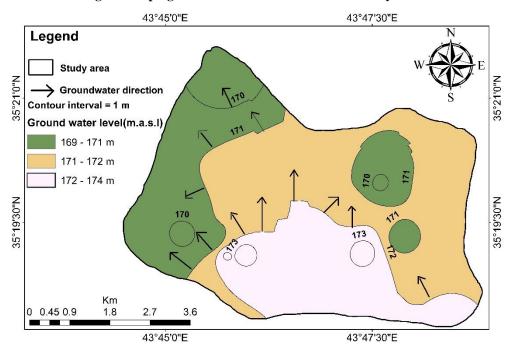


Fig. 5. Spatial distribution and movement direction of groundwater in the study area

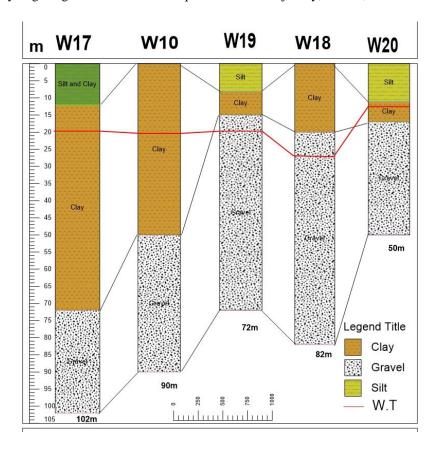


Fig. 6. Pumping wells correlation.

Pumping test No.1.

Table 3: Data of pumping test No.1.

Time (min.)	Drawdown (cm)	Time (min.)	Drawdown (cm)
1	01	30	12
2	1	45	13
3	3	60	14
4	4	75	15
5	6	90	15
10	6	105	16
15	7	120	18
20	8	150	18
25	10	180	18

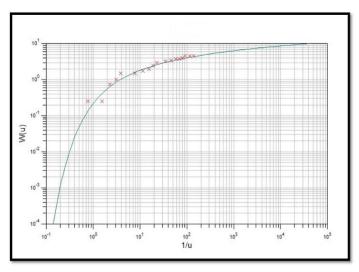


Fig. (7a). Time-drawdown curve (Theis's method) for pumping test No.1.

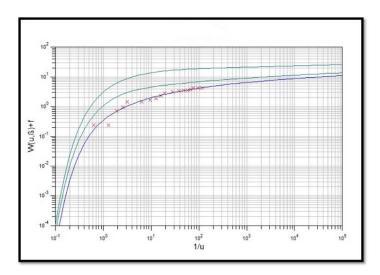


Fig. (7b). Time-drawdown curve (Hantush method) for pumping test No.1. Pumping test No.2.

Table 4: Data of pumping test No.2.

Time (min.)	Drawdown (cm)	Time (min.)	Drawdown (cm)
1	1	30	72
2	15	45	83
3	22	60	91
4	30	75	97
5	37	90	100
10	43	105	101
15	49	120	105
20	57	150	108
25	64	180	108

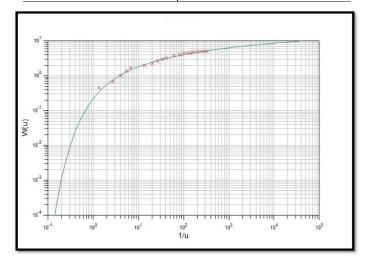
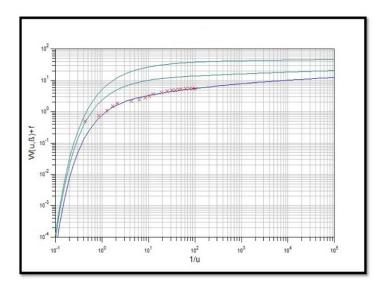



Fig. (8 a). Time-drawdown curve (Theis's method) for Pumping test No.2.

 $\label{eq:Fig. (8 b). Time-drawdown curve (Hantush method) for pumping test No. 2.} \\ Pumping test No. 3.$

Table 5: Data of pumping test No.3.

Time(min)	drawdown(cm)	Time(min)	drawdown(cm)
1	4	45	23
2	6	60	26
3	8	75	29
4	10	90	33
5	12	105	35
10	13	120	36
15	14	150	37
20	15	180	39
25	17	210	39
30	19		

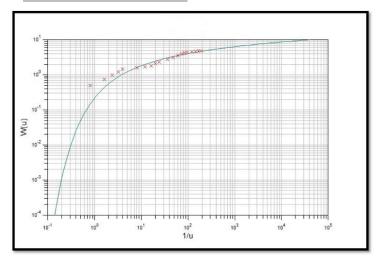
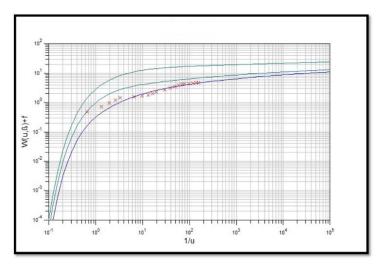
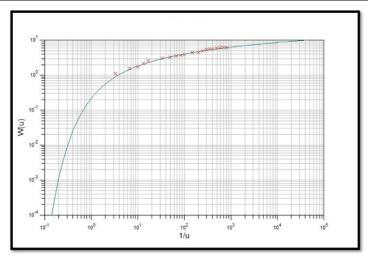


Fig. (9a). Time-drawdown curve (Theis's method) for pumping test No.3.

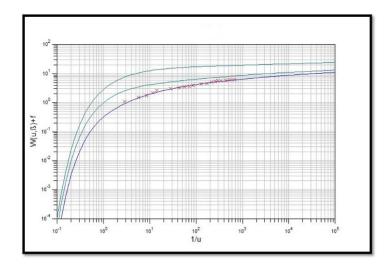

Fig. (9b). Time-drawdown curve (Hantush method) for pumping test No.3. Pumping test No.4.

Table 6: Data of the pumping test. No.4.

Time(min)	drawdown(cm)	Time(min)	drawdown(cm)
1	5	45	20
2	7	60	21
3	8	75	23
4	1	90	25
5	12	105	26
10	14	120	26
15	15	150	27
20	16	180	28
25	17	210	28
30	18	240	28

 $Fig.\ (10a).\ Time-drawdown\ curve\ (Theis's\ method)\ for\ pumping\ test\ No.4.$

 $\label{eq:Fig. 10b} \textbf{Fig. (10b). Time-drawdown curve (Hantush method) for pumping test No.4.}$ Pumping test No.5.

Table 7: Data of pumping test No.5.

Time(min)	drawdown(cm)	Time(min)	drawdown(cm)
1	5	45	19
2	6	60	21
3	7	75	20
4	8	90	22
5	9	105	31
10	11	120	33
15	13	150	34
20	14	180	35
25	15	210	36
30	17	240	36

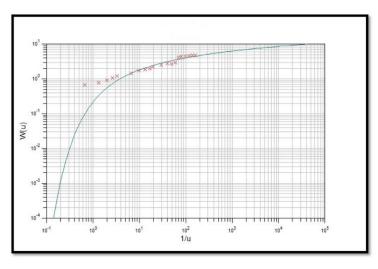


Fig. (11a). Time-drawdown curve (Theis's method) for pumping test No.5.

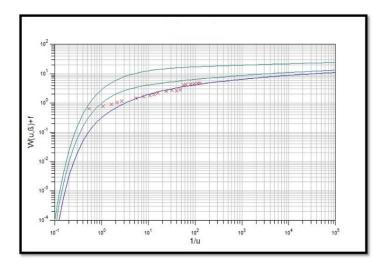


Fig. (11b). Time-drawdown curve (Hantush method) for pumping test No.5.

Results and discussion

Throughout measuring the groundwater depths in 20 wells in the study area, a flow direction map is created where the groundwater depths range from 13.32 to 27m (Table 1 and Fig. 3). Equipotential lines are drawn, and the directions of groundwater in the study area are determined. The direction of groundwater flow indicates that the groundwater movements is from south to the western and northwestern parts as shown in Figure (5). The hydraulic properties show differences in data average, where in pumping test No.1 is (27.7 m/day), the transmissivity value is (1109 m²/day), and the storage coefficient value is (0.00077). In the pumping test No.2, the hydraulic conductivity is (23.16 m/day), the transmissivity value is (695 m²/day), and the storage coefficient value is (0.00074). In the pumping test No.3, the hydraulic conductivity is (22.02 m/day), the transmissivity value is (1366.5 m²/day) and the storage coefficient value is (0.001), In the pumping test No.4, the hydraulic conductivity is (59.54 m/day), the transmissivity value is $(3413 \text{ m}^2/\text{day})$ and the storage coefficient value is (0.0017); and in the pumping test No.5, the hydraulic conductivity is (62.5 m/day), the transmissivity value is (2062.5 m²/day) and the storage coefficient value is (0.0037). The parameters as transmissivity (T), hydraulic conductivity (K), and storage coefficient (S), are shown in Table 8, and Figures (12-14).

Table 8: Results of (T, K, S) for the wells in the study area.

Wells	T(m²/day)	K (m/day)	S	Type of aquifer
W10	1109	27.7	0.00077	Semi-confined
W17	695	23.16	0.00074	Semi-confined
W18	1366.5	22.02	0.001	Semi-confined
W19	3413	59.54	0.0017	Semi-confined
W20	2062.5	62.5	0.0037	Semi-confined

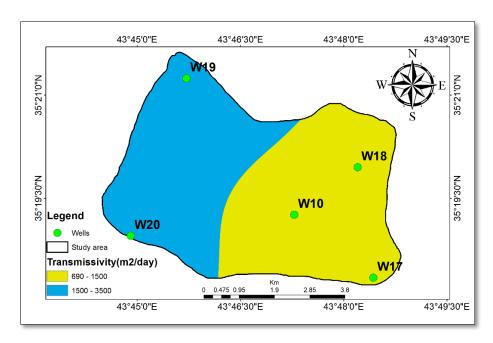


Fig. 12. Spatial distribution of transmissivity values in the study area.

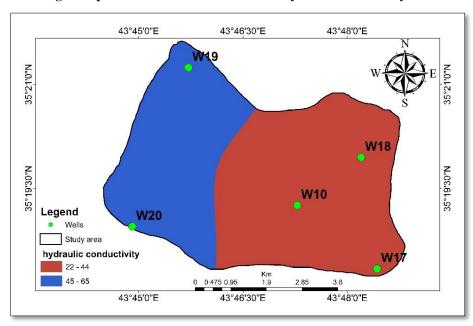


Fig. 13. Spatial distribution of hydraulic conductivity values in the study area.

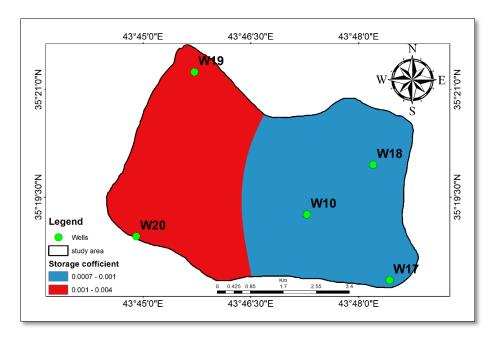


Fig. 14. Spatial distribution of storage coefficient values in the study area.

Conclusion

From the above results, the study area is an area with good groundwater productivity, as groundwater is stored in a semi-confined aquifer and the main groundwater movement is from south to the western and northwestern parts. The aquifer is classified as heterogeneous and anisotropic. The main source of groundwater recharge is from the Bai Hassan Formation, which is the lower aquifer in the study area and is exposed in the surrounding regions. When the precipitation occurs on the mountaintops, it infiltrates into the formation and continues to move toward the study area.

Acknowledgments

The authors provided all data from several locations in northern Iraq. We appreciate the technical support provided by the Geological Engineering Laboratory at the College of Science, University of Kirkuk. We also thank the Editors and the anonymous reviewers for their constructive notes that improved this article.

References

- Agha, B.A.F. and Al-Tamimi, O.S.I., 2022. Using pumping tests and two techniques of the water balance to assess the aquifer hydraulic characteristics and the groundwater recharge of Shewasoor Sub-Basin Kirkuk, NE Iraq. The Iraqi Geological Journal, pp. 82–93. https://doi.org/10.46717/igj.55.1B.8Ms-2022-02-24
- Al-Hayali, H.D., Al-Tamimi, O.S.I. and Hamamin, D.F., 2021. Identification of vulnerable zones for groundwater using a GIS-based DRASTIC technique in Shwan sub-basin/North-Iraq. Iraqi Journal of Science, pp. 1597–1857. https://doi.org/10.24996/ijs.2021.62.5.21
- Al-Jumaily, H.A.A., 2007. Hydrochemical Aspects and Determination of Some Heavy Metals in Al-Hawija Channel, Kirkuk, Iraq. Tikrit Journal of Pure Science, 13(3), pp. 1–6.
- Awadh, S.M., Al-Kilabi, J.A. and Abdulhussein, F.M., 2016. Assessment of groundwater quality using water quality index in, Al-Hawija area, northern Iraq. The Iraqi Geological Journal, pp. 67–76. https://doi.org/10.46717/igj.39-49.1.5Ms-2016-06-27

- Buringh, P., 1960. Soils and soil conditions in Iraq.
- Gharib, A.F., Ismael, J.I., Alatroshe, R.K., Farhan, H.N., Abdel-Fattah, M.I., and Pigott, J.D., 2024. Organic matter characteristics and hydrocarbon generation potential of the Middle Jurassic–Lower Cretaceous succession in the Mesopotamian Foredeep Basin, Iraq. International Journal of Earth Sciences, pp. 1–25. DOI: 10.1007/s00531-024-02434-6
- Jassim, S.Z. and Goff, J.C., 2006. Geology of Iraq. DOLIN, sro, distributed by Geological Society of London.
- Kruseman, G.P. and Ridder, N.A., 1979. Analysis and Evaluation of Pumping Test Data: By GP Kruseman and NA De Ridder. International Institute for Land Reclamation and Improvement.
- Maliva, R.G., 2016. Aquifer characterization techniques (Vol. 10). Springer.
- Mohammed, D.A., Mohammed, S.H. and Szűcs, P., 2021. Integrated remote sensing and GIS techniques to delineate groundwater potential area of Chamchamal basin, Sulaymaniyah, NE Iraq. Kuwait Journal of Science, 48(3).
- Schwartz, F.W. and Zhang, H., 2024. Fundamentals of groundwater. John Wiley and Sons.
- Sissakian, V.K., 1992. The Geology Of Kirkuk Quadrangle, Sheet Ni-38-2, Scale 1: 250000.
- Soran, N.S., 2008. Hydrogeochemical properties of groundwater in the vicinity of Al-Hawija plain-Kirkuk, Iraq. Journal of Kirkuk University-Scientific Studies, 3(2), 2008.
- Wang, X., Qian, J., Ma, L., Luo, Q., and Zhou, G., 2022. Determination of groundwater flow regimes based on the spatial non-local distribution of hydraulic gradient: Model and validation. Journal of Hydrodynamics, 34(2), pp. 299–307. DOI: 10.1007/s42241-022-0024-5