Induction of Callus from Date Palm (*Phoenix dactylifera L.* cv. Barhi) for Bioactive Compounds Production and Assessment of Cytotoxicity and Antioxidant Activities.

Hussam Saad Albushmainah^{1*}, Layth Sareea Al-Rekaby¹, and Abdulkadhim J.Musa²

*Corresponding author's email: sci.bio.phd.22.3@qu.edu.iq
Email addresses of coauthors: layth.sareea@qu.edu.iq, aj.musa@yahoo.com

Abstract

This study evaluated the biochemical and biological responses of callus cultures derived from shoot tip explants of *Phoenix dactylifera L*. cv. Barhi under *in vitro* conditions, following treatment with different combinations of jasmonic acid (JA) and plant growth F) were established, comprising three JA –regulators (PGRs). Six treatment groups (A concentrations (0, 2, and 4 mg/L) combined with varying concentrations of 2iP (2, 4-D; 8, 12 mg/L), and naphthalene acetic-dichlorophenoxyacetic acid (2,4-mg/L), 2,4 acid (NAA; 40, 60 mg/L). Callus tissues were extracted using 70% ethanol, and MS) identified -Mass Spectrometry (GC–chemical profiling via Gas Chromatography 138 distinct compounds across all treatments. The highest number of compounds was recorded in treatment B (50), followed by treatments D, E, and F (40 each), treatment C (35), and treatment A (32).

Antioxidant capacity, determined by the DPPH free radical scavenging assay at 1.0 mg/mL, was highest in treatments A (74.90%), B (74.70%), and D (74.21%), while treatments C, E, and F exhibited slightly lower activities (72.77%, 72.79%, and 72.80%, respectively). Cytotoxicity evaluation using the hemolysis assay with human red blood cells showed hemolysis rates below 2% at all tested concentrations (100, 200, and 300 μ g/mL), indicating biosafety and non-hemolytic properties.

Statistical analysis using a Completely Randomized Design (CRD) and Least Significant Difference (LSD) test at $p \leq 0.05$ revealed significant differences among treatments in both chemical composition and biological activities. The results demonstrate that moderate JA levels, in combination with optimized PGR concentrations, enhance secondary metabolite accumulation and antioxidant activity without inducing cytotoxicity, supporting their potential use in pharmaceutical and nutraceutical applications.

Keywords: Phoenix dactylifera cv. Barhi, Callus culture, Jasmonic acid, Metabolite profiling, Antioxidant activity, Secondary metabolites.

 ^{1,2} Department of Biology-College of Science-University of Al-Qadisiyah-Iraq.
 ³ Al-Mishkhab Rice Research Station, Najaf 54001, Agricultural Research Office, Iraq.

Introduction

Phoenix dactylifera L., commonly known as date palm, is a prominent functional plant owing to its nutritional richness and therapeutic value [8,18]. many developing countries, especially rural areas, it plays an essential role in food security and in combating malnutrition by supplying energy, vital minerals, and dietary fiber [24]. Numerous cultivars are cultivated across the Mediterranean appreciated for their nutritional and biochemical attributes [21,51]. Among these, the 'Barhi' cultivar stands out due to its high fructose content, micronutrients, abundant antioxidant activity, and low antinutritional content. In a study involving 11 date palm genotypes from the UAE, 'Barhi' ranked among the top cultivars [39]. It is also extensively used in Saudi Arabia to counter mineral deficiencies [37]. However, its increasing demand and limited traditional propagation methods have raised its market value.

The bioactivity of Phoenix dactylifera is primarily due to its wealth of phytochemicals, especially antioxidants that neutralize reactive oxygen species (ROS) and reduce oxidative stress [4,11,30]. Traditionally, it has been used to treat gastrointestinal, cardiovascular, and neurodegenerative diseases Experimental studies have proven the antimicrobial efficacy of its extracts [23] and revealed anticancer potential through mechanisms like apoptosis and proliferation inhibition [16]. Additionally, preparations derived from this species have exhibited antioxidant significant antimutagenic activities, contributing to oxidative damage prevention and mutation reduction [42].

Conventional propagation of date palm through offshoots is slow, with each plant producing a limited number [29]. This, combined with vulnerability to pests and pathogens, necessitates alternative propagation strategies. Plant tissue culture provides a reliable solution for mass production of uniform, disease-free plants under controlled *in vitro* conditions.

Callus induction is a crucial step in tissue culture, acting as a precursor for indirect organogenesis and somatic regardless embryogenesis of environmental variations [44]. Moreover, callus serves as a renewable source for secondary metabolite production [5]. Somatic embryogenesis (SE) is a well-established method for regenerating embryogenic biomass and examining developmental processes at various biological levels [14,17,32].

Several *in vitro* propagation protocols have been developed for 'Barhi' using explants like shoot tips [3,7], mature inflorescences [26], and immature floral tissues [41]. Nevertheless, the biochemical and pharmacological responses of tissues during early development remain poorly characterized in many cultivars, including 'Barhi.'

Previous research has examined antioxidant profiles in embryogenic and non-embryogenic callus [13], somatic and zygotic embryos [17], cell suspensions [6], and degenerative embryogenic calli [48,49]. However, integrated phytochemical profiling through gas chromatography—mass spectrometry (GC-MS), combined with pharmacological assays, especially for antioxidant potential and enzyme inhibition are still limited in callus cultures of 'Barhi'.

Accordingly, the present study was designed to investigate the chemical composition of bioactive compounds present in callus tissues induced from explants shoot tip of Phoenix dactylifera L. cv. Barhi. GC-MS analysis was employed to characterize the metabolic profile of the ethanolic extract. Furthermore, the study aimed to evaluate the antioxidant activity and assess the cytotoxic potential of the extract under controlled in vitro conditions, thereby providing insight into the biological relevance of callusderived metabolites. Therefore, the current study aimed to investigate the metabolic response of callus cultures derived from the Barhi cultivar in response to jasmonic acid and plant growth regulators (PGRs), with a focus the production of bioactive compounds and the assessment of their biological effects.

Materials and Methods

Preparation of Explant Source from **Date Palm Offshoots**

The experimental procedures October commenced in 2024. Offshoots of Phoenix dactylifera L. cv. Barhi, aged between 3 and 4 years, were collected from healthy, diseasefree mother plants cultivated in a private orchard located in Najaf Governorate, Iraq. The offshoots were initially cleaned by thorough rinsing under running tap water for several minutes to eliminate soil particles and surface impurities, serving preparatory step prior to surface sterilization and explant dissection.

Surface Sterilization of Explants

were subjected to a **Explants** sequential surface sterilization strictly procedure under sterile conditions within a laminar airflow

cabinet. Initially, the explants were immersed in 70% (v/v) ethanol for 30 seconds to disrupt the cuticular barrier and preliminarily reduce the surface microbial load. This was followed by treatment with 2.5% (v/v) sodium hypochlorite (NaOCl) solution supplemented with a few drops of Tween-20 as surfactant, a maintained for 10 minutes. Subsequently, a final disinfection step was performed using 0.1% (w/v) mercuric chloride (HgCl₂) for 3 ensure minutes deep tissue sterilization and the elimination of any persistent contaminants (Figure 1). After each sterilization step, explants were rinsed thoroughly three to five times with sterile distilled water to remove residual sterilizing agents and prevent phytotoxic effects.

Figure 1. Surface sterilization steps of shoot tip explants prior to in vitro culture initiation.

Preparation of Culture Medium

The culture medium was prepared based on the Murashige and Skoog formulation (MS)[33].at concentration of 4.44 g/L. Sucrose was added as a carbon source at 30 g/L. The final volume was adjusted to 1 L using double-distilled water. The pH of the medium was carefully adjusted to 5.7 using 1 N NaOH or 1 N HCl, as appropriate. To solidify the medium, agar was added at a concentration of 8 ISSN 2072-3857

g/L. The medium was then heated and stirred continuously using a magnetic stirrer until all components were fully dissolved. Subsequently, 10 mL aliquots of the prepared medium were dispensed into sterile culture tubes.

Hormonal Treatments and Medium Sterilization

A series of hormonal treatments was designed to assess the interactive effects between plant growth regulators and jasmonic acid in promoting the biosynthesis of bioactive compounds. treatments involved concentrations of jasmonic acid (0, 2, and 4 mg/L), in combination with specific concentrations of growth regulators, namely: isopentenyladenine (2iP) at 2,4 mg/L, 2,4-dichlorophenoxyacetic acid (2,4-D) at 8, 12 mg/L, and α-naphthaleneacetic acid (NAA) at 40,60 mg/L, as detailed Table (1). Based on combinations, six distinct experimental groups (labeled A through F) were established. Following the addition of the appropriate hormonal components to the MS culture medium, each sterilized formulation was autoclaving at 121 °C and 1.04 kg/cm² of pressure for 21 minutes. The sterilized media were then cooled to room temperature under aseptic conditions and subsequently used for tissue culture procedures [20].

Table 1. Concentrations of jasmonic acid and growth regulators (mg/l) added to the MS medium.

Treatment	JA	2iP	2,4-	NA
			D	A
A(control)	0	2	8	40
В	2	2	8	40
C	4	2	8	40
D	0	4	12	60
E	2	4	12	60
F	4	4	12	60

Callus Induction under Controlled Growth Conditions

surface sterilization, Following shoot tip explants were aseptically inoculated into glass culture tubes containing 10 mL of MS medium supplemented with specific concentrations growth of plant regulators and jasmonic acid, according to the designated six treatments (A-F). Each tube received a single shoot apex (10 replicates per treatment).

inoculated The cultures were incubated in a controlled-environment growth chamber set at 25 ± 2 °C, under a 16-hour light and 8-hour dark photoperiod. Illumination was provided by 40-watt cool-white fluorescent lamps, arranged to ensure uniform light distribution across all culture vessels (Figure 2).

Figure 2. Tissue culture growth room during date palm callus induction.

Extraction and GC-MS Analysis of Callus Metabolites

Callus tissues derived from each hormonal treatment were initially dried in a hot air oven at a controlled

temperature until constant weight was achieved. The dried samples were then finely ground using a mechanical grinder to obtain a uniform powder. A defined quantity of the powdered material was subjected to ethanol extraction using 70% (v/v) ethanol. Following the extraction process, the crude extracts were filtered through Whatman No.1 filter paper, and the resulting filtrates were collected and stored under appropriate conditions for chemical analysis [34].

The chemical profiling of the extracts was carried out using Gas Chromatography–Mass Spectrometry (GC-MS) to identify the bioactive constituents present in the ethanolic extracts. The analysis was performed using a Shimadzu GC-MS instrument (Shimadzu, Japan) at the laboratories of the College of Science, University of Al-Qadisiyah. The mass spectra of detected compounds the were compared against entries in the National Institute of Standards and Technology (NIST) spectral database for accurate identification of the constituents.

Cytotoxicity Assay

The hemolysis assay was conducted to evaluate the cytotoxic potential of ethanolic extracts derived from the callus tissue of *Phoenix dactvlifera L*. cv. Barhi, using human red blood cells (RBCs) as a model system. Fresh human blood (obtained from a healthy donor with blood group A+) was collected into a sterile 15 mL Falcon tube and centrifuged at 1500 rpm for 5 minutes to separate the serum. The pelleted erythrocytes were washed three times with chilled, phosphate-buffered saline (PBS). For the assay, 180 µL of the RBC suspension was mixed with 20 µL of the extract at concentrations of 100, 200, and 300 µg/mL in sterile 2 mL Eppendorf tubes. The mixtures were incubated at 37 °C for 1 hour, followed by centrifugation at 1500 rpm for 5 minutes. Subsequently, 100 µL of the supernatant was transferred to a new tube containing 900 µL of cold PBS, and the absorbance was measured at 576 nm using a UV-Vis spectrophotometer. Phosphate-buffered saline served as the negative control, while 1% Triton X-100 was used as the positive control for maximum hemolysis [40].

Antioxidant Activity Assay (DPPH Radical Scavenging Test)

The antioxidant activity of the ethanolic extracts obtained from the callus tissues of *Phoenix dactylifera L.* cv. Barhi—subjected to treatments with jasmonic acid and various growth regulators—was evaluated using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay. This non-enzymatic method was conducted based on the protocol described by Lee et al. [28], with minor modifications adapted to the specific nature of the plant extract.

DPPH solution was prepared in methanol, and 200 μL of this solution was added to the first well of a 96-well microplate, serving as the positive control. For the remaining wells, 100 μL of the DPPH solution was mixed with 100 μL of the ethanolic extract at four different concentrations: 1000, 500, 250, and 125 $\mu g/mL$. Ascorbic acid was used as the standard reference antioxidant for comparison. The microplate was then incubated in the dark at room temperature for 30 minutes to ensure full interaction between the DPPH radicals and the

bioactive compounds within the extract.

After incubation, absorbance was measured at 514 nm using an ELISA microplate reader (TECAN, Graz, Austria). Pure methanol (100%) was used as the blank for calibration purposes.

The percentage of DPPH radical inhibition, used as an indicator of antioxidant capacity, was calculated according to the following equation:

scavenging (%) = [control - sample/control] \times 100.

Higher inhibition percentages reflect a greater ability of the extract to neutralize free radicals, indicating stronger antioxidant potential.

Experimental Design and Statistical Analysis

The experiment was conducted a Completely Randomized Design (CRD) with two independent factors. The first factor was jasmonic (JA) applied at acid concentrations (0, 2, and 4 mg/L). The second factor consisted of plant growth regulators, 2-isopentenyladenine (2iP), 2,4-dichlorophenoxyacetic acid (2,4-D), and naphthaleneacetic acid (NAA), applied in three combination levels: (2 , 4 mg/L), (8, 12 mg/L), and (40, 60 mg/L), respectively. Treatment means were compared using the Least Significant Difference (LSD) test at a significance level of $P \leq 0.05$. Statistical computations and graphical outputs were performed using SPSS software.

Results and discussion GC-MS Analysis of Ethanolic Callus Extracts

The gas chromatography-mass spectrometry (GC-MS) analysis of

ethanolic extracts derived from Phoenix dactylifera L. cv. Barhi callus tissues—originating from six distinct treatments hormonal demonstrated notable variation in the number of bioactive compounds detected across treatments. A total of chemical constituents identified among all samples.

Treatment A exhibited the lowest compound richness, with 32 compounds (Figure 3) identified, followed by treatment C, which contained 35 compounds (Figure 5). Treatments D, E, and F each showed an identical total of 40 detected compounds (Figure 6,7,8). Notably, treatment B yielded the highest number of constituents, with 50 distinct compounds identified (Figure 4).

These variations reflect the differential influence of growth jasmonic regulator and acid combinations on the metabolic profile of the callus tissues, suggesting treatment-dependent modulation of secondary metabolite biosynthesis. Statistical analysis using the Least Significant Difference (LSD) test confirmed that these differences were significant at the $P \le 0.05$.

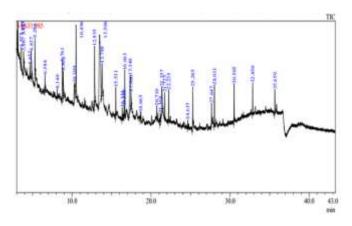


Figure 3. Profile of chemical constituents identified through GC-MS analysis in the ethanolic extract of callus tissue from *Phoenix*

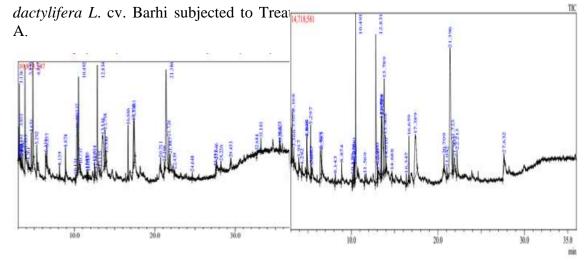


Figure 4. Profile of chemical constituents identified through GC-MS analysis in Figure 6. Profile of chemical constituents ethanolic extract of callus tissue from *Phoebix* through GC-MS analysis in the dactylifera L. cv. Barhi subjected to Treatment Phoenix dactylifera L. cv. Barhi subjected to Treatment D.

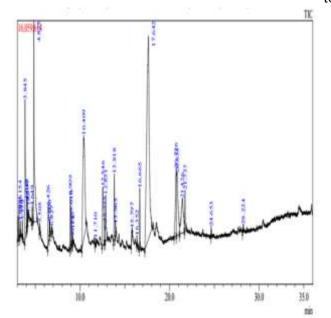


Figure 5. Profile of chemical constituents identified through GC-MS analysis in the ethanolic extract of callus tissue from *Phoenix dactylifera L.* cv. Barhi subjected to Treatment C.

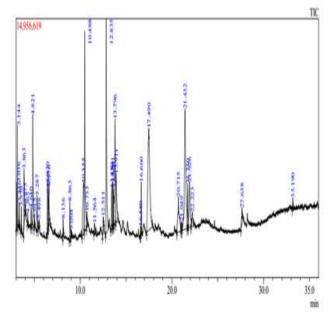


Figure 7. Profile of chemical constituents identified through GC-MS analysis in the ethanolic extract of callus tissue from *Phoenix dactylifera L.* cv. Barhi subjected to Treatment E.

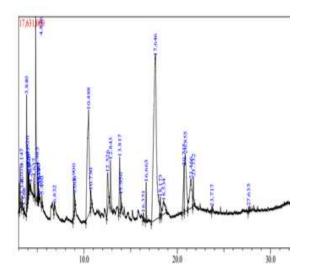


Figure 8. Profile of chemical constituents we concentrations of jasmonic acid identified through GC-MS analysis in the promote callus growth under both ethanolic extract of callus tissue from *Phoeni* formal and stress conditions [9,19]. In dactylifera L. cv. Barhi subjected to Treatment that high concentrations of

The results of the study indicate that the regulation of metabolic pathways in the cells of Phoenix dactylifera L. cv. Barhi is significantly influenced by the application of bio-elicitors such as jasmonic acid (JA) and plant growth regulators (2iP, 2,4-D, NAA). The data revealed that both factors play essential roles in enhancing the accumulation of secondary metabolites, and their interaction may exert either synergistic or inhibitory effects depending on the concentrations used.

concentrations Moderate of jasmonic acid were found to have a notably stimulatory role in promoting secondary production of the compounds. This can be attributed to its function as a key regulator of cellular defense responses and metabolic pathways. According to Kamińska jasmonates [25],are involved in regulating the gene

expression of several enzymes responsible for synthesizing phenolic compounds terpenoid within physiologically appropriate limits. Similarly, Nafie et al. [35] demonstrated that treating Cucumis melo L. cell cultures with jasmonic acid enhanced the production of bioactive secondary metabolites such as ascorbic acid, coumarin, and pcoumaric acid without adversely affecting cell growth, highlighting JA's role in modulating both primary and secondary metabolism.

Some studies have also shown that entow concentrations of jasmonic acid thean promote callus growth under both entormal and stress conditions [9,19]. In newtontrast, Krzyzanowska et al. [2012] reported that high concentrations of jasmonic acid applied to Mentha × piperita cell suspension cultures inhibited growth and reduced metabolic activity, likely due to the overactivation of specific metabolic pathways that may lead to feedback inhibition.

Hence, the efficacy of jasmonic acid in promoting the biosynthesis of secondary metabolites is highly dependent on its concentration in the culture medium, as exceeding the optimal physiological range may convert its effect from stimulatory to inhibitory.

Plant growth regulators (PGRs) also play a pivotal role in plant tissue culture systems—not only influencing cellular growth, morphogenesis, and regeneration but also in regulating secondary metabolite accumulation [2, 43]. The results of this study revealed that using growth regulators such as 2,4-D, 2iP, and significantly increased NAA accumulation of bioactive compounds

in the induced callus. This effect can be attributed to their ability to create a favorable intracellular environment by stimulating cell division and promoting protein and amino acid biosynthesis, thereby enhancing the metabolic pathways involved in secondary production metabolite [15,38]. contribute to Additionally, **PGRs** enhancing enzymatic activity increasing cell proliferation rates, thus improving the overall biosynthetic capacity of cultured tissues Furthermore, they function as essential molecules signaling that participate in the synthesis of plant secondary metabolites while regulating plant growth and development [51].

These findings are consistent with previous studies on date palm, where a balanced application of 2iP and 2,4-D was shown to promote the production of secondary compounds. The highest concentrations of phenolics and flavonoids were observed when cells were treated with 5 mg/L 2,4-D and 2.5 mg/L 2iP [6].

Similarly, Naik and Al-Khayri [36] demonstrated that treating *Phoenix* dactylifera L. suspension cultures with 1.5 mg/L 2iP and 10 mg/L NAA stimulated the accumulation important phenolic and flavonoid compounds such as catechin and caffeic acid. These findings underscore the significance of growth regulator balance and hormonal environment optimization as critical factors for enhancing the metabolic pathways responsible for bioactive compound production.

Moreover, the current results indicate a complex interactive relationship between jasmonic acid and PGR concentrations in modulating

secondary metabolite production in tissue-cultured plant cells. The treatment containing moderate levels of jasmonic acid combined with PGR intermediate concentrations (Treatment B) resulted in a clear increase in the number of identified chemical constituents. Conversely, high concentrations of growth regulators appeared to stimulate metabolic activity to a lesser extent unless accompanied by jasmonic acid. The addition of JA under these conditions did not produce marked suggesting differences, potential interference in hormonal signaling at elevated PGR levels. This potential detected compound reduction in diversity may be attributed to the synthesis of novel metabolites at higher concentrations, altering the relative abundance of existing compounds in the sample [10].

Cytotoxicity Evaluation of Ethanolic Extracts Using the Hemolysis Assay

The hemolysis assay was performed to assess the cellular safety of ethanolic extracts derived from the callus tissues of *Phoenix dactylifera L.* cv. Barhi, using human red blood cells (RBCs) as a biological indicator. The results showed that all six samples (A to F), at the tested concentrations (100, 200, and 300 mg/mL), did not induce significant hemolysis in RBCs, with hemolysis rates for all treatments remaining below 2%.

These findings are based on the comparison of the optical absorbance values of the samples with those of the negative control (PBS) and the positive control (Triton X-100). The absorbance values of all tested samples remained close to that of the negative control, confirming the absence of substantial hemolytic activity.

According to the international standard ASTM F756-17, which is globally recognized for classifying hemolytic response, substances that induce less than 2% hemolysis are considered non-hemolytic.

Evaluation of Antioxidant Activity of Plant Extracts

The results of the DPPH assay revealed that all six investigated plant treatments exhibited varying degrees of free radical scavenging activity. A clear positive correlation was observed between the extract concentration and the percentage of inhibition. antioxidant efficacy increased with progressively the rise concentration from 0.12 to 1.0 mg/mL, as shown in Table (2) and Figure (9). This concentration-dependent behavior suggests that the higher the extract concentration, the greater the availability of bioactive compounds capable of interacting with neutralizing free radicals.

Among the tested treatments, A, B, and D showed the highest antioxidant activities across all concentrations, particularly at the maximum concentration (1.0 mg/mL). This indicates that these treatments may be rich in phenolic and flavonoid compounds known for their strong antioxidant properties. In contrast, treatments C, E, and F exhibited comparatively lower activity, which

may be attributed to lower concentrations or altered profiles of active constituents.

Collectively, these findings suggest that the nature of the hormonal or chemical treatments significantly accumulation influenced the secondary metabolites responsible for antioxidant activity in dactylifera L. cv. Barhi callus. The results support the potential use of specific treatments as promising sources of natural antioxidants with potential pharmaceutical or nutritional applications.

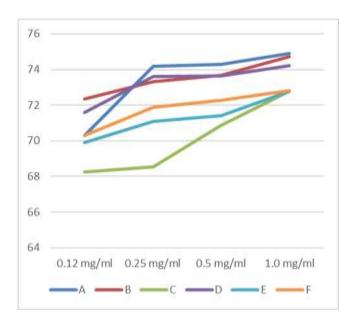


Figure 9. Dose-dependent increase in antioxidant activity of the plant extracts.

Table 2. DPPH Radical Scavenging Activity (%) of Ethanolic Callus Ext racts from *Phoenix dactylifera L.* cv. Barhi at Various Concentrations.

Sample	0.12 mg/ml	0.25 mg/ml	0.5 mg/ml	1.0 mg/ml
A(Conterol)	70.314	74.166	74.287	74.901
В	72.361	73.300	73.685	74.708
C	68.26	68.524	70.856	72.77
D	71.59	73.589	73.649	74.215
E	69.917	71.073	71.422	72.794
F	70.302	71.879	72.276	72.803

The DPPH method is a widely accepted and reliable assay for evaluating the in vitro free radical scavenging ability of plant extracts or compounds. DPPH is a stable and highly reactive free radical that acts through accepting electrons or hydrogen atoms from antioxidants, leading to its reduction and transformation into a non-radical form. This reaction is visually indicated by a color change from deep violet to pale yellow, serving as a measurable marker for the antioxidant capacity of the test compound [31]. At the molecular level, jasmonic acid (JA)-after conjugation to isoleucine (JA-Ile)—activates the SCF^COI1 receptor complex, leading to ubiquitination and degradation of JAZ repressors and the consequent release of transcription factors. MYC-family upregulates genes of the phenylpropanoid pathway (PAL, C4H, 4CL) and the flavonoid branch (CHS, CHI, F3H), increasing the

Conclusions

The present study demonstrated that the application of jasmonic acid (JA) in combination with specific concentrations of plant growth regulators (2iP, 2,4-D, and NAA) significantly influenced the biochemical behavior of *Phoenix dactylifera L.* cv. Barhi callus. Treatment B (2 mg/L JA + low PGRs) was particularly effective, yielding the highest number of chemical compounds (50) and exhibiting superior antioxidant activity, along

accumulation of phenolics and flavonoids capable of hydrogen/electron donation, thereby enhancing the antioxidant activity measured by the DPPH assay in JA-containing treatments [46].

These findings are consistent with the results reported by Ammar et al.[12], who demonstrated that callus tissues of the Barhi cultivar exhibit notable antioxidant activity. Their bioassays confirmed that the callus extract has a pronounced ability to inhibit free radicals. Additional studies have also shown that Barhi seed extracts display considerable antioxidant activity in validated bioassays, further supporting its effectiveness countering oxidative stress. This is largely attributed to the high phenolic content present in the cultivar. Therefore, Barhi date palm may serve as a valuable natural source of compounds antioxidant suitable for therapeutic or food industry applications [22, 481.

with complete biosafety as indicated by hemolysis rates below 2%. GC-MS analysis revealed 138 distinct compounds across including several bioactive treatments, commonly constituents associated with antioxidant and antimicrobial properties. The study also highlighted a concentrationdependent response **DPPH** in scavenging activity, with treatments A, B, and D showing the strongest inhibition at 1.0

mg/mL. These findings underscore the potential of moderate JA elicitation to enhance secondary metabolite production in date palm

callus cultures, suggesting their future utility in pharmaceutical and nutraceutical applications

Reference

- [1] Abu Zaid, A. N. 2003. Plant Hormones and Agricultural Applications. Arab House of Publishing and Distribution. Arab Republic of Egypt. *Arabic. pp*, *351*.
- [2]Adil, M., Ren, X., Kang, D. I., Thi, L. T., & Jeong, B. R. 2018. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. *Molecular biology reports*, 45(6), 1919-1927.
- [3]Al-Asadi, A. Z., Al-Mayahi, A. M., & Awad, K. M. 2024. Effects of dicamba and casein hydrolysate on *in vitro* growthand shoot regeneration of date palm (*Phoenix dactylifera L.*) cv. Barhee. *Folia Oecologica*, 51(1), 56-65.
- [4]Alem, C., Ennassir, J., Benlyas, M., Mbark, A. N., & Zegzouti, Y. F. 2017. Phytochemical compositions and antioxidant capacity of three date (*Phoenix dactylifera L.*) seeds varieties grown in the South East Morocco. *Journal of the Saudi Society of Agricultural Sciences*, 16(4), 350-357.
- [5]Ali, A. M. A., El-Nour, M. E. M., Al-Atar, A. A., Mohammad, O., El-Sheikh, M. A. R., Qahtan, A. A., Yagi, S. M. 2022. Chemical profile, anti 5-lipoxygenase and cyclooxegenase inhibitory effects of ginger (Zingiber officinale) rhizome, callus and callus treated with elicitors. *Ciência Rural*, 52(10), e20210372.
- [6]Al-Khayri, J. M., Naik, P. M. 2022. Influence of 2iP and 2, 4-D concentrations on accumulation of biomass, phenolics, flavonoids and radical scavenging activity in date palm (*Phoenix dactylifera L.*) cell suspension culture. *Horticulturae*, 8(8), 683.
- [7]Al-Mayahi AM, Kalaf YN, Abdul-Sahib AM, Abdul-Sahib IM, Al-Sharifi AA 2024. Anatomical study of adventitious bud regeneration from shoot tip of date palm (*Phoenix dactylifera L.*) cv. Barhee *in vitro*.

- Basrah Journal for Date Palm Research 23(1):116-126.
- [8]Al-Mssallem, M. Q., Al-Khayri, J. M., Alghamdi, B. A., Alotaibi, N. M., Alotaibi, M. O., Al-Qthanin, R. N., & Al-Shalan, H. Z. 2024. Role of date palm to food and nutritional security in Saudi Arabia. In Food and Nutrition Security in the Kingdom of Saudi Arabia, Vol. 2: Macroeconomic Policy and Its Implication on Food and Nutrition Security (pp. 337-358). Cham: Springer International Publishing.
- [9]Al-Qatrani, M. K., Al Khalifa, A. A., Obaid, N. A. 2021. Effect of Jasmonic acid on stimulating the growth and development of date palm callus (*Phoenix dactylifera L.*) cultivar Shukar *in vitro* under salt stress conditions. In *IOP Conference Series: Earth and Environmental Science* (Vol. 923, No. 1, p. 012017). IOP Publishing.
- [10]Al-Rekaby, L. S., mohsin Atiyah, K. 2020. Effect of Nano and bio fertilizer on production of bioactive compounds of Solidago canadensis L. In *Journal of Physics: Conference Series* (Vol. 1664, No. 1, p. 012120). IOP Publishing.
- [11]Al-Turki, S., Shahba, M. A., Stushnoff, C. 2010. Total phenolics and antioxidant properties of date palm (*Phoenix dactylifera L.*) pits as affected by cultivar and location. In *IV International Date Palm Conference* 882 (pp. 1163-1180).
- [12]Ammar, M. A., Qahtan, A. A., Al-Khayri, J. M., Algabr, M. N., Al-Dossary, O. M., Alsubaie, B. 2025. Enhancing phytochemical content and bioactive aspects in somatic embryogenesis developed from callus of *Phoenix dactylifera L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 53(2), 14374-14374.
- [13] Aslam, J., Khan, S. A., Cheruth, A. J., Mujib, A., Sharma, M. P., Srivastava, P. S. 2011.

- Somatic embryogenesis, scanning electron histology microscopy, and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars. Saudi Journal of Biological Sciences, 18(4), 369-380.
- [14]Bellaj, E. M., Hadrami, E. I. 2004. Characterization of two constitutive hyroxycinnamic acids derivatives in date palm (Phoenix dactylifera L.) callus in relation with tissue browning. *Biotechnology*, 3(2), 159.
 - [15] Chavan, J. J., Gaikwad, N. B., Umdale, S. D., Kshirsagar, P. R., Bhat, K. V., Yadav, S. R. 2014. Efficiency of direct and indirect shoot metabolite production and antioxidant activity micropropagated Ceropegia santapaui. Plant Growth Regulation, 72(1), 1-15.
 - [16]El Sheikh, D. M., El-Kholany, E. A., Kamel, S. M. 2014. Nutritional value, cytotoxicity, antiroasted date pits. World J. Dairy Food Sci, 9(2), 308-316.
 - [17] Eldin, A. F. Z., Ibrahim, H. A. 2015. Some biochemical changes and activities antioxidant enzymes in developing date palm somatic and zygotic embryos in vitro. Annals of Agricultural Sciences, 60(1), 121-130.
 - [18]Fernández-López, Viuda-Martos, J., M., Sayas-Barberá, E., Navarro-Rodríguez de Pérez-Álvarez, C., J. Á. Biological, nutritive, functional and healthy potential of date palm fruit (Phoenix dactylifera L.): Current research and future prospects. Agronomy, 12(4), 876.
 - [19]Galal, A. 2012. Improving effect of salicylic acid on the multipurpose tree Ziziphus spina-Journal of Plant Sciences, 3(7), 947-952.
 - [20]George, E. F., Hall, M. A., Klerk, G. D. 2008. Plant propagation by tissue culture. Volume 1: the background (No. Ed. 3, pp. xi+-501).
 - [21]Habib, M., Ibrahim, W. H. 2011. H. Nutritional quality of 18 date fruit

- varieties. *International* journal food *sciences and nutrition*, 62(5), 544-551.
- [22] Hammami, B., Ghannay, S., Arraouadi, S., Hajlaoui, H., Aouadi, K., Kadri, A. 2025. Fatty acid profiling and bioactive potential of date palm (Phoenix dactylifera) seed oil: antioxidant, antimicrobial, and α-glucosidase inhibitory activities. Discover **Applied** Sciences, 7(4), 1-11.
- [23] Jassim, S. A., Naji, M. A. 2010. In vitro evaluation of the antiviral activity of an extract of date palm (Phoenix dactylifera L.) pits on a Pseudomonas phage. Evidence- Based Complementary and Alternative Medicine, 7(1), 57-62.
- organogenesis, molecular profiling, secondary [24]Johnson, D. V., Al-Khayri, J. M., Jain, S. M. 2015. Introduction: Date production status and prospects in Asia and Europe. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Date palm genetic resources and utilization: Volume 2 - Asia and Europe (pp. 1–16). Springer Netherlands.
- carcinogenic and beverage evaluation of [25]Kamińska, M. 2021. Role and activity of jasmonates in plants under in conditions. Plant Cell, Tissue and Organ Culture (PCTOC), 146(3), 425-447.
 - of [26]Kriaa, W., Sghaier-Hammami, B., Masmoudi-Allouche, F., Benjemaa-Masmoudi, R., Drira, N. 2012. The date palm (*Phoenix dactylifera* L.) micropropagation using completely mature flowers. Comptes female Rendus. Biologies, 335(3), 194-204.
 - 2022. [27] Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., Oleszek, W. 2012. The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha× piperita suspension cultures. Plant cell, tissue and organ culture (pctoc), 108(1), 73-81.
- christi (L.) Willd tissue culture. American [28]Lee, K. J., Oh, Y. C., Cho, W. K., Ma, J. Y. 2015. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and screening HPLC assay. Evidenceonline Based Complementary and Alternative Medicine, 2015(1), 165457.

- [29]Mazri, M. A., Meziani, R. 2015. Micropropagation of date palm: a review. *Cell Dev Biol*, 4(3), 160.
- [30]Messaoudi, R., Abbeddou, S., Mansouri, A., Calokerinos, A. C., Kefalas, P. 2013. Phenolic profile and antioxidant activity of date-pits of seven Algerian date palm fruit varieties. International Journal of Food Properties, 16(5), 1037-1047.
- [31] Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. *Songklanakarin J. sci. technol*, 26(2), 211-219.
- [32]Morel, A., Trontin, J. F., Corbineau, F., Lomenech, A. M., Beaufour, M., Reymond, I., Lelu-Walter, M. A. 2014. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. *Planta*, 240(5), 1075-1095.
- [33] Murashige, T., Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiologia plantarum*, 15(3).
- [34] Muhit, M. A., Khanam, S. S., Islam, M. S., Rahman, M. S., Begum, B. 2010. Phytochemical and biological investigations of Pterospermum acerifolium wild bark. Journal of Pharmacy Research, 3(11), 2643-2646.
- [35]Nafie, E., Hathout, T., Al Mokadem, A. S. 2011. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. *Brazilian Journal of Plant Physiology*, 23, 161-174.
- [36]Naik, P. M., Al-Khayri, J. M. 2017. Extraction and estimation of secondary metabolites from date palm cell suspension cultures. In *Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications* (pp. 319-332). New York, NY: Springer New York.
- Bokahri, [37]Perveen, K., N. 2020. Comparative analysis of chemical, mineral and in-vitro antibacterial activity of different varieties of date fruits from Saudi Arabia. Saudi Journal **Biological** of Sciences, 27(7), 1886-1891.

- [38]Rahman Al-Saeedi, A. A., Al-Rekaby, L. S. 2022. Effect of growth regulators and chitosan on the production of callus biomass and active compounds of rosemary *in vitro*. *International Journal of Agricultural & Statistical Sciences*, 18(2).
- [39]Rambabu, K., Bharath, G., Hai, A., Banat, F., Hasan, S. W., Taher, H., Mohd Zaid, H. F. 2020. Nutritional quality and physicochemical characteristics of selected date fruit varieties of the United Arab Emirates. *Processes*, 8(3), 256.
- [40]Sæbø, I. P., Bjørås, M., Franzyk, H., Helgesen, E., Booth, J. A. 2023. Optimization of the hemolysis assay for the assessment of cytotoxicity. *International journal of molecular sciences*, 24(3), 2914.
- [41] Taha, R. A., Allam, M. A., Hassan, S. A. M., Bakr, B. M., Hassan, M. M. 2021. Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. *Journal of Genetic Engineering and Biotechnology*, 19(1), 14.
 - [42]Tang, Z. X., Shi, L. E., Aleid, S. M. 2013. Date fruit: chemical composition, nutritional and medicinal values, products. *Journal of the Science of Food and Agriculture*, 93(10), 2351-2361.
- [43]Teixeira, M. G., Carvalho, M., Leite, M. A., Barbosa, S., Santos filho, P. R. D., Santos, B. R. 2019. Effect of salicylic acid, 2, 4-D and 2i-P on the production of secondary metabolites in Garcinia brasiliensis Mart. callus. *Brazilian Archives of Biology and Technology*, 62, e19170303.
- [44]Thingbaijam, D. S., Huidrom, D. S. 2014. High frequency plant regeneration system from transverse thin cell layer section of *in vitro* derived 'Nadia'ginger microrhizome. *Notulae Scientia Biologicae*, 6(1), 85-91.
- [45] Vayalil, P. K. 2012. Date fruits (*Phoenix dactylifera Linn*): an emerging medicinal food. *Critical reviews in food science and nutrition*, 52(3), 249-271.
- [46]Wasternack, C., & Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress

- response, growth and development. An update to the 2007 review in Annals of Botany. Annals of botany, 111(6), 1021-1058.
- [47]Zarie, A. A., Hassan, A. B., Alshammari, G. M., Yahya, M. A., Osman, M. A. 2023. Date industry by-product: date seeds (*Phoenix dactylifera L.*) as potential natural sources of bioactive and antioxidant compounds. *Applied Sciences*, 13(21), 11922.
- [48]Zein El Din, A. F., Abd Elbar, O. H., Al Turki, S. M., Ramadan, K. M., El-Beltagi, H. S., Ibrahim, H. A., Abdellatif, Y. M. 2021. Morpho-Anatomical and Biochemical Characterization of Embryogenic and Degenerative Embryogenic Calli of *Phoenix dactylifera L. Horticulturae*, 7(10), 393.
- [49]Zein El Din, A. F., Darwesh, R. S., Ibrahim, M. F., Salama, G. M., Shams El-Din, I. M.,

- Abdelaal, W. B., Abdellatif, Y. M. 2022. Antioxidants application enhances regeneration and conversion of Date palm (*Phoenix dactylifera L.*) somatic embryos. *Plants*, 11(15), 2023.
- [50]Zhang, C. R., Aldosari, S. A., Vidyasagar, P. S., Shukla, P., Nair, M. G. 2017. Health-benefits of date fruits produced in Saudi Arabia based on *in vitro* antioxidant, anti-inflammatory and human tumor cell proliferation inhibitory assays. *Journal of the Saudi Society of Agricultural Sciences*, 16(3), 287-293.
- [51]Zhao, J., Davis, L. C., Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. *Biotechnology advances*, 23(4), 283-333.