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ABSTRACT

Regenerative medicine is a multidisciplinary domain focused on restoring, repairing, or replacing damaged tissues
and organs by harnessing the body’s inherent healing abilities with sophisticated biological and technical techniques.
Mesenchymal stem cells (MSCs) have become fundamental among many stem cell types because to their self-renewal,
multipotency, paracrine signaling, and immunomodulatory capabilities. Their therapeutic adaptability has been shown
in orthopedic, cardiovascular, neurological, dermatological, and immune-mediated illnesses, underscoring their clinical
significance. Nonetheless, obstacles like donor heterogeneity, senescence during in vitro growth, restricted engraftment,
and regulatory impediments persist in limiting repeatability and broad clinical use. Recent advancements are enhancing
the capabilities of MSCs by using biomaterials, genetic modification, and cell-free methodologies, including MSC-derived
extracellular vesicles. An intriguing domain is the interplay between MSCs and bioactive peptides, which can enhance
cell adhesion, survival, differentiation, and targeted regenerative outcomes. This brief review outlines the fundamental
principles of regenerative medicine, summarizes the unique attributes and therapeutic applications of MSCs, and
highlights novel approaches that may overcome current limitations. These improvements collectively position MSCs
as essentil catalysts for the next generation of regenerative therapies.

Keywords: Bioactive peptides, Extracellular vesicles (EVs), Mesenchymal stem cells (MSCs), Paracrine signaling, Regener-
ative medicine, Tissue engineering

1. Introduction

Regenerative medicine is an evolving multidis-
ciplinary domain focused on restoring, replacing,
or regenerating damaged tissues and organs to re-
store their normal functionality [1, 2]. Regenerative
medicine targets the fundamental causes of illness by
using the body’s own healing mechanisms, unlike tra-

ditional medicines that often just mitigate symptoms
[3]. It provides a revolutionary method for address-
ing degenerative illnesses, injuries, and organ failure
by integrating concepts from cell biology, molecular
medicine, biomaterials research, and tissue engineer-
ing, while also aligning with broader global health
and environmental challenges [4–6]. The use of stem
cells, notable for their ability to differentiate into
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various cell types and self-renew, is crucial to this
domain [7]. Mesenchymal stem cells (MSCs) have at-
tracted significant interest owing to their availability,
multipotency, and advantageous safety profile com-
pared to other stem cell types [8]. Various sources,
such as bone marrow [9], adipose tissue [10], umbil-
ical cord [11], and dental pulp [12], can be utilized to
collect MSCs, making them widely relevant in clinical
and research settings [13].

Besides their differentiation potential, MSCs have
considerable paracrine effects by secreting bioactive
substances, growth factors, and extracellular vesi-
cles that modulate the immune response, enhance
angiogenesis, and support endogenous repair [14].
Cytokines like IL-6 are crucial in influencing the in-
flammatory milieu, and new research suggests that
the manipulation of IL-6–CXCL1 communication, for
example by resveratrol, can markedly affect cellu-
lar survival and gene expression profiles [15]. These
findings underscore the significance of cytokine mod-
ulation in the therapeutic uses of MSCs.

The combined mechanism of direct differentiation
and indirect trophic signaling positions MSCs as a
crucial element in modern regenerative approaches
[16]. The multifaceted role of MSCs encompassing
their differentiation potential, paracrine activity, and
broad clinical applications is summarized in Fig. 1.
Notwithstanding the swift advancements, regenera-
tive medicine continues to encounter scientific and
translational obstacles. Challenges like donor vari-
ability, restricted cell viability post-transplantation,
and the necessity for standardized methods persist
in obstructing the complete clinical implementation
of MSC-based treatments [17, 18]. Nevertheless, con-
tinuous progress in biomaterials, genetic engineering,
and manufacturing is facilitating more reliable and
efficient uses.

This mini review presents an introduction of the
fundamental concepts of regenerative medicine, em-
phasizes the distinctive characteristics of MSCs, and
examines their current and prospective uses. Also,
delineates the strengths, limits, and future prospects
of MSC-based treatments to provide a succinct yet
thorough overview of their pivotal role in regener-
ative medicine.

2. Basic principles of regenerative medicine

Regenerative medicine has developed as a revolu-
tionary paradigm in biomedical research, seeking to
restore, repair, or replace damaged tissues and organs
by biological and technological treatments. The con-
ceptual framework is founded on the body’s intrinsic
ability for self-repair, which may be enhanced by

Fig. 1. Overview of regenerative medicine and the central role of
MSCs.

external cells, bioactive chemicals, and manufactured
materials [19]. In contrast to traditional treatments
that typically offer only brief symptomatic relief,
regenerative medicine aims for enduring functional
recovery by addressing the underlying causes of tissue
deterioration [20]. This characteristic highlights its
capacity to tackle a wide array of ailments, from acute
traumas to chronic degenerative disorders.

The basic theory of regenerative medicine is cell-
based treatment. Stem and progenitor cells serve as
the basis for regeneration owing to their capacity
for self-renewal and differentiation into specialized
cell types [21]. MSCs are particularly noteworthy
due to their extensive tissue distribution, simplicity
of separation, and excellent safety profile in both
preclinical and clinical settings. MSCs demonstrate
multipotency by developing into osteogenic, chon-
drogenic, and adipogenic lineages, thereby directly
facilitating structural tissue regeneration [22]. In
addition to differentiation, their paracrine activity fa-
cilitated by cytokines, chemokines, and extracellular
vesicles significantly influences tissue healing [23].

The second concept involves the incorporation of
biomaterials and scaffolds. Regeneration needs a
conducive microenvironment that offers mechanical
stability and biochemical direction. Biocompatible
scaffolds, originating from natural (e.g., collagen,
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fibrin, chitosan) and synthetic (e.g., polylactic acid,
polyethylene glycol) materials, function as transient
matrices to promote cellular adhesion, proliferation,
and differentiation. These scaffolds can be designed
with nanoscale architecture, functional groups, or
regulated porosity to replicate the extracellular ma-
trix (ECM) [24, 25]. The capacity to provide bioactive
substances in a geographically and temporally regu-
lated fashion significantly amplifies their function in
directing tissue remodeling.

The control of molecular and signaling pathways is
equally significant. Regeneration necessitates meticu-
lous synchronization of growth factors and signaling
pathways that regulate inflammation, angiogenesis,
and cellular recruitment. Molecules such as vascu-
lar endothelial growth factor (VEGF), transforming
growth factor-β (TGF-β), and fibroblast growth fac-
tor (FGF) are crucial in initiating vascularization
and extracellular matrix (ECM) remodeling. Further-
more, exosomes and micro-vesicles produced from
MSCs convey microRNAs and proteins that repro-
gram recipient cells and affect the regenerative niche
[26–28]. This recognition has shifted the focus of
the field from only cell replacement to a broader
comprehension of the secretome and its therapeutic
potential.

The immune system serves as a crucial foundation
of regenerative medicine. The efficacy of tissue re-
pair relies on the transition from pro-inflammatory
to pro-healing immune responses [29]. MSCs are piv-
otal in this regulation by releasing immunoregulatory
mediators, including prostaglandin E2, indoleamine
2,3-dioxygenase, and interleukin-10, which inhibit
excessive immunological activation and facilitate
the generation of regulatory T-cells. By modulating
chronic inflammation and fibrosis, MSCs foster a con-
ducive environment for tissue regeneration [30]. The
immunomodulatory ability of MSC-based treatments
differentiates them from traditional grafting methods,
which frequently face limitations in long-term effec-
tiveness due to immunological rejection [31].

The vascularization of regenerated tissue is a
crucial concept that influences therapeutic out-
come [32]. In the absence of sufficient blood flow,
transplanted cells and designed tissues experience
hypoxia-induced apoptosis. Strategies to enhance
angiogenesis, such as co-transplantation of MSCs
with endothelial progenitor cells, functionalization
of scaffolds with vascular endothelial growth fac-
tor, or genetic manipulation of mesenchymal stem
cells to overexpress angiogenic factors, have been
investigated to overcome this restriction [33]. The
establishment of a stable and efficient vasculature
is especially essential for big or metabolically in-

tensive tissues, including the myocardial, liver, and
bone.

Regenerative medicine is fundamentally interdisci-
plinary and integrative, amalgamating advancements
in stem cell biology, biotechnology, nanotechnology,
and gene editing [34]. Innovative methodologies,
like CRISPR-mediated manipulation of mesenchymal
stem cells, three-dimensional bioprinting of patient-
specific scaffolds, and customized cell treatment
platforms, illustrate the direction of the field [35].
These advances underscore the fundamental idea
that regeneration is not accomplished by solitary
intervention but by the interaction of cells, scaf-
folds, and molecular signals. The interplay among
these elements constitutes the conceptual trinity of
regenerative medicine and establishes the basis for
translational advancement [36]. These concepts col-
lectively highlight regenerative medicine’s distinctive
ability to restore biological function through the
utilization of both endogenous and external repair
processes. Despite ongoing hurdles related to re-
peatability, scalability, and regulatory approval, the
amalgamation of MSCs with biomaterials and sig-
naling networks persistently advances the research
towards clinical use.

3. Mesenchymal stem cells (MSCs): The
cornerstone of regenerative medicine

MSCs are adult multipotent stromal cells with the
ability to self-renew and differentiate into several
mesodermal lineages, such as osteoblasts, chondro-
cytes, and adipocytes [37, 38]. Following their initial
characterization in bone marrow, MSCs have been ex-
tracted from diverse tissues including adipose tissue,
umbilical cord, placenta, dental pulp, and periph-
eral blood [39]. A comparative summary of these
MSCs sources, highlighting their advantages, limita-
tions, and clinical relevance, is presented in Table 1,
and a schematic overview of these MSCs sources
is illustrated in Fig. 2. Extensive availability, to-
gether with straightforward separation techniques,
establishes MSCs as one of the most pragmatic and
therapeutically pertinent stem cell types for regener-
ative medicine [45]. Significantly, MSCs have been
shown to maintain their regeneration capabilities
across many tissue origins, but donor-specific vari-
ables and tissue origin may affect their potency and
therapeutic reliability [46].

The characteristic biological attributes of MSCs
encompass their capacity to stick to plastic in typi-
cal culture conditions [47], its expression of certain
surface markers (e.g., CD73, CD90, CD105), and
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Table 1. Sources of MSCs and comparative characteristics.

Source of MSCs Advantages Limitations Clinical/Research Relevance Reference

Bone marrow Well-characterized; strong
osteogenic potential

Painful collection, limited
yield, age-related decline

Widely used in orthopedic
applications

[40]

Adipose tissue High yield; minimally
invasive harvesting

Variable potency; donor
metabolic state influences
function

Popular for cosmetic &
wound healing uses

[41]

Umbilical cord (Wharton’s
jelly, UC blood)

Non-invasive; high
proliferation; low
immunogenicity

Limited availability;
ethical/logistical barriers

Increasingly applied in
immunomodulation &
cardiovascular trials

[42]

Dental pulp Easy access during tooth
extraction; neurotrophic
potential

Small quantity; donor age
dependent

Neuroregeneration,
craniofacial repair

[43]

Placenta/Amniotic
membrane

Abundant,
immune-privileged

Variability in isolation &
expansion

Emerging use in wound
healing & immune
disorders

[44]

Fig. 2. Sources of MSCs.

the absence of hematopoietic antigens (CD34, CD45,
CD14, CD11b, CD19, HLA-DR) [48]. The standards
set by the International Society for Cellular Ther-
apy (ISCT) constitute a fundamental standard for
the characterization of MSCs and are crucial for
assuring comparability across research investiga-
tions. Nonetheless, mounting data suggests that MSCs
constitute a diverse population, with functional dis-
parities emerging based on culture circumstances,
donor age, and epigenetic history [49]. This variance
offers both opportunities and challenges for clinical
translation.

In addition to their multipotency, MSCs are rec-
ognized for their paracrine and immunomodulatory

properties, which often eclipse their therapeutic ben-
efits. MSCs release a diverse range of growth factors,
cytokines, and chemokines, including vascular en-
dothelial growth factor (VEGF), hepatocyte growth
factor (HGF), insulin-like growth factor-1 (IGF-1),
and stromal cell-derived factor-1 (SDF-1), which pro-
mote angiogenesis, inhibit apoptosis, and recruit
endogenous progenitor cells. Moreover, MSCs release
extracellular vesicles (EVs), including exosomes and
microvesicles, that convey bioactive compounds such
as proteins, lipids, and microRNAs [50]. These extra-
cellular vesicles function as mediators that modulate
inflammation, facilitate tissue repair, and reprogram
neighboring cells to adopt regenerative traits [51].
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This recognition has generated heightened interest
in “cell-free MSC therapies,” in which exosomes may
serve as standardized, scalable alternatives to live cell
transplantation.

The immunomodulatory capacity of MSCs is among
their most notable contributions. MSCs can di-
minish T-cell proliferation, obstruct dendritic cell
maturation, promote the expansion of regulatory
T-cells, and transform macrophages from a pro-
inflammatory (M1) to an anti-inflammatory (M2)
phenotype. The effects are facilitated by soluble
substances such as prostaglandin E2 (PGE2), in-
doleamine 2,3-dioxygenase (IDO), nitric oxide, and
transforming growth factor-β (TGF-β) [52]. The
immune-privileged properties of MSCs make them
highly attractive for treating immune-mediated dis-
orders, such as graft-versus-host disease, Crohn’s
disease, and systemic lupus erythematosus. Further-
more, their reduced expression of major histocom-
patibility complex (MHC) class II molecules promotes
allogeneic transplantation with a decreased chance of
immunological rejection, hence enabling off-the-shelf
therapeutic alternatives [53].

From a translational standpoint, the therapeutic
uses of MSCs encompass many organ systems. In or-
thopedic medicine, MSCs have been utilized to rectify
bone deficiencies, regenerate cartilage in osteoarthri-
tis, and improve tendon and ligament regeneration
[54]. In cardiovascular situations, MSCs are studied
for myocardial infarction, heart failure, and periph-
eral ischemia, mostly because of their pro-angiogenic
and anti-apoptotic paracrine effects [55]. MSCs have
been investigated for their neurological applications
in stroke, spinal cord injury, and neurodegenerative
disorders, including Parkinson’s and Alzheimer’s dis-
ease, where they demonstrate neuroprotective and
neurotrophic properties [56]. MSCs have potential
in wound healing, liver cirrhosis, renal damage, and
pulmonary disorders, highlighting their adaptability
as a therapeutic modality [57].

Notwithstanding these benefits, several constraints
impede the practical use of MSC treatments. Vari-
ability across donors, cellular senescence during in
vitro growth, and varying potency across manufac-
turing processes result in disparate results in clinical
studies [58]. Furthermore, although MSCs are typ-
ically regarded as safe, long-term concerns include
ectopic differentiation, undesirable fibrosis, or pro-
tumorigenic effects are still being examined [59].
Standardizing standards for isolation, expansion, and
quality control is essential for attaining reproducible
results and regulatory approval. The absence of
agreement about the ideal cell dosage, method of
administration, and criteria for patient selection ex-
acerbates the complexity of clinical trial design and
analysis [60].

Novel strategies are being explored to overcome
these challenges. Preconditioning mesenchymal stem
cells using hypoxia, inflammatory cytokines, or
pharmaceutical interventions has shown enhanced
survival and paracrine effectiveness [61]. Genetic
engineering, encompassing the overexpression of an-
giogenic or anti-apoptotic genes, might augment their
therapeutic effectiveness [62]. Combinatorial tech-
niques, involving the administration of MSCs within
biocompatible scaffolds or hydrogels, improve cell re-
tention and facilitate accurate tissue integration. The
increasing focus on MSC-derived exosomes offers a
standardized, cell-free therapeutic option, potentially
reducing risks associated with live cell therapy while
maintaining regenerative efficacy [63].

MSCs embody the core principles of regenerative
medicine, encompassing cellular plasticity, paracrine
signaling, and immune regulation. Their unique at-
tributes have propelled them from laboratory settings
to clinical applications, with over a thousand reg-
istered clinical trials worldwide investigating their
therapeutic benefits. Notwithstanding current chal-
lenges, progress in cell engineering, nanomaterials,
and exosome-based therapeutics is solidifying MSCs
as essential to regenerative medicine. Their con-
current capacity for direct tissue regeneration and
systemic immunomodulation positions them as one
of the most versatile and promising tools in the re-
generative arsenal.

4. Applications of MSCs in regenerative
medicine

The therapeutic versatility of MSCs has been
demonstrated in several clinical contexts, due to their
capacity for differentiation, secretion of bioactive
substances, and modulation of immune responses.
Unlike pluripotent stem cells, which are constrained
by safety and ethical concerns, MSCs offer a prag-
matic balance of multipotency, safety, and accessibil-
ity [64]. This discourse emphasizes their relevance
in regenerative medicine across principal organ sys-
tems, emphasizing both preclinical findings and
clinical application.

4.1. Orthopedic and musculoskeletal disorders

Orthopedic regeneration is one of the earliest and
most extensively studied applications of MSCs. MSCs
intrinsic osteogenic and chondrogenic differentia-
tion capabilities make them optimal candidates for
bone and cartilage regeneration [65]. Clinical tri-
als have shown that intra-articular delivery of MSCs
enhances pain relief and functional results in os-
teoarthritis, partially through cartilage rebuilding
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and partially by modulating inflammatory cytokines
in the joint milieu [66]. Likewise, mesenchymal stem
cells (MSCs) implanted on biomaterial scaffolds or
hydrogel matrices have been effectively utilized to
repair critical-sized bone lesions, facilitate spinal fu-
sions, and address tendon injuries. The combined
use of MSCs with osteoinductive growth factors,
including bone morphogenetic proteins (BMPs), sig-
nificantly improves their restorative effectiveness
[67].

4.2. Cardiovascular regeneration

In cardiovascular medicine, MSCs are being studied
for myocardial infarction, ischemic cardiomyopathy,
and peripheral arterial disease [68]. MSCs therapeu-
tic advantages are generally ascribed to paracrine
pathways rather than direct cardiomyogenic differen-
tiation. MSCs release VEGF, HGF, and angiopoietins,
which promote neovascularization, diminish car-
diomyocyte death, and enhance perfusion in ischemic
tissues [69–71]. Clinical investigations have indi-
cated moderate enhancements in left ventricular
ejection fraction and quality of life subsequent to
MSCs transplantation in individuals with heart fail-
ure [72]. Strategies such the genetic modification of
MSCs to overexpress pro-angiogenic factors or the co-
delivery with endothelial progenitor cells are being
investigated to improve clinical effectiveness.

4.3. Neurological disorders

The central nervous system (CNS) poses distinct
hurdles for regeneration owing to its restricted in-
trinsic healing capability [73]. MSCs, via the release
of neurotrophic factors such as brain-derived neu-
rotrophic factors and glial cell-derived neurotrophic
factors, have demonstrated potential in models of
stroke, spinal cord injury, and neurodegenerative
disorders [74]. MSCs diminish subsequent damage
cascades, mitigate neuroinflammation, and facili-
tate axonal sprouting and remyelination [75]. Initial
clinical trials have demonstrated promising results
regarding motor recovery and functional enhance-
ment in patients with spinal cord injury and ischemic
stroke following MSC transplantation [76]. Although
MSCs capacity to traverse the blood–brain barrier is
restricted, delivery methods such intrathecal injec-
tion or encapsulation in biomaterial carriers are being
developed to enhance targeting and retention within
the central nervous system.

4.4. Immune and inflammatory disorders

The immunomodulatory potential of MSCs has been
most firmly shown in the management of immune-

mediated disorders. MSCs are now the sole cell
therapy product sanctioned in specific regions for the
treatment of graft-versus-host disease (GvHD), a per-
ilous complication arising from hematopoietic stem
cell transplantation. Their release of prostaglandin
E2, indoleamine 2,3-dioxygenase, and interleukin-10
inhibit alloreactive T-cell proliferation while facili-
tating the formation of regulatory T cells [77, 78].
In addition to GvHD, MSCs have been investigated
in Crohn’s disease, systemic lupus erythematosus,
and rheumatoid arthritis, with several trials in-
dicating clinical efficacy [79, 80]. These findings
underscore their ability to reestablish immunological
homeostasis in conditions where traditional immuno-
suppressive treatments frequently prove inadequate.

4.5. Wound healing and dermatology

MSCs expedite wound closure by augmenting fi-
broblast proliferation, increasing angiogenesis, and
facilitating extracellular matrix deposition [81].
MSCs utilization in chronic wounds, including dia-
betic ulcers, has led to increased healing rates, less
scarring, and enhanced re-epithelialization. In der-
matological applications, MSCs have been tested for
burn injuries and skin graft integration, where MSCs
paracrine activity facilitates vascularization and tis-
sue remodeling [82, 83]. The cosmetic and recon-
structive capabilities of MSCs are gaining recognition,
especially with the emergence of adipose-derived
MSCs in skin rejuvenation and scar reduction treat-
ments.

4.6. Visceral organ regeneration

MSCs-based treatments have shown promise in the
regeneration of essential organs such as the liver,
kidney, and lung. In liver illness, MSCs demonstrate
anti-fibrotic properties by suppressing the activation
of hepatic stellate cells and enhancing hepatocyte
proliferation [84]. In acute kidney damage and
chronic kidney disease, MSCs promote renal recovery
by diminishing oxidative stress and apoptosis, but
in pulmonary fibrosis, they alleviate inflammation
and fibrotic remodeling [85]. Despite the majority
of research being in preclinical or early-phase clin-
ical phases, the variety of organ systems addressed
demonstrates the systemic relevance of MSCs.

4.7. Emerging frontiers

Along with conventional uses, MSCs are being
progressively investigated alongside biomaterials,
gene editing, and bio-fabrication technologies [86].
For example, mesenchymal stem cells integrated
into three-dimensional printed scaffolds provide
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personalized regeneration of bone and cartilage ab-
normalities [87]. Gene-modified MSCs, designed to
overexpress angiogenic, anti-fibrotic, or neurotrophic
factors, have enhanced regeneration capabilities rel-
ative to unmodified cells [88]. Furthermore, MSCs-
derived extracellular vesicles (EVs) are emerging as
next-generation, cell-free therapies, providing bene-
fits in scalability, safety, and regulatory adherence
[89]. These advances are transforming the field of
regenerative medicine, transitioning from cell trans-
plantation to precision-engineered biologics.

In summary, MSCs have exhibited therapeutic
effectiveness in a wide array of clinical applica-
tions, including musculoskeletal and cardiovascular
repair, immunological diseases, and organ regener-
ation. Their methods vary according to the target
tissue, including direct differentiation and paracrine
immunomodulation; yet their consistent safety profile
and versatility underscore their essential role in re-
generative medicine. Translating these findings into
consistent treatment results requires careful modi-
fication of delivery methods, dosing strategies, and
patient selection, which remain active areas of study.
Collectively, these findings highlight the broad ther-
apeutic versatility of MSCs across multiple organ
systems. The principal mechanisms of MSC action
are schematically illustrated in Fig. 3, A consoli-
dated overview of the principal clinical applications,
underlying mechanisms, and representative clinical
outcomes is provided in Table 2.

5. Challenges and limitations of MSC-based
regenerative medicine

The extensive clinical use of MSCs is impeded
by several scientific, technical, and regulatory chal-

Fig. 3. Mechanisms of MSCs action in regenerative medicine.

lenges [96]. These limits underscore the complex-
ity of moving from preclinical successes to reli-
able clinical outcomes. A comprehensive grasp of
these challenges is essential for improving treatment

Table 2. Clinical applications of MSCs in regenerative medicine.

Target System/Disease Mechanism of Action Example Clinical Findings Reference

Orthopedic (Osteoarthritis, bone
defects)

Chondrogenic/osteogenic
differentiation; anti-inflammatory
cytokine release

Improved pain scores, cartilage
regeneration, enhanced bone healing

[90]

Cardiovascular (MI, heart failure) Paracrine angiogenic signaling
(VEGF, HGF); anti-apoptotic
effects

Improved LVEF, reduced infarct size,
better perfusion

[91]

Neurological (Stroke, SCI,
Parkinson’s)

Neurotrophic factor secretion
(BDNF, GDNF);
anti-inflammatory modulation

Enhanced motor recovery,
neuroprotection, partial remyelination

[92]

Immune-mediated (GvHD, Crohn’s,
SLE, RA)

Immunomodulation: Treg
induction, macrophage M2
polarization

Reduced disease severity,
steroid-sparing effects

[93]

Dermatology & Wound Healing Fibroblast activation, angiogenesis,
ECM remodeling

Faster closure of chronic wounds,
reduced scarring

[94]

Liver/Kidney/Pulmonary Disorders Anti-fibrotic and anti-apoptotic
paracrine effects

Reduced fibrosis, improved organ
function (preclinical & early clinical)

[95]
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methodologies and developing standardized proto-
cols for practical use.

In MSC-based treatment, primary obstacles are
donor variability and heterogeneity. The prolifera-
tion, differentiation potential, and secretory char-
acteristics of MSCs are significantly affected by
parameters including donor age, sex, health state,
and tissue origin [97]. MSCs obtained from older
donors often have diminished immunomodulatory
function and decreased proliferation relative to those
sourced from younger individuals. Umbilical cord-
derived MSCs, akin to their bone marrow-derived
equivalents, have superior proliferative potential and
reduced immunogenicity [98]. This biological diver-
sity hinders the creation of uniform effectiveness and
potency among patient populations.

A second constraint relates to cellular senescence
and in vitro proliferation. To generate therapeuti-
cally pertinent doses, MSCs often require substantial
culture growth, leading to the accumulation of
DNA damage, telomere shortening, and phenotypic
variation. Not only do senescent MSCs lose their
regenerative capacity, but they may also adopt a
pro-inflammatory secretory phenotype, which could
potentially compromise the efficacy of therapeutic
interventions [99]. It is imperative to maintain the
potency of MSCs during proliferation by establish-
ing optimal culture conditions, which include oxygen
tension, growth factor supplementation, and three-
dimensional culture systems.

Engraftment and survival following transplantation
continue to be significant challenges. A significant
number of MSCs are either promptly removed from
the host microenvironment or undergo apoptosis
upon administration as a result of immune surveil-
lance, hypoxia, or oxidative stress. Research suggests
that less than 10% of transplanted MSCs remain in
vivo for more than a few days, which raises concerns
about whether the clinical benefits observed are the
result of durable engraftment or transient paracrine
signaling [100]. Preconditioning strategies, genetic
modifications, and biomaterial scaffolds are being in-
vestigated to improve the persistence and integration
of MSCs within target tissues.

MSC-based treatments have additional limitations
due to difficulty in cell engraftment and survival,
dangers of abnormal differentiation, and concerns
regarding pro-tumorigenic effects, alongside these
inherent obstacles [101]. Regulatory clearance is
further hindered by manufacturing limitations, in-
cluding the lack of defined potency testing, variability
in culture reagents, and challenges in scalability.
Moreover, although the immune-privileged attributes
of MSCs, their immunosuppressive properties may, in
some situations, promote tumor growth, and recur-

rent allogeneic treatments may provoke immunolog-
ical responses [102]. These problems underscore the
urgent need for sophisticated engineering techniques,
standardized protocols, and improved biomaterial
support to ensure the safety and repeatability of clin-
ical translation.

6. Future perspectives

The next generation of regenerative medicine is
progressively concentrating on enhancing efficacy,
safety, and scalability, transcending the direct trans-
plantation of mesenchymal stem cells (MSCs). The
advancement of MSC-derived extracellular vesicles
(EVs), especially exosomes, as cell-free therapies
represent a crucial frontier [103]. These vesicles en-
compass regulatory RNAs, lipids, and proteins that
mimic various paracrine functions of MSCs, includ-
ing angiogenesis and immunomodulation. Exosomes
have greater stability, reduced immunogenicity, and
enhanced ease of storage and distribution compared
to live cells, making them optimal candidates for
standardized biological therapy [104]. Genetic and
epigenetic engineering are concurrently utilized to
augment the resilience and efficacy of MSCs. CRISPR-
Cas9 and other methodologies provide accurate alter-
ations that enhance the release of regenerative factors
or confer tolerance to adverse conditions [105]. For
example, MSCs expressing VEGF or anti-apoptotic
genes demonstrate improved tissue healing capabil-
ities and increased survival rates [106]. Similarly,
preconditioning methods, such hypoxia or inflam-
matory priming, might augment immunomodulatory
activity and maintain stemness, therefore mitigating
the limitations of senescence and donor variability
[107].

A key area of emphasis is the incorporation of
sophisticated manufacturing technologies and bio-
materials. Engineered scaffolds, hydrogels, and 3D
bioprinting techniques supply structural and bio-
chemical signals that promote MSC development and
tissue integration [108]. The prospect of repairing
bone, cartilage, and intricate tissue abnormalities is
notably encouraging when functionalized scaffolds
are created by integrating MSCs with growth hor-
mones or nanomaterials [109]. The imperative for
transdisciplinary collaboration across stem cell biol-
ogy, biomaterials research, and tissue engineering is
highlighted by these bioengineered platforms.

The integration of MSC-based therapies with pep-
tides is a particularly promising frontier. By activat-
ing integrin-mediated signaling pathways and mim-
icking extracellular matrix motifs, bioactive peptides,
including RGD, IKVAV, and YIGSR, can improve MSC
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adhesion, migration, and differentiation. Encapsulat-
ing or conjugating MSCs with peptide-functionalized
scaffolds enhances their targeted regenerative ac-
tivity, engraftment, and survival [110]. Moreover,
MSC secretomes can be integrated with therapeu-
tic peptides exhibiting anti-inflammatory or angio-
genic characteristics to accelerate tissue regeneration
[111]. The collaboration of MSCs and peptides
presents a viable strategy to overcome current chal-
lenges, hence creating regeneration platforms that are
more accurate, effective, and customized to specific
application requirements.

7. Conclusion

Regenerative medicine is emerging as a transforma-
tive paradigm in modern healthcare, with MSCs at
its core. Their unique capacity for multilineage dif-
ferentiation, together with strong paracrine and im-
munomodulatory functions, has established MSCs as
versatile therapeutic agents in orthopedic, cardiovas-
cular, neurological, and immune-mediated disorders.
The comprehensive array of preclinical and clinical
studies underscores their ability to address disorders
inadequately managed by conventional medication.
Significant barriers continue to impede their practi-
cal use. Donor variability, cellular senescence during
expansion, inconsistent engraftment, and unresolved
long-term safety concerns result in heterogeneous
outcomes. The absence of established manufacturing
protocols and potency assessments obstructs regula-
tory approval and large-scale deployment. Addressing
these challenges through improved culture proce-
dures, rigorous quality control measures, and careful
patient selection will be essential for achieving con-
sistent and reliable treatment outcomes. Emerging
methodologies are currently altering the parameters
of MSC-based therapies. Innovations encompass MSC-
derived extracellular vesicles, genetic engineering,
advanced biomaterial scaffolds, and the integration
of bioactive peptides, addressing current limitations.
The interaction between peptides and MSCs has
promise for enhancing cell adhesion, survival, differ-
entiation, and immunomodulatory capabilities, hence
advancing the creation of more precise and effi-
cient regenerative platforms. These improvements
are steering the field towards customized, cell-free,
and peptide-enhanced approaches that might estab-
lish MSC-based therapies as mainstream, clinically
reliable interventions in regenerative medicine.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Data availability

Not applicable.

Funding

This research was fully supported by OXYZ Health
& Wellness Academy (Research and Development De-
partment, Malaysia) as part of its ongoing scientific
initiative on mesenchymal stem cell–based regenera-
tive medicine and peptide integration studies.

Author contributions

All authors contributed equally to the conception
and design of the study.

References

1. Rasekh M, Arshad MS, Ahmad Z. Advances in drug delivery
integrated with regenerative medicine: Innovations, chal-
lenges, and future frontiers. Pharmaceutics. 2025;17(4):456.

2. Hameed H, Aqeel M, Rafid H, Sabah R, Hameed Z, Khalawi
M, Sarmed Z, Ahmed A, Albari AA, Shaker LM. Transfor-
mative Role of Laser Technology in Ophthalmology and
Dermatology: A Mini Review of Precision Applications in
Modern Medicine. AUIQ Complement Biol Syst. 2025;2(2):51–
64.

3. Fotie J. Applications of tailored mesoporous silicate nanoma-
terials in regenerative medicine and theranostics. Int J Mol
Sci. 2025;26(16):7918.

4. Bhole R, Kapare H, Karwa P, Labhade S. Revolution-
izing healthcare: Unveiling the power of regenerative
medicine and tissue engineering. Bull Pharm Sci Assiut Univ.
2025;48(1):59–72.

5. Koento T, Reksodiputro MH, Yosia M. The Best Cut:
Evaluating Block, Sliced, and Diced Cartilage in Dorsal
Augmentation Rhinoplasty. AUIQ Complement Biol Syst.
2025;2(2):90–100.

6. Agha HM, Alkamil AA, Yahya RT, Mohammed AA, Ali ZT,
Alsayadi MMS. Consequences of global climate change on
biodiversity and food security: A mini review. AUIQ Comple-
ment Biol Syst. 2024;1(1):43–51.

7. Aphkhazava D, Sulashvili N, Tkemaladze J. Stem cell systems
and regeneration. Georgian Sci. 2025;7(1):271–319.

8. Han X, Liao R, Li X, Zhang C, Huo S, Qin L, Xiong Y, He T,
Xiao G, Zhang T. Mesenchymal stem cells in treating human
diseases: Molecular mechanisms and clinical studies. Signal
Transduct Target Ther. 2025;10(1):262.

9. Li Y, Liu Y, Yang X, Yang B, Cheng J, Chen J, Yuan X, Xu
X, Liu G, He Z, Wang F. Effects of mesenchymal stem cells
from different sources on the biological functions of multiple
myeloma cells. Stem Cell Res Ther. 2025;16(1):89.



30 AUIQ COMPLEMENTARY BIOLOGICAL SYSTEM 2 (2025) 21–32

10. Mirzaei A, Mashhadi R, Aghsaeifard Z, Izadi M, Dougaheh
SNH, Omid R, Guitynavard F, Nikoofar P, Aghamir SMK.
Sex-dependent paracrine effect of conditioned media from
adipose tissue-derived mesenchymal stem cells on prostate
cancer cells. J Cell Mol Med. 2025;29(9):e70569.

11. Zhang Z, Xu A, Zhou Q, Wen F, Chen F, Chen H, Wang H,
Chen L, Ju Z, Ge Y. Repeated intravenous transplantation
of human umbilical cord mesenchymal stem cells does not
promote tumorigenesis in EGFR-mutated lung cancer mice.
Stem Cells Transl Med. 2025;14(8):szae065.

12. Fawzy El-Sayed KM, El Moshy S, Radwan IA, Rady D, El-
Rashidy AA, Abbass MM, Dörfer CE. Stem cells from dental
pulp, periodontal tissues, and other oral sources: Biological
concepts and regenerative potential. J Periodontal Res. 2025.
https://doi.org/10.1111/jre.70015.

13. Guo Y, Liu Q, Yang J, Gao Y, Liu Y. The role of stem
cell-derived exosomes in regulating pyroptosis for disease
therapy. Stem Cell Res Ther. 2025;16(1):386.

14. Palani N, Nagendran S, Mendonce KC, Syed Altaf RR,
Mohan A, Nithya TG, Srinivasan M, Rajendran S, Surya
P, Rajadesingu S. Exosome nanofiber hybrid therapeutics
for targeted diabetic wound healing: Hypoxia-enhanced
ADSC exosomes and PI3K/Akt pathway modulation. Regen
Eng Transl Med. 2025. https://doi.org/10.1007/s40883-025-
00465-2.

15. Alanisi E, Alobaidi AH, Alyodawi K. Resveratrol and IL-6
Modulation of CXCL1 Expression and Viability in Hu-
man Breast Cancer Cell Lines. AUIQ Complement Biol Syst.
2025;2(2):1–9.

16. Moraddahande FM, Meybodi SME, Matin M, Soleimani N,
Ghasemzadeh N, Firoozabadi AD. Current status and new
horizons in stem cell therapy in cardiovascular regener-
ative medicine (CaVaReM): An update. Eur J Med Res.
2025;30(1):837.

17. Wei L, Yan W, Shah W, Zhang Z, Wang M, Liu B, Xue Z, Cao
Y, Hou X, Zhang K, Yan B. Advancements and challenges in
stem cell transplantation for regenerative medicine. Heliyon.
2024;10(16):e35836.

18. Agha H, Sanaalla AB, Abdulsamad MAS, Mohammad GAR,
Allaq AAA. Impact of some parameters on the survival
and proliferation of foodborne pathogens: Escherichia coli,
bacillus subtilis, staphylococcus aureus, and streptococcus
pyogenes. AUIQ Complement Biol Syst. 2024;1(1):70–76.

19. Sampogna G, Guraya SY, Forgione A. Regenerative medicine:
Historical roots and potential strategies in modern medicine.
J Microsc Ultrastruct. 2015;3(3):101–107.

20. Ghavam A, Sheikhnia F, Heidari MM, Valilo M, Mahmoudne-
jad Z, Gur S. An updated narrative review on revolutionizing
erectile dysfunction treatment: The crucial role of trophic
factors in adipose-derived stem cell therapy. BMC Urol.
2025;25(1):206.

21. Aphkhazava D, Sulashvili N, Tkemaladze J. Stem cell systems
and regeneration. Georgian Sci. 2025;7(1):271–319.

22. Zhidu S, Ying T, Rui J, Chao Z. Translational potential of
mesenchymal stem cells in regenerative therapies for human
diseases: Challenges and opportunities. Stem Cell Res Ther.
2024;15(1):266.
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