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H I G H L I G H T S  
 

A B S T R A C T  

 Two MRI brain tumor datasets were used, 
covering glioma, meningioma, pituitary, and 
healthy cases. 

 Images were preprocessed with resizing, 
sharpening, CLAHE, and Otsu thresholding 
for clarity. 

 GLCM and HOG features, along with their 
combination, were extracted to capture texture 
and area. 

 SMOTE was applied to balance class 
distributions and enhance classifier 
performance. 

 Brain tumors are among the most serious neurological diseases, posing significant 
diagnostic challenges due to their diverse nature and complexity imbalance in 
medical imaging datasets. To address these challenges, machine learning (ML) has 
demonstrated high potential in brain tumor classification; nevertheless, its overall 
performance can suffer when minority classes are underrepresented. This study 

examines the impact of the Synthetic Minority Over-sampling Technique 
(SMOTE) on MRI brain tumor classification using handcrafted features, including 
Gray Level Co-occurence Matrix (GLCM), Histogram of Oriented Gradients 
(HOG), and their combination (HOG + GLCM), with three classifiers, namely, 
Logistic Regression (LR), Support Vector Machines (SVM), and k-Nearest 
Neighbours (KNN). Experiments were carried out using two publicly available 
datasets.  For Dataset 1, SVM with GLCM increased from 55.21 to 57.40% (full 
SMOTE), but LR with HOG + GLCM increased from 52.4 to 53.49%. For Dataset 

2, fold-wise SMOTE increased LR with GLCM from 69.85 to 70.60% and SVM 
with HOG increased from 92.87 to 93.10% compared to complete SMOTE. The 
results show that the SMOTE's effect is dependent on feature type, classifier, and 
augmentation strategy, with fold-wise typically boosting generalization while 
avoiding information leaking. These findings validate SMOTE as a viable method 
for improving the type overall performance in imbalanced medical imaging tasks, 
particularly for weaker texture-based descriptors. 
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1. Introduction 

Image classification is the process of classifying and labelling images utilizing common features found in images that belong 

to different classes [1]. In this regard, classifying medical images plays an essential role in biotechnology because it improves 

diagnostic and clinical decision-making [2]. However, the primary obstacles in image classification, despite its increasing 

significance, are the sheer number of images, the intricacy of the data, and the scarcity of labeled data. In particular, it is difficult 

to develop dependable and proper classification systems because of these issues [3], especially when it comes to medical image 

classification, in which there is frequently not enough data available to train reliable classifiers, which makes it more difficult to 

increase the classification accuracy [2].   
In this context, the widespread use of data augmentation is mostly attributable to its positive effects on generalization, or the 

ML models' capacity to correctly predict the outcomes concerning data that was not encountered during training [4]. Other 

advantages of DA have also been shown, including enhanced resilience to transformations and support for model calibration [3], 

time, and resources. Moreover, it can increase the training dataset without requiring the acquisition and labelling of new natural 

data [4]. 

To this end, traditional data augmentation methods for classification in medical imaging include techniques such as flipping, 

adding noise, and applying geometric transformations [6]. Additional methods include brightness, adjusting saturation, and 

contrast, which all offer fresh insights into the same information. These adjustments handle issues with backdrop scaling, lighting 

variations, occlusion, and perspective. Additionally, data augmentation enhances the model's diversity and acts as a regularizer, 

thereby improving its capacity to generalize to new data and reducing overfitting [5]. 
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In addition to overfitting, imbalanced data is a common problem for machine learning models. Techniques such as the 

Synthetic Minority Over-sampling Technique (SMOTE) have been proposed to address this issue. Here, data augmentation 
works especially well for managing unbalanced datasets [7,4]. More specifically, data augmentation can artificially increase the 

representation of minority classes in imbalanced datasets, where the number of examples in one class (majority) greatly exceeds 

that of other classes, which improves the model's capacity to learn from underrepresented data [4]. By identifying the closest 

neighbors of minority class instances and drawing synthetic samples along their borders, the SMOTE produces synthetic data 

[7]. 

By analyzing how DA affects ML models with imbalanced data, it becomes possible to isolate and observe the improvements 

directly. In such cases, DA serves not only to expand the dataset but also to ensure that minority classes are adequately 

represented during the training process [4]. This step yields enhanced classification performance, particularly for practical 

applications where the costs of misclassifying minority examples are substantial [7]. 
The importance of data augmentation in boosting global scientific image classification performance across diverse 

modalities and architectures was investigated by Rama and Nalini [3]. In this study, convolutional neural networks (CNNs) were 
used to identify lung X-ray images, demonstrating a step forward in classification accuracy. At the same time, various 

augmentation approaches based on shear differences were implemented, thereby reaching a validation accuracy of up to 93%. 

Similarly, TensorMixup, a feature-based augmentation method, was suggested by Wang et al. [8], and they used the 3D U-Net 

architecture to improve brain tumor segmentation. The dual-stage training procedure, which used both conventional and 

TensorMixup-augmented data, produced remarkable dice scores on the BraTS2019 dataset, specifically 91.32% for the entire 

tumor segmentation. In another work, Wang et al. [9], focused on few-shot image classification and the IFR (Information Fusion 

Rectification) approach, which uses cosine similarity to match question characteristics with relevant base magnificence 

prototypes. This strategy dramatically improved the accuracy on benchmark datasets, such as miniImageNet and CUB, utilizing 

classifiers including SVM, logistic regression, and MLP. This study emphasized the importance of feature refining and fusion in 

improving learning from limited data. 

In the medical field, various studies have investigated the way augmentation and feature engineering improve classification 

accuracy. In particular, various augmentation methods for imbalanced datasets were tested using logistic regression, SVM, and 
CNN classifiers by Dablain and Chawla [4]. Their findings showed that advanced methods, such as ReMix, DeepSMOTE, and 

EOS, can significantly improve performance in general, with EOS achieving an accuracy of 0.796. Moreover, the effects of 

feature-level augmentation methods on breast cancer classification were investigated by Hasan et al., [10]. A comparative study 

of deep GoogleNet features along with Haralick capabilities revealed that the Mixup-based total augmentations combined with 

Haralick functions had the greatest AUC of 0.929. 

Furthermore, the importance of transfer learning (TL) over multi-label medical image classification was emphasized by 

Alam et al. [11], using pre-skilled architectures such as ResNet50 and DenseNet201 on retinal and brain tumor datasets. They 

achieved significant improvements in accuracy, sensitivity, and specificity by combining conventional augmentation with the 

SMOTE and traditional machine learning methods. Based on the above discussion, Table1 provides a comparative assessment 

of recent studies that investigated various information augmentation strategies performed in unique medical and non-medical 

image classification scenarios. More precisely, this table emphasizes the augmentation techniques employed, the topic of each 

study, and the suggested performance indicators. 

Table 1: The comparative analysis between multiple studies that use data augmentation 

Focus Data augmentation method Results Ref. 

Classification of Lung X-ray 
images 

Shear-based augmentation techniques. Validation accuracy up to 93%. [3] 

Brain tumor segmentation TensorMixup combined with 
conventional augmentation in dual-
stage training. 

Dice score of 91.32% for the entire 
tumor segmentation (BraTS2019). 

[8] 

Few-shot image classification Feature refinement with the IFR 

approach combined with cosine 
similarity and limited augmentation. 

Significant accuracy improvement on 

miniImageNet and CUB. 

[9] 

Handling imbalanced medical 
datasets 

ReMix, DeepSMOTE, and EOS 
augmentation methods. 

EOS achieved an accuracy of 0.796. [4] 

Breast cancer classification Mixup-based augmentation combined 
with Haralick features and GoogleNet 
deep features. 

The highest AUC of 0.929. [10] 

Multi-label medical image 

classification 

Traditional augmentation + SMOTE 

integrated with transfer learning 
(ResNet50, DenseNet201). 

Significant improvement in accuracy, 

sensitivity, and specificity. 

[11] 

 

However, while prior research has demonstrated the efficacy of several data augmentation strategies for medical image 

classification and segmentation, significant hurdles remain. More specifically, most studies focused on spatial or pixel-level 

alterations (e.g., flipping, rotation, and noise addition) that do not adequately address the problem of class imbalance, which is 
quite common in medical imaging datasets, particularly MRI scans. 

In terms of brain tumor classification, existing augmentation attempts have generally focused on geometric or volume-based 

alterations. In contrast, limited emphasis has been paid to oversampling approaches that immediately correct the imbalance 
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between tumor categories. Despite the recognized benefit of resampling approaches in increasing the classifier stability and 

generalization, their application in MRI-based tumor classification remains unexplored. 
To overcome these obstacles, this work investigates the application of the Synthetic Minority Oversampling Technique 

(SMOTE) for improving the classification of brain tumor MRI images. Specifically, SMOTE aims to stabilize the dataset 

distribution, reduce bias in model training, and improve typical classification performance by creating synthetic samples of 

underrepresented tumor classifications. Accordingly, this technique provides a feature-level augmentation framework 

specifically tailored for brain MRI classification. 

2. Dataset 

The two publicly available brain MRI datasets from Kaggle were used in this study. Both of these datasets contain images 

from four different classes, including glioma, meningioma, pituitary, and no tumor. 

The first dataset provides 3,264 MRI images. The images are separated into two sets: train and test (394 images each). The 

training distribution is imbalanced, with 822 meningiomas, 395 no tumors, 827 pituitary, and 826 gliomas. This disparity makes 
the dataset particularly difficult. Figure 1 illustrates samples of data for each class, where (a) represents Glioma, (b) represents 

Meningioma, (c) represents Healthy, and (d) represents Pituitary. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: Images in four classes: (a) Glioma, (b) Meningioma, ( c ) Healthy, (d) Pituitary 

The second dataset is similar to the first one, with four categories: glioma (1321), meningioma (1339), pituitary (1457), and 

no tumor (1595). The total number of images in the test data is 1311. When compared to the primary dataset, it contains a greater 

number of higher-quality photos. It provides a more equal class distribution, which allowed us to examine the suggested method's 

generalizability across unbiased record assets. Figure 2 illustrates samples for each class, where (a) represents Glioma, (b) 

represents Meningioma, (c) represents Healthy, and (d) represents Pituitary. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Images in four classes: (a) Glioma, (b) Meningioma, ( c ) Healthy, (d) Pituitary 

3. Methodology 

This section describes the overall block diagram for the process of identifying MRI brain tumors using typical machine 

learning techniques, as shown in Figure 3. More specifically, image preprocessing is the first step, followed by segmentation 

using Otsu's thresholding. Grey Level Cooccurrence Matrix (GLCM), Histogram Oriented Gradient (HOG), or a combination of 

them (HOG + GLCM) is employed to extract features. In addition, standardization is performed before classification, and the 

SMOTE is used to train the features to alleviate class imbalance. Classification is performed using logistic regression (LR), 

support vector machines (SVM), and k-nearest neighbors (KNN). In practice, three experimental configurations were considered, 

including individual features, combined features, and SMOTE-augmented features. To achieve optimal and balanced 

performance, stratified k-fold cross-validation with GridSearchCV was employed for model training and hyperparameter 
optimization. Additionally, the model's performance was evaluated using standard metrics, including accuracy, precision, recall, 

and F1-score. 
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Figure 3: Block diagram of MRI brain tumor classification 

3.1 Image preprocessing 

Noise-induced transmission image processing degrades brain MRIs during imaging. The preprocessing procedure improves 

image quality and contrast by reducing noise and fluctuation from the brain MRI. This section presents a quick summary of the 

preprocessing methods utilized in this study [12]. 

3.1.1 Resize 

The collection of MRI images varies in size. Therefore, to maintain consistency, all photos were downsized to 128 × 128 

pixels using bilinear interpolation, which preserves key visual elements with fewer artefacts, is more computationally efficient, 

and generates smoother transitions compared to the nearest-neighbor [13]. 

3.1.2 Sharpen with gaussian  

Following resizing, image sharpening was used to enhance fine details, minimize noise, and improve the quality of features 

extracted for classification tasks [14]. The following formula was used to blend the original image with a blurred version created 

by applying a Gaussian filter : 

   Sharpened Image= 7 × Original Image – 6 × Blurred Image  (1) 

Equation 1 uses β=−6 to reduce noise in the blurred image and α=7 to improve the details in the original image.  Specifically, 

a Gaussian filter was employed with a kernel size of (5,5) and a sigma value of (3) [15]. 



Farah R. Fadhil & Zainab Sultani Engineering and Technology Journal 43 (10) (2025) 804-821 

 

808 
 

 

3.1.3 Contrast-limited adaptive histogram equalization 

Throughout the sharpening process, the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) was used to enhance 

feature visibility while lowering noise amplification. By spatially separating the image into tiny parts and equalizing each one 

separately [16], the CLAHE boosts contrast in low-intensity areas in a different way than the standard histogram equalization. 

The chosen parameters are the tile grid size (10×10), which determines the number of image subdivisions for localized contrast 

corrections, and the clip limit (4), which controls the level of contrast enhancement [15]. Figure 4 depicts the several stages of 

image preparation that were used in this investigation, where (a) represent original image , (b) represent sharpened image , (c) 

represent CLAHE image  

 
(a) Original   

 
(b) Sharpen 

 
(c) CLAHE 

Figure 4: The impact of sharpening with the Gaussian and the CLAHE sequentially 

3.2 Image segmentation 

This particular type of segmentation relies on intensity. Thresholding, often known as image binarization, is an important 

image processing technique. It removes the object from the background. When compared to grey-level images that typically 

contain an enormous number of grey levels (up to 256 levels), segmented images obtained through thresholding have the 

advantages of smaller storage space, faster processing speed, and ease of manipulation. This step produces a segmented image 

with a black background and a bright tumor area [17]. 

In this context, Otsu's thresholding is a common approach for automatically determining the differences in intensity between 

two sets of pixels in an image. It accomplishes this process by determining the best way to divide the two groups. In the detection 

of brain tumors, Otsu's approach can be used to identify tumorous regions from healthy brain tissue using MRI scans [18]. The 

Otsu thresholding technique involves calculating a spread measure for both sides of the pixel concentration limit, which refers 

to the pixels in the foreground or background. Otsu's method usually selects the threshold by minimizing the in-class variance 

of the two pixel groups that the operator separates [19]. Figure 5 illustrates the effect of the Otsu threshold on the image. 

 

Figure 5: The effect of the Otsu thresholding 

3.3 Feature extraction  

Converting the image to its useful properties is called feature extraction. The extracted features from the preprocessed and 
segmented images are used as input to the ML algorithms. In this regard, obtaining a useful number of features from brain MRI 

images is a very challenging task [20]. In this study, three methods were applied separately, including the Histogram Oriented 

Gradient (HOG), the Grey Level Co-occurrence Matrix (GLCM), and a combination of the HOG and the GLCM. These methods 

are described in detail as follows:  

3.3.1 Histogram oriented gradient (HOG) 

The Histogram of Oriented Gradients (HOG) measures the change in gradient orientations and is used to identify an image's 

structure and local shape [21]. In particular, the images used in this study are broken into 24 × 24 pixel cells and arranged into 5 
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× 5 pixel blocks. The gradient directions are quantified, yielding six bins. Histograms are generated and normalized inside each 

block to improve robustness towards variations in illumination and contrast. The final descriptor is obtained by concatenating 

each of the local histograms. The summarized steps of applying this feature extraction type are as follows: 

 The target image is segmented into square cells with defined dimensions. 

 The horizontal (𝑔𝑥) and vertical (𝑔𝑦) Gradients for each cell are generated using derivative masks [-1, 0, 1] and [-1, 0, 

1]T, respectively. Using (𝑔𝑥) and (𝑔𝑦). The magnitude and the direction of the gradient can be calculated as shown in 

Equations 1 and 2.  

  gradient magnitude = √𝑔𝑥
2 +  𝑔𝑦

2   (1) 

  gradient direction = arctan  
𝑔𝑦

𝑔𝑥
  (2)  

A histogram vector is constructed for each image cell based on magnitude and direction matrices. The histogram bins are 

determined based on gradient direction, and the values within them are a cumulative weighted vote based on the gradient 

magnitude. Figure 3 illustrates the process of filling the histogram bins. A set number of cell histograms is combined into a block 

whose values are normalised.  

The method is repeated for all of the blocks that slide to cover the entire image, yielding a single big vector containing the 

retrieved features [22]. 

3.3.2 Grey level co-occurrence matrix (GLCM) 

A Grey Level Co-occurrence Matrix (GLCM) is a statistical technique for texture analysis that considers the spatial 

correlations between pixels. The GLCM capabilities characterize the texture of an image [19]. Particularly, the GLCM expresses 

the frequency with which pairs of pixels with specified grey-level intensities appear, oriented and spaced apart from one another. 

This matrix is used to obtain second-order records [23]. The algorithm used in GLCM is illustrated in Algorithm 1. To compute 

the joint in this study, the GLCM is calculated using four distances (1, 2, 3, and 4 pixels) and four directions (0°, 45°, 90°, and 

150°). Each matrix produced a set of statistical skills, including evaluation, dissimilarity, homogeneity, energy, correlation, 

maximum possibility, inertia, cluster colour, cluster prominence, and inverse difference. These functions are described using the 

following equations [24, 25]. 

 Contrast: Equation 3 is used to calculate the contrast, which quantifies the intensity difference between the 
neighboring pixels in an image:  

  𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝑃𝑖𝑗(𝑖 − 𝑗)2𝐺−1
𝑖,𝑗=0  (3) 

 The grey-level co-occurrence matrix (GLCM) shows the probability of transitioning between grey levels i and j 

as P(i,j). 

  
 Dissimilarity: Equation 4 is used to determine the dissimilarity feature:  

 
  𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑ |𝑖 − 𝑗|𝑃 (𝑖, 𝑗)𝐺−1

𝑖,𝑗=0  (4) 

 
 Homogeneity: Equation 5 is used to calculate the homogeneity, which shows how closely the distribution of the grey-

level values is distributed: 

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
1

1+ (𝑖−𝑗)2  𝑃(𝑖, 𝑗)𝐺−1
𝑖,𝑗=0    (5) 

 Correlation: Equation 6 is used to calculate the correlation, which measures the linear relationship between the grey-
level values: 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑
{(𝑖×𝑗) × 𝑃(𝑖×𝑗)}−(𝜇𝑥−𝜇𝑦)

𝜎𝑥 × 𝜎𝑦

𝐺−1
𝑖,𝑗=0    (6) 

where 𝜇𝑥 and μy represent the mean grey-level values, and σx and σy denote the standard deviation. 

 The maximum probability: Equation 7 determines the maximum probability feature: 

     𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  (
𝑚𝑎𝑥
𝑖, 𝑗 )  𝑃(𝑖, 𝑗)   (7)  

 Entropy: Equation 8 is used to calculate the entropy, which represents the randomness in the grey-level distribution 
within the image: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃(𝑖, 𝑗) × log(𝑃(𝑖, 𝑗))𝐺−1
𝑖,𝑗=0   (8) 
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 Inertia: The variance within the GLCM is measured by the inertia, which is calculated using Equation 9: 

 𝐼𝑛𝑡𝑒𝑟𝑖𝑎 =  ∑ ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗)𝐺−1
𝑗=0

𝐺−1
𝑖=0    (9) 

 Clusters' prominence: Equation 10 is used to calculate this feature: 

 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑃𝑟𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 = ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)4 × 𝑃(𝑖, 𝑗)𝐺−1
𝑖,𝑗=0    (10) 

 
 Cluster shade: The cluster shade, which is determined using Equation 11, indicates how skewed the image's clusters 

are: 

 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆ℎ𝑎𝑑𝑒 =  ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)3 × 𝑃(𝑖, 𝑗)𝐺−1
𝑖,𝑗=0     (11) 

 IDF, or Inverse Difference: Equation 12 shows how this feature is calculated: 

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  ∑
𝑃(𝑖,𝑗)

1+ |𝑖−𝑗|
𝐺−1
𝑖,𝑗=0   (12) 

Algorithm .1. Grey Level Co-occurrence Matrix algorithm 

Input: Preprocessed color image of size 128 × 128 

Output: GLCM feature vector  

1. Convert the image to grayscale. 

2. Convert the grayscale image to 8-bit unsigned integer format. 

For each distance d∈{1,2,3,4}: 

  For each angle θ∈{0°,45°,90°,135°}: 

   a. Compute the co-occurrence matrix GLCM(d,θ) using normalized and symmetric settings. 

   b. Extract the following features: 

     – Contrast: Measures the intensity contrast between a pixel and its neighbor 

     – Dissimilarity: Quantifies the difference between grey levels 

     – Homogeneity: Measures the closeness of the distribution to the diagonal 

     – Energy: Reflects textural uniformity (also known as Angular Second Moment) 

     – Correlation: Assesses the linear dependency of grey levels 

     – Max Probability: The highest probability in the GLCM matrix 

     – Inertia: Similar to the contrast, but it is more sensitive to higher differences 

     – Cluster Shade: Measures the skewness of the matrix 

     – Cluster Prominence: Captures the sharpness or peakedness of the clusters 

     – Inverse Difference: Emphasizes homogeneity in the texture 

   c. Append all extracted features to the feature vector. 

Return the concatenated feature vector. 

3.3.3 The combination of HOG and GLCM  (HOG + GLCM) 

The combination of HOG and GLCM is considered [26]. The HOG feature captures the edge orientation patterns, and the 

GLCM features capture the spatial pixel intensity relationships. Next, the final feature vector for each image is produced by 

combining the original GLCM and HOG features. The performance of the image classification model could be improved by 

using this augmented feature set, which could offer a more comprehensive and nuanced image representation [27]. 

3.4 Synthetic minority oversampling technique (SMOTE) 

The SMOTE algorithm is limited to minority class oversampling. This approach creates new samples by first calculating the 

k-nearest neighbours of the minority class samples, from which M samples (where M < k) are randomly selected to perform 

linear interpolation. Many k-nearest neighbours-based oversampling strategies neglect the majority class when selecting the 

nearest neighbours and creating fresh samples [28]. When working with uneven data, SMOTE helps create a more balanced 

dataset, which enhances the performance and robustness of machine learning models [29]. 

3.4.1 Implementation of SMOTE 

Step 1: The SMOTE chooses the nearest neighbours for each minority sample xi(i=1,2,….,n) using a specified neighbour 

count number (in this case, k=4). The selection algorithm is based on the Euclidean distance between samples in the feature 
space. 

Step 2: The over-sampling technique generates synthetic samples by selecting mm nearest neighbours at random from each 

minority sample's k-nearest neighbour set. The notation for each picked neighbour is xi,j (j=1,2,….,m). Next, Equation 13 is 

applied for interpolation: 
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   Pi,j = xi + rand (0,1)×( xi,j – xi),  (13) 

An artificially generated minority sample Pi,j is obtained, where rand (0,1) is a uniformly distributed random number in the 

range [0,1]. The technique is repeated until the dataset achieves the desired class balance. Finally, the modified distribution of 

class labels is evaluated before and after SMOTE to ensure balanced class representation in the training data [30]. 

3.4.2 Experimental application 

For each feature type (HOG, GLCM, and HOG+GLCM), the SMOTE and other oversampling approaches (Borderline-

SMOTE, SVM-SMOTE, and ADASYN) were employed to assess the influence of oversampling on classification performance. 

In this work, two different application configurations were investigated: 

 Total training augmentation (SMOTE): Before training the model, the complete training set is oversampled. 

 Fold-wise augmentation (SMOTE fold-wise): in cross-validation, oversampling is only performed in the training region 
of each fold, ensuring that the validation data remains unchanged. 

To discover which setup performed best for each feature type, each approach was tested with different classifiers and 

parameter values. 

3.5 Standardization 

Standardization is applied to the retrieved features before classification to ensure uniformity across features. To guarantee 

that each feature contributes equally to the learning process, standardization translates feature values to a mean of 0 and a standard 
deviation of 1. This step is especially useful for models like Support Vector Machines (SVM) as well as k-Nearest Neighbours 

(KNN), which rely on distance-based computations [18]. 

3.6 Machine learning algorithms  

This study employs three common supervised machine learning methods to accomplish multi-class classification tasks using 

extracted picture attributes [31]. These models were chosen because they are widely used, easily interpretable, and effective in 

medical image classification. In addition, a rigorous hyperparameter tuning method was performed for each algorithm using Grid 

Search and Stratified K-Fold cross-validation (CV=5), with the primary goal being the weighted F1-score. 

3.6.1 K-Nearest neighbors (KNN) 

The KNN is a non-parametric, instance-based learning algorithm that classifies new data points based upon the majority 
label of their k-nearest neighbours within the training set. The parameters chosen have a considerable impact on its performance 

[32]. More precisely, this paper compared several choices for the number of neighbours (k ∈ {3, 5, 7, 10, 15}), distance metrics 

(Euclidean, Manhattan, and Chebyshev), and weighting methods (uniform versus distance-based). Moreover, grid-based 

validation was performed to determine the best configuration. Table 2 illustrates the parameters chosen for each feature type for 

the first dataset, and Table 3 illustrates the parameters chosen for each feature type for the second dataset. 

Table 2: KNN parameters for Dataset 1 

Feature type Metric Neighbors Weights 

GLCM chebyshev 5 distance 

GLCM SMOTE chebyshev 7 distance 
GLCM SMOTE  fold-wise chebyshev 5 distance 
HOG manhattan 3 distance 
HOG SMOTE manhattan 3 distance 
HOG SMOTE fold-wise manhattan 3 distance 
HOG + GLCM euclidean 3 distance 
HOG + GLCM SMOTE euclidean 3 distance 
HOG + GLCM SMOTE fold-wise euclidean 3 distance 

Table 3: KNN parameters for Dataset 2 

Feature type Metric Neighbors Weights 

GLCM euclidean 3 distance 
GLCM SMOTE euclidean 3 distance 
GLCM SMOTE  fold-wise euclidean 3 distance 

HOG manhattan 3 distance 
HOG SMOTE manhattan 3 distance 
HOG SMOTE fold-wise manhattan 3 distance 
HOG + GLCM euclidean 3 distance 
HOG + GLCM SMOTE euclidean 3 distance 
HOG + GLCM SMOTE fold-wise euclidean 3 distance 
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3.6.2 Support vector machine (SVM)   

SVM is a powerful classification model that divides data points into classes in a high-dimensional space, utilizing the ideal 

hyperplane. It performs exceptionally well for both linear and nonlinear classification problems [33]. In this paper, we considered 

four kernel functions: linear, polynomial, sigmoid, and radial basis function (RBF). The polynomial degree, the kernel 

coefficient, and the regularization parameter have been adjusted within predefined limits for non-linear kernels—the combination 

with the highest validation F1-score was discovered through a grid search. Table 4 illustrates the parameters chosen for each 

feature type for the first dataset, and Table 5 illustrates the parameters chosen for each feature type for the second dataset. 

Table 4: SVM parameters for Dataset 1 

Feature type Kernel C Gamma Degree 

GLCM rbf 100 0.01 1 
GLCM SMOTE rbf 100 0.01 1 
GLCM SMOTE  fold-wise sigmoid 100 0.1 1 

HOG rbf 10 0.01 1 
HOG SMOTE rbf 10 0.01 1 
HOG SMOTE fold-wise sigmoid 100 0.1 1 
HOG + GLCM rbf 10 0.01 1 
HOG + GLCM SMOTE rbf 10 0.01 1 
HOG + GLCM SMOTE fold-wise sigmoid 100 0.1 1 

Table 5: SVM parameters for Dataset 2 

Feature type Kernel C Gamma Degree 

GLCM rbf 10 0.1 1 
GLCM SMOTE rbf 100 0.1 1 
GLCM SMOTE  fold-wise sigmoid 100 0.1 1 
HOG rbf 10 0.01 1 
HOG SMOTE rbf 10 0.01 1 

HOG SMOTE fold-wise sigmoid 100 0.1 1 
HOG + GLCM rbf 10 0.01 1 
HOG + GLCM SMOTE rbf 10 0.01 1 
HOG + GLCM SMOTE fold-wise sigmoid 100 0.1 1 

3.6.3 Logistic regression (LR)  

Logistic regression is a popular linear model for binary and multiclass classification applications. It uses the logistic function 

to determine the chance of class membership [34]. In particular, penalties (L1, L2), regularisation strengths (𝐶), maximum 

iteration limits, and solvers (lbfgs, Newton-cg, and Saga) were tested. The final setup was chosen based on the validation results 

and a cross-validated F1 score. Table 6 illustrates the parameters chosen for each feature type for the first dataset, and Table 7 

illustrates the parameters chosen for each feature type for the second dataset. 

Table 6: LR parameters for Dataset 1 

Feature type C Penalty Solver Max iter 

GLCM 10 l2 lbfgs 1000 
GLCM SMOTE 10 l2 lbfgs 5000 
GLCM SMOTE  fold-wise 10 l2 saga 5000 
HOG 0.1 l2 saga 1000 

HOG SMOTE 0.1 l2 newton-cg 1000 
HOG SMOTE fold-wise 10 l2 saga 5000 
HOG + GLCM 1 l1 saga 5000 
HOG + GLCM SMOTE 1 l1 saga 5000 
HOG + GLCM SMOTE fold-wise 10 l2 saga 5000 

Table 7: LR parameters for Dataset 2 

Feature type C Penalty Solver Max iter 

GLCM 10 l2 lbfgs 1000 
GLCM SMOTE 10 l2 lbfgs 5000 
GLCM SMOTE  fold-wise 10 l2 saga 5000 
HOG 0.1 l2 newton-cg 1000 
HOG SMOTE 0.1 l2 newton-cg 1000 
HOG SMOTE fold-wise 10 l2 saga 5000 

HOG + GLCM 10 l2 lbfgs 1000 
HOG + GLCM SMOTE 10 l2 lbfgs 1000 
HOG + GLCM SMOTE fold-wise 10 l2 saga 5000 
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3.7 Evaluation metrics  

Due to the imbalance in the dataset, accuracy alone is insufficient to assess model performance. Therefore, precision, recall, 

and F1-score metrics were also utilized to evaluate the model performance [35]. The formulas for measuring these metrics are 

as follows: Accuracy is given by Equation 14, Precision is defined in Equation 15, Recall is expressed in Equation 16, and the 

F1-Score is calculated using Equation 17. 

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (14) 

 Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (15) 

 Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (16) 

 F1-Score = 
2 ×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   (17) 

where the number of accurate positive predictions is indicated by TP (True Positive), the number of accurate negative predictions 

is indicated by TN (True Negative), and the number of inaccurate positive predictions is indicated by FP (False Positive). At the 

same time, FN is the (False Negative). 

4. Results and discussion 

This section provides an in-depth evaluation of the proposed technique, which explores the influence of SMOTE-based total 

augmentation on brain tumor photo classification using supervised learning models. In particular, three classifiers were used, 

including logistic regression (LR), support vector machine (SVM), and K-nearest neighbours (KNN). The studies were carried 

out using two curated brain MRI datasets to assess the type performance and generalizability of the models trained under different 

feature and augmentation settings. 

In every dataset, the models were trained and evaluated utilizing three main feature configurations, as follows: 

 Original features (GLCM and HOG). 

 The SMOTE augmentation (SMOTE), which is the process of oversampling the entire training set using SMOTE before 

training. 

 Fold-wise SMOTE augmentation (SMOTE fold-wise), in which oversampling is performed most effectively within the 
training partition of each fold throughout cross-validation, leaving validation information undisturbed. 

The primary goal is to determine how classes are balanced via the SMOTE that affects the classifier's overall performance, 

particularly test-time generalization, which is quantified by accuracy, precision, recall, and F1-score. Tables 7, 8, and 9 illustrate 

the classifiers' results of the first dataset, and Tables 10, 11, and 12 illustrate the classifiers' results of the second dataset. 

Table 8: Summary results of the KNN classifier for Dataset 1 
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GLCM 100 100 100 100 75.50523 75.72496 75.50523 75.20321 78.93401 80.92714 78.93401 75.47375 

GLCM SMOTE 100 100 100 100 79.29293 79.3219 79.29293 79.13085 75.88832 78.27566 75.88832 72.69135 

GLCM SMOTE  

fold-wise 

100 100 100 100 75.47038 75.42151 75.47038 75.23809 74.11168 76.52724 74.11168 70.72242 

HOG 100 100 100 100 85.08711 85.09348 85.08711 84.74938 77.15736 80.79629 77.15736 72.56596 

HOG SMOTE 100 100 100 100 87.84699 87.87516 87.84699 87.52222 75.88832 80.58839 75.88832 71.46228 

HOG SMOTE fold-

wise 

100 100 100 100 85.50523 85.50703 85.50523 85.23506 76.14213 80.5422 76.14213 71.61638 

HOG + GLCM 100 100 100 100 86.09756 86.14857 86.09756 85.83946 77.66497 81.59253 77.66497 73.08517 

HOG + GLCM 

SMOTE 

100 100 100 100 89.50967 89.48095 89.50967 89.29827 75.63452 81.17704 75.63452 71.18523 

HOG + GLCM 

SMOTE fold-wise 

100 100 100 100 86.27178 86.2235 86.27178 86.00244 77.15736 81.60183 77.15736 72.3263 
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Table 9: Summary results of the SVM classifier for Dataset 
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GLCM 88.092

33 

88.22

698 

88.09

233 

88.101

64 

79.19861 79.2555 79.19861 79.11999 58.12183 56.37092 58.12183 55.21411 

GLCM SMOTE 89.555

62 

89.56

849 

89.55

562 

89.542

05 

82.13386 82.10759 82.13386 82.06929 60.6599 60.47654 60.6599 57.40041 

GLCM SMOTE  

fold-wise 

88.153

31 

88.18

451 

88.15

331 

88.137

82 

79.23345 79.23173 79.23345 79.1685 58.88325 57.9985 58.88325 55.90959 

HOG 100 100 100 100 86.41115 86.35051 86.41115 86.32499 77.15736 82.52629 77.15736 72.62883 

HOG SMOTE 100 100 100 100 88.51223 88.40176 88.51223 88.4074 77.15736 82.64786 77.15736 72.44574 

HOG SMOTE 

fold-wise 

100 100 100 100 86.37631 86.29744 86.37631 86.28679 77.15736 82.60534 77.15736 72.65735 

HOG + GLCM 100 100 100 100 89.44251 89.44691 89.44251 89.4085 75.88832 80.98018 75.88832 71.1002 

HOG + GLCM 

SMOTE 

100 100 100 100 91.35426 91.40164 91.35426 91.33736 76.14213 81.29979 76.14213 71.34485 

HOG + GLCM 

SMOTE fold-wise 

100 100 100 100 89.44251 89.46707 89.44251 89.42519 75.88832 81.12774 75.88832 71.13441 

Table 10: Summary results of the LR classifier for Dataset 1 
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GLCM 75.4878 75.43

806 

75.48

78 

75.290

89 

73.0662 73.0549

1 

73.0662 72.86605 44.67005 44.56164 44.67005 43.65774 

GLCM SMOTE 76.1940

7 

76.06

494 

76.19

407 

76.063

51 

74.12371 74.1255

2 

74.12371 73.99889 36.80203 38.23625 36.80203 35.30616 

GLCM SMOTE  

fold-wise 

75.0609

8 

75.08

546 

75.06

098 

74.937

86 

72.26481 72.3919

8 

72.26481 72.15784 39.59391 40.72219 39.59391 38.02973 

HOG 78.2578

4 

77.92

759 

78.25

784 

77.997

36 

71.39373 70.9040

1 

71.39373 71.01357 47.71574 50.63918 47.71574 45.87528 

HOG SMOTE 80.1088

2 

79.65

99 

80.10

882 

79.770

71 

74.12375 73.6179

8 

74.12375 73.77273 48.22335 51.87898 48.22335 44.70792 

HOG SMOTE 

fold-wise 

78.0226

5 

77.79

131 

78.02

265 

77.699

4 

71.14983 70.7939 71.14983 70.76528 48.73096 52.26121 48.73096 45.28948 

HOG + GLCM 86.8466

9 

86.82

692 

86.84

669 

86.806

39 

79.23345 79.1453

6 

79.23345 79.15001 54.82234 54.98464 54.82234 52.43707 

HOG + GLCM 

SMOTE 

87.8930

2 

87.78

239 

87.89

302 

87.813

05 

81.16691 80.9766

3 

81.16691 81.02435 55.58376 56.78848 55.58376 52.72022 

HOG + GLCM 

SMOTE fold-

wise 

86.6899 86.64

837 

86.68

99 

86.616

85 

78.15331 78.2814

2 

78.15331 78.11855 56.59898 59.1702 56.59898 53.4943 

As shown in Table 8, the K-Nearest Neighbours (KNN) classifier performed well across all feature types. However, the 

validating performance provides a more nuanced perspective, particularly in the context of SMOTE augmentation. 

For texture-based total features (GLCM), the basic setup produced a test F1-score of 75.47 %, with a validation F1-score 

reaching 75.20 %, thereby creating a good benchmark. When the SMOTE was implemented globally, the validation performance 
improved to 79.13% F1, demonstrating more consistency among minority and majority classes in training. However, the test F1-

rating declined significantly to 72.69%, indicating that oversampling may have caused some overfitting or feature space 

distortion. Notably, the fold-wise SMOTE lowered the test F1 to 70% while maintaining validation ranks near the baseline. 

These findings suggest that the SMOTE provided a modest benefit only on the validation F1-score, with a limited generalization 

advantage. 

Shape-oriented HOG features, on the other hand, performed better across the board. The baseline HOG setup achieved a test 

F1 rating of 72.56%, whereas the validation F1 was at 84.75%, illustrating the intrinsic discriminative strength of gradient-based 

total descriptors. With SMOTE, the validation total performance improved by 87.52%, even though the test F1 fell somewhat to 

71. 46%, demonstrating a capacity overfitting trend. On the other hand, the fold-wise SMOTE performed better, reaching 71.61% 

for the test F1, showing improved generalization when compared to the global SMOTE. These designs support the notion that 

the HOG features respond well to oversampling, also only on the validation set. 
The blended HOG GLCM features space provided the best validation F1-ratings across all settings, with the SMOTE-

augmented model scoring 89.29% and the fold-wise version scoring 86.00%. Interestingly, the test F1 for the mixed baseline 

was 73.08%, which decreased marginally with SMOTE fold-smart (72.32%). However, the normal SMOTE significantly 

reduced the overall performance to 71.18%. Despite the high validation scores, our findings suggest that the SMOTE yields 

diminishing results in complicated feature spaces where class impediments may already be well-described. 
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Overall, the results reveal that KNN maintained strong validation performance throughout all settings; however, the impact 

of SMOTE on test generalization became combined.  While the SMOTE generally improved testing and validation balance, it 
did not consistently improve the test F1-rankings, demonstrating that the KNN's sensitivity to the distributional properties of 

oversampled statistics can limit its generalization under artificial augmentation, particularly in high-dimensional MRI feature 

areas. 
As shown in Table 9, the SVM classifier demonstrated strong performance across various feature units, particularly using 

shape-based and blended descriptors. When using the GLCM features alone, the model demonstrated mild generalization 

capabilities, with a validation F1-score of 79.11% and a test F1-score of 55.21%. While the use of SMOTE increased the 

validation F1 to 82.06%, the test F1 score increased to 57.40%, indicating an influence on real-world generalization. The fold-

wise SMOTE produced comparable validation overall performance (79.16%) and a slightly improved test F1-score (55.91%), 

confirming that class balance improved generalization slightly. These results confirm that, even if the GLCM features on their 

own are limited in separability, oversampling provides a measurable advantage. 

In conclusion, the HOG features resulted in more powerful and consistent performance. Without augmentation, the SVM 
achieved a validation F1-score of 86.32% and a test F1 of 72.63%, indicating a significant improvement over the GLCM. In 

contrast, the SMOTE only slightly increased validation to 88.40%, with a high test F1 (72.44%). The fold-wise variation provided 

the best balance, with a validation F1 of 86.28% and the highest test F1-score in this configuration is 72.65%, reflecting a slight 

but significant advantage in generality. At the same time, augmentation is implemented with a go-verified balance. These data 

support the notion that SMOTE is more effective when the underlying capabilities already provide strong separability, as in the 

case of HOG. 
The combination of HOG + GLCM feature set produced the best results for the length of validation, with the SMOTE 

increasing validation F1 to 91.33% and the fold-wise SMOTE remaining at 89.42%. In terms of the overall test f1-score 

performance, both SMOTE and fold-sensible SMOTE improved slightly but consistently, reaching 71.34% and 71.13%, 

respectively, after it was 71.10% without augmentation. Although these upgrades are not large, they indicate that even for rather 

discriminative mixed functions, the SMOTE can contribute to marginal test overall performance benefits, implying higher 

robustness under modest class imbalance conditions. 
In summary, the SMOTE showed a positive influence on the test F1-scores across all feature types, with the most suggested 

advantage discovered in the GLCM (from 55.21 to 57.40%) and the highest average improvement seen in the HOG fold-wise 

SMOTE (72.65%). These data demonstrate that a magnificent balance via the SMOTE produces measurable improvements in 

generalization, particularly when combined with strong characteristic representations. 
As seen in Table 10, the Logistic Regression classifier consistently underperformed SVM and KNN due to its linear character 

and poor capacity to describe complicated nonlinear patterns determined by brain tumor MRI information. Nonetheless, positive 

patterns appeared when examining the impact of the SMOTE augmentation on generalization, particularly using the Test F1 

metric. 

When the LR was used alone with the GLCM texture descriptors, it produced a validation F1-score of 72.86%. Still, its 

generalization plummeted dramatically, with a test F1-score of only 43.65%, indicating the model's limited robustness in real-

world conditions.  Interestingly, even though the SMOTE improved training and validation measures marginally, it did not result 
in a step forward in the overall performance, with the test F1-score dropping further to 35.31%. In contrast, the fold-wise SMOTE 

demonstrated a small recovery compared to the SMOTE. 

On the other hand, the HOG features resulted in greater performance, which was more consistent with the LR's linear 

assumptions. The baseline HOG configuration achieved a validation F1 of 71.01% and a test F1 of 45.87%. After applying the 

SMOTE, the validation F1 increased to 73.77%, while the test F1 stayed practically steady at 44.70%, showing that there is no 

benefit from using it. However, the fold-wise SMOTE resulted in consistency in the test F1 of 45.29%. 

The combination of HOG+ GLCM feature arrangement produced the greatest ordinary ratings for the LR. Without 

augmentation, it achieved 79.15% validation F1 and a test F1 of 52.43%.  In particular, applying the SMOTE resulted in a minor 

improvement in both validation (81.02%) and examination (52.72%) F1-scores.  Notably, the fold-sensible SMOTE provided 

the highest-quality test F1 across all LR configurations, hitting 53.49%, with a corresponding validation F1 of 78.11%. This 

outcome demonstrates that, while the SMOTE has a minor impact on the LR, the fold-sensible augmentation is slightly more 
powerful in constructing generalizable models when using wealthy, mixed capabilities. 

In summary, the LR benefited marginally from the SMOTE, particularly in the fold-sensible setting, and typically when 

employed with the HOG or the hybrid functions. The highest improvement in the test F1 was observed in the HOG GLCM fold-

wise setup (1.06 points above baseline). However, the total F1-score remained lower than those achieved by more complex 

classifiers, reinforcing that linear models such as LR are far less appropriate for brain tumor classification tasks, even though 

class balancing methods were used. 
As seen in Table 11, the KNN classifier had consistently high performance across all feature types and configurations, 

displaying good generalization and benefiting greatly from the well-separated feature spaces. When the GLCM features were 
used alone, the classifier demonstrated good generalization, with a validation F1-score of 84.04% and a test F1-score of 87.47%. 
In particular, applying the SMOTE barely improved the validation performance to 87.34%, but the test F1-score remained at 
87.34%, showing a minimal realistic impact.  Interestingly, the fold-wise SMOTE maintained equal validation overall 
performance (84.24%) and obtained the highest test F1-score in this situation (87.74%), indicating the resilience of the GLCM 
features for the KNN, which also increased significantly with augmentation using the SMOTE fold-wise. 

In comparison, the HOG capabilities produced substantially superior results. Without any augmentation, the model achieved 

a validation F1-score of 89.24% and an excellent test F1-score of 94.77%, demonstrating the HOG's discriminative energy in 
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KNN classification. The SMOTE increased validation to 91.80%, while the test F1 declined somewhat to 93.9%. The fold-smart 

technique achieved comparable validation (89.49%) and a test F1-score (93.86%), suggesting that for well-established features 
like HOG, augmentation provides minor benefits and can even lead to a significant reduction in generalization due to synthetic 

redundancy. 

The blended feature set HOG + GLCM produced the best results, with the test F1-scores reaching 95.71% without 

augmentation. The SMOTE and the fold-wise SMOTE produced stable effects of 95.42%, matching the high performance of the 

initial feature set but failing to improve comparably. This stability demonstrates that the integrated functions currently provide 

sufficient class separability, with an enlargement that adds a little extra value. 

In conclusion, the KNN benefited the most from the rich descriptors, such as HOG, with test-time performance already 

approaching the ideal case, particularly when paired with the GLCM. While the SMOTE occasionally increased validation 

scores, its impact on the test F1-scores was minor, especially when the baseline performance was already strong. However, the 

SMOTE improved the GLCM significantly (0.27 %). 

Table 11: Summary results of the KNN classifier for Dataset 2 
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GLCM 100 100 100 100 84.24369 84.4032

4 

84.24369 84.04362 87.79558 88.08949 87.79558 87.47723 

GLCM SMOTE 100 100 100 100 87.41379 87.4914

5 

87.41379 87.34781 87.64302 87.92599 87.64302 87.34003 

GLCM SMOTE  

fold-wise 

100 100 100 100 84.34894 84.4260

3 

84.34894 84.24704 87.94813 88.05555 87.94813 87.74581 

HOG 100 100 100 100 89.42576 89.4941

2 

89.42576 89.24734 94.81312 94.84302 94.81312 94.77004 

HOG SMOTE 100 100 100 100 91.8652 91.8972 91.8652 91.80759 93.97407 93.94469 93.97407 93.93985 

HOG SMOTE 

fold-wise 

100 100 100 100 89.60117 89.5959

8 

89.60117 89.4962 93.89779 93.85746 93.89779 93.86974 

HOG + GLCM 100 100 100 100 90.72126 90.7570

3 

90.72126 90.63029 95.72845 95.74199 95.72845 95.71317 

HOG + GLCM 

SMOTE 

100 100 100 100 92.78997 92.8211

8 

92.78997 92.75296 95.42334 95.42427 95.42334 95.42061 

HOG + GLCM 

SMOTE fold-

wise 

100 100 100 100 91.14146 91.1625 91.14146 91.09086 95.42334 95.42427 95.42334 95.42061 

As shown in Table 12, the SVM classifier demonstrated a great overall performance across all feature types, particularly the 
high training indicators, which regularly achieved optimal rankings. The effect of the SMOTE varied depending on the feature 
set. However, in most cases, it resulted in moderate increases or stability in the test-time performance. 

With GLCM features, the baseline validation and the test F1-score were already high, at 87.91% and 90.07%, respectively.  
Applying the SMOTE resulted in a tiny increase in the validation F1 to 89.96% and a modest increase in the test F1 to 90.46%, 
indicating a minor advantage from balanced class representation. Interestingly, the SMOTE fold-wise approach caused the 
overall validation performance to decline somewhat (87.61%). Still, it achieved the highest test F1 on this group: 90.74%, 
indicating more potent generalization. At the same time, artificial data were restricted to the training folds, which supports the 
idea that the fold-wise augmentation can reduce overfitting to synthetic data while improving class balance. 

Switching to the HOG features improved the overall performance on average. The baseline test F1-score increased to 
92.86%, indicating the excessive separability of HOG features for SVM. The SMOTE increased the validation F1 to 92.18%, 
and the test F1 increased slightly to 93.09%, demonstrating a tiny but considerable benefit from oversampling. In testing, the 
fold-wise SMOTE provided nearly similar validation (89.29%) and minimally affected test overall performance (92.3%), 
implying that the entire training augmentation can be more potent when such powerful features are used. 

The SVM classifier performed satisfactorily in terms of the mixed HOG + GLCM features. Without augmentation, the model 
achieved a test F1-score of 95.95%, which was nearly identical when the SMOTE (95.87%) or the SMOTE fold-wise(95.87%) 
was used. While validation ratings increased slightly with SMOTE (from 92.6% to 94.41%) and increased further (92.86%), test 
rankings remained stable, indicating that the rich joint descriptor area already provides sufficient separability and that SMOTE 
provides little additional generalization benefit in this example. 

In summary, the SVM produced consistently solid results across all setups.  The SMOTE, in both full and fold-wise modes, 
provided significant profits for the GLCM and reasonable improvements for HOG in each validation and test F1 scores. The 
impact on the mixed HOG GLCM features was low due to the strong baseline performance. Overall, the SMOTE performed best 
for single-descriptor feature areas, with the fold-wise augmentation occasionally providing pleasing generalization, particularly 
for texture-based features such as the GLCM. 

 
 
 



Farah R. Fadhil & Zainab Sultani Engineering and Technology Journal 43 (10) (2025) 804-821 

 

817 
 

 

Table 12: Summary results of the SVM classifier for Dataset 2 
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HOG SMOTE 

fold-wise 

100 100 100 100 89.33839 89.2806
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89.33839 89.29015 92.67735 92.6135 92.67735 92.63424 

HOG + GLCM 100 100 100 100 92.68218 92.6824
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92.68218 92.66413 95.95728 95.99057 95.95728 95.95121 

HOG + GLCM 
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100 100 100 100 94.40439 94.4666
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94.40439 94.41583 95.88101 95.90598 95.88101 95.87364 

HOG + GLCM 

SMOTE fold-

wise 

100 100 100 100 92.85718 92.9236 92.85718 92.86145 95.88101 95.90598 95.88101 95.87364 

Table 13: Summary results of the LR classifier for Dataset 2 
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796 

89.21
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As shown in Table 13, the LR classifier performed moderately and more variably than the other models, with training metrics 
well below the top rankings, indicating a reduced possibility for complicated decision restrictions. The effect of the SMOTE 
became dependent on the feature set, typically leading to tiny but consistent gains in real-time overall performance, particularly 
for weaker descriptors. 

With GLCM features, the baseline validation and the test F1-score were 74.50% and 69.86%, respectively. Applying the 
SMOTE increased the validation F1 to 74.94% and the test F1 to 70.49%, demonstrating a moderate effect of balancing training. 
The fold-wise version had comparable validation performance (74.47%), but the best test F1 on this set was 70.61%, indicating 
significantly more potent generalization when artificial samples were limited to training folds. 

Using HOG features resulted in better results overall. The baseline F1-score was 72.45%, whereas the SMOTE maintained 
comparable levels (71.60%) with very minor changes in validation criteria. The fold-wise SMOTE technique achieved a slight 
decrease in F1 to 71.75%, demonstrating consistent behaviour but limited gain while the features are already quite discriminative. 

In contrast, the LR delivered excellent results for the combined HOG GLCM functions. Without augmentation, the test F1-
score reached 81.5 percent.  The SMOTE increased the validation F1 from 84.31 to 85.00% and the test F1-score from 81.85 to 
82.11%. In comparison, the fold-smart variant provided the highest test F1 at 82.26%, highlighting the ability of fold-wise 
augmentation to improve generalization without overfitting to artificial data. 
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In conclusion, the LR profited the most from the SMOTE when using considerably fewer discriminative functions, such as 
GLCM, with modest improvements for more powerful feature units. The fold-wise technique produced excellent test-time 
performance, reinforcing its usefulness for improving generalization in decrease-capacity models. 

The Receiver Operating Characteristic (ROC) curve and its associated Area Under the Curve (AUC) provide a 
comprehensive evaluation of the classifier's ability to distinguish between classes. These curves illustrate the trade-off between 
False Positive Rate (FPR)  and True Positive Rate (TPR), with micro AUC and per-class AUC values. The Classes C0, C1, C2, 
and C3 correspond to glioma, meningioma, no tumor, and pituitary, respectively. This improvement can be due to the balanced 
distribution of instructions completed using SMOTE.  The AUC values after augmentation are minimally increased in some 
feature extraction techniques (such as HOG in KNN and HOG + GLCM in LR), and these results are consistent with the previous 
F1-score analysis findings, indicating that the SMOTE adds to magnificent balance and slight robustness improvements, albeit 
not uniformly across all models. As shown in Figure 6 a, the learning curves demonstrate the training and validation performance 
of the classifiers, while Figure 6b presents the ROC curves highlighting the improvements achieved through SMOTE 
augmentation. 

For the second dataset, we analyzed each classifier's baseline setup and the most advanced SMOTE-based configuration (not 
the best method with SMOTE across all methods in the single classifier). Specifically, for the KNN, the baseline became HOG 
+ GLCM, and the improved one was the GLCM with SMOTE (fold-wise); for SVM, the baseline became HOG + GLCM, and 
the improved one became HOG with SMOTE; and for the LR, the baseline and improved results were acquired using HOG + 
GLCM and HOG + GLCM SMOTE fold-wise, which is the most beneficial from the SMOTE. For the second dataset, we 
analyzed each classifier's baseline setup and the most advanced SMOTE-based configuration (not the best method with SMOTE 
across all methods in the single classifier). Specifically, for the KNN, the baseline became HOG + GLCM, and the improved 
one was GLCM with SMOTE (fold-wise); for the SVM, the baseline became HOG + GLCM, and the improved one was HOG 
with SMOTE; and for the LR, the baseline and the improved results were acquired using HOG + GLCM and HOG + GLCM 
SMOTE fold-wise, which is the most beneficial from the SMOTE. As shown in Figure 7a, the learning curves demonstrate the 
differences between baseline and SMOTE-augmented configurations for each classifier. Figure 7b presents the corresponding 
ROC curves, which confirm the improvements obtained with SMOTE augmentation. 

 
(a) 

 
(b) 

Figure 6: a) Learning curves and b) ROC curves for the first dataset, illustrating the configurations under baseline and with SMOTE  
  augmentation: KNN (GLCM features), SVM (HOG features), and Logistic Regression (HOG + GLCM features), SMOTE 

          settings 

 
(a) 

 
(b) 

Figure 7: a) Learning curves and b) ROC curves for the second dataset, illustrating the configurations for KNN: HOG + GLCM, GLCM 
         SMOTE; for SVM: HOG + GLCM, HOG SMOTE fold-wise; and for Logistic Regression (LR): HOG + GLCM, HOG + GLCM  
         SMOTE fold-wise 
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5. Conclusion 

This study examined the effect of SMOTE augmentation, applied in both complete and fold-wise modes, on brain tumor 

MRI classification using hand-made features (GLCM, HOG, and HOG GLCM) and three classic classifiers (KNN, SVM, and 

LR) across two datasets.  

For Dataset 1, the most significant improvement was reported for SVM with GLCM features, with the Test F1-score 
increasing from 55.21 (baseline) to 57.40% with the complete SMOTE and 55.91% with the fold-wise SMOTE. The LR gained 

the greatest advantage with HOG GLCM, increasing from 52.4 to 53.5%. However, the KNN revealed limited interchange, 

indicating a lower sensitivity to oversampling on this dataset. 

For Dataset 2, the fold-wise SMOTE improved the GLCM performance in KNN from 87.48 to 87.75%, while the SVM 

profited significantly in GLCM (90.07% to 90.74%) and HOG (92.87% to 93.10%) compared to the full SMOTE. The LR made 

significant gains with GLCM (69.85% - 70.61%) and HOG + GLCM (81.85% - 82.26%) by utilizing the fold-wise technique. 

The combined HOG GLCM features in SVM maintained a great baseline overall performance (~95.9%) with negligible changes, 

indicating that the SMOTE is less effective when characteristic richness is already high. 

Overall, the findings suggest that the effectiveness of SMOTE is substantially influenced by feature discriminability, 

classifier type, and augmentation strategy. The fold-wise variation generally improved generalization by preventing information 

leakage, whereas the complete SMOTE occasionally offered higher validation scores but carried a minimal risk of overfitting. 
These findings support SMOTE as a valuable tool for improving performance in imbalanced medical imaging datasets, 

particularly for weaker texture-based descriptors such as the GLCM. 
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