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H I G H L I G H T S  
 

A B S T R A C T  

 An image-based method was developed to 
classify lung and colon cancer using CLAHE-
enhanced histopathology images. 

 Color histograms and LBP features were 
combined to improve classification across five 
cancer-related classes. 

 XGBoost with RFE achieved 99.80% 
accuracy by selecting the most relevant 
handcrafted features. 

 CLAHE preprocessing enhanced feature 
clarity, improving model accuracy and 
interpretability. 

 SHAP and LIME tools were used to explain 
model decisions, supporting transparent AI-
driven cancer diagnosis. 

 Lung and colon cancers are two of the most common and deadly tumors around the 
world, creating significant public health concerns. Artificial intelligence (AI) and 

machine learning (ML) have heavily improved cancer research, particularly in early 
detection, histopathological analysis, and personalized therapy planning. However, 
despite their remarkable accuracy, ML models sometimes lack transparency, making 
explainability crucial in medical applications. Although various machine learning 
(ML)-based classifications for cancer models exist, their interpretation is not 
understood. The current research overcomes the diagnostic gap by developing a 
highly accurate system that uses XAI (Explainable Artificial Intelligence) methods 
to clarify its predictions. We used Kaggle's LC25000 dataset, which included 

histology images for lung and colon tumors in humans. To determine the best cancer 
classification strategy, we tested various machine learning algorithms, including 
Random Forest, Decision Tree, Support Vector Machine (SVM), and Extreme 
Gradient Boosting. Furthermore, XAI approaches such as LIME (Local Interpretable 
Model-Agnostic Explanations) and SHAP (Shapley Additive Explanations) were 
utilized to evaluate model predictions and identify important information affecting 
classification outcomes. XGBoost confirmed that it was useful in identifying colon 
and lung cancer by achieving the highest accuracy of 99.80% among the models 
used. Also, XAI techniques offered useful information on the most significant 

features. SHAP analysis highlighted LBP and color histogram features as key for 
distinguishing lung and colon tissues, while LIME confirmed their importance by 
identifying critical image regions influencing predictions. 

Keywords:  

Lung cancer 
LC25000 dataset 
Colon cancer 
Machine learning 
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1. Introduction 

Cancer is the leading cause of mortality worldwide, second only to cardiovascular disease [1]. In 2018, they were responsible 

for 2.9 million new instances and more than 2.5 million fatalities in the United States alone [2]. Lung cancer is responsible for 

18.4% of cancer fatalities, whereas 9.2% of cases are of colon cancer [3-4]. Approximately 17% of lung and colon cancer cases 

occur simultaneously. This is unlikely, yet in the absence of early exploration, cancer cell transmission across these two organs 
is rather common [5]. It is difficult to detect cancer without a comprehensive diagnostic test such as a computed tomography 

(CT) scan, magnetic resonance imaging (MRI), positron emission tomography (PET) scan, ultrasound, or biopsy. In many 

situations, individuals show little to no symptoms in the early stages, and when symptoms do appear, the diagnosis is usually too 

late [1]. Currently, adequate therapy as well as quick detection are just ways to minimize deaths from cancer [6]. This study only 

uses histological images to diagnose colon and lung cancers automatically. Health professionals commonly utilize 

histopathological images for diagnosis, and they are critical in estimating patients' chances of survival [1]. Traditionally, health 

experts had to go through a lengthy procedure to diagnose cancer by reviewing histopathological images; however, with the 

technological tools accessible today, this process can now be completed with less time and effort [5]. 

With the growth of AI and machine learning for medical imaging, image processing methods such as image vision, 

classification, and segmentation assist radiologists in diagnosing illnesses as early as feasible compared to manual examinations 

[7]. The advancement of machine learning has permitted the creation of decision support systems that display predictive 
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accuracy, outperforming the skills of humans in some contexts [8]. However, the model's complexity level has increased due to 

this advancement, leading to models of black boxes that conceal their underlying reasoning from users [8]. This is especially 
noticeable when users need to interpret the output of AI systems [9]. Because technology is used in medical applications such as 

cancer prediction, the solutions must be dependable and efficient, as they put human lives at risk, where errors can have serious 

implications [10]. Because black-box characteristics are classified across multiple fields, people and experts find these ML 

models' applications unreliable [11].  

To solve this problem, explainable artificial intelligence (XAI) was created, explaining how machine learning (ML) makes 

decisions. Explainable machine learning aims to make "black box" modeling decisions more transparent and trustworthy [12]. 

To put it simply, XAI is the action of making AI systems simpler for people to understand [13-15]. Shapley Additive ExPlanation 

(SHAP) and Local Interpretable Model-agnostic Explanations (LIME) are two major XAI approaches [16-17]. The paper's 

primary achievements include establishing an accurate and interpretable diagnostic approach for lung and colon cancers. Color 
histograms and Local Binary Patterns (LBP) were used to determine important image features. After extracting features, 

Recursive Feature Elimination (RFE) was applied to streamline the feature set. These features were then used as input into 

classification models. The system delivers remarkable diagnostic performance using machine learning models such as Decision 

Tree, Random Forest, SVM, and XGBoost with XAI techniques. Integrating Explainable AI (XAI) approaches such as SHAP 

and LIME promotes transparency by exposing the characteristics that influence predictions. This method builds confidence, 

facilitates clinical decision-making, and reduces the gap between useful applications for healthcare and potent AI technologies, 

resulting in earlier identification and better patient outcomes. The following sections comprise the paper's structure: The related 

work is covered in the second section, the material and methods are covered in the third, and the results and the discussion are 

covered in the fourth. Additionally, the conclusion is covered in the fifth section. 

Developments in machine learning (ML) and deep learning (DL) techniques have improved the classification of lung and 

colon tumors. Researchers have examined various methods and procedures to improve diagnosis accuracy and model 
interpretability, two factors crucial in clinical applications. The LC25000 dataset has been utilized in recent research to classify 

histological images shows in Table 1. 

Chehade et al. [18], concentrate on classifying photos of lung and colon cancer histopathology using machine learning 

techniques. Histopathological image downsizing to 200×200 pixels can be found in the LC25000 collection. During 

preprocessing, contrast is enhanced using the Unsharp Masking (UM) approach. The three feature extraction techniques are first-

order statistics, the gray-level co-occurrence matrix (GLCM), and Hu invariant moments. The Recursive Feature Elimination 

(RFE) method is used for feature selection. Many machine learning models, such as XGBoost, Support Vector Machine (SVM), 

Random Forest (RF), Linear Discriminant Analysis (LDA), and Multilayer Perceptron (MLP), are used for categorization. When 

training on the entire LC25000 dataset (25,000 images) with 70% training and 30% testing, XGBoost obtained the greatest 

accuracy of 99%. When Explainable AI (XAI) techniques are implemented, feature contributions are understood using SHAP 

(Shapley Additive exPlanations). The study demonstrates that machine learning algorithms can accurately diagnose lung and 

colon cancer and generate easily comprehensible results. Al-Jabbar et al. [19], classified lung and colon cancers. The averaging 
filter and CLAHE are employed to increase contrast and lower noise. While DWT, LBP, FCH, and GLCM extract handcrafted 

features, GoogLe Net and VGG-19 extract deep features. The overlap in selecting features has been removed via PCA. By 

attaining 99.64% accuracy with VGG-19 and handcrafted features and 99.22% accuracy with GoogLeNet and handcrafted 

features, the main classifier, ANN, demonstrated the effectiveness of feature fusion in cancer diagnosis. 

Table 1: Comparing the obtained outcomes with different methods utilizing the same lung and colon cancer dataset 

Focus Machine Learning Model Results Ref. 

Classification: Lung & Colon Cancer XGBoost, SVM, and other ML models trained 
on the LC25000 dataset with feature 
engineering techniques 

XGBoost Accuracy 99%  [18] 
 

Early diagnosis of lung and colon 
cancer 

GoogLeNet, VGG-19, ANN achieving 99.64% accuracy with 
VGG-19, 99.22% accuracy with 
GoogLeNet 

 [19] 

Classification of lung and colon cancer 
using an ensemble deep learning 

approach with advanced 
hyperparameter tuning. 

Ensemble of Xception and MobileNet 
architectures 

Achieved exceptional precision 
and recall for malignant tissues, 

with a 99.44% classification 
accuracy. 

 [20] 

Lung and colon cancer classifier using 
Explainable AI (XAI) 

Lightweight Multi-Scale CNN (LW-MS-
CCN) with Grad-CAM & SHAP for 
explainability 

Achieved 99.20% accuracy on 
LC25000 dataset 

 [21] 

 

Vanitha et al. [20], offered a deep-learning ensemble method for detecting lung and colon cancer using histopathology images. 

It uses the LC25,000 dataset, which comprises 25,000 histopathology images divided into five groups. The images were consistently 

downsized to 224×224 pixels and evaluated using two deep learning architectures, Xception and MobileNet. These algorithms were 

adapted for classifying cancer after being pre-trained on the ImageNet dataset. An ensemble technique was used to improve 

classification accuracy, pooling the output of both models. Explainable AI (XAI) was developed using Gradient-weighted Class 

Activation Mapping (Grad-CAM), visually depicting the model's decision-making procedure. The suggested methodology 

demonstrated a remarkable 99.44% accuracy rate in categorizing histological images of colon and lung cancer. 

A lightweight multi-scale convolutional neural network (LW-MS-CCN) model was suggested by Hasan et al. [21], for 

classifying lung as well as colon cancers using histopathology images. The dataset used in the current study is LC25000. The 
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dataset was prepared by downsizing to 180×180 pixels and using data augmentation techniques like flips and rotations to improve 

the model's resilience. By selecting and extracting features using multi-scale convolutional layers, a machine could identify 
patterns in histopathological images at the global and local levels. The model's 99.20% accuracy in cancer classification shows 

how well it worked. Furthermore, Explainable AI (XAI) tools such as Grad-CAM and SHAP were included in the model to 

visually understand its judgments, improving the algorithm's transparency and dependability for medical professionals. 

2. Materials and methods 

Figure 1 shows the overall layout of the recommended method for classifying lung and colon cancer using histopathological 

images. The LC25000 dataset contains 25,000 images, of which 5,000 have been reduced to 250 by 250 pixels for every class. 

Prior to collecting each image's attributes, the contrast of each image was increased using the Contrast Limited Adaptive 

Histogram Equalization (CLAHE) technique. The most effective features are selected using a feature selection technique called 

Recursive Feature Elimination. 80% of the dataset was utilized for training (chosen at random), while 20% of it was used for 

testing. The training set's image properties are used for training a machine learning method. The efficacy of the model is assessed 
using the testing set image features. Lastly, SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-

agnostic Explanations) are employed to improve interpretation and better understand the predictions. 

 

Figure 1: Block diagram of the approach used to classify cancer types by histopathological images 

2.1 Lung and colon cancers datasets 

This paper made use of A. Borkowski and his associates' histopathology images (LC25000) dataset that was released [22]. 

There are 25,000 images of lung and colon tissues in this collection, arranged within five categories, with 15,000 depicting lung 

cancer and 10,000 depicting colon cancer [23]. The LC25000 dataset is divided into five files, each representing one 

class/category: lung aca (adenocarcinoma), lung scc (squamous carcinoma), lung n (benign), colon aca (adenocarcinoma), and 

colon n (benign). Each folder contains 5,000 tissue images [24]. All images on LC25000 have the same resolution, 768x768 
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pixels. The original developers also enhanced the images (random rotation, horizontal and vertical flip) to increase the data in 

the dataset [25]. Figure 2 (a - e) depicts images from the dataset that demonstrate significant tissue types such as colon 
adenocarcinoma, lung squamous cell carcinoma, benign colon and lung tissue, and lung adenocarcinoma, illustrating the variety 

of the dataset. Table 2 shows 25,000 histopathology images from the LC25000 dataset split into tissues of the colon (10,000 

samples) and the lung (15,000 samples). Each group contains both normal and malignant samples. 

 
            (a)                                        (b)                                           (c)                                    (d)                                           (e) 

Figure 2: Several histopathology image samples from the LC25000 dataset (a) colon adenocarcinoma  (b) lung adenocarcinoma (c) normal  
        colon (d) normal lung (e) lung squamous cell carcinoma 

Table 2: Summary of the LC25000 dataset 

Cancer Type Samples Colon and Lung 

Colon adenocarcinoma 5000 
10000 

Colon benign tissue 5000 

Lung adenocarcinoma 5000 

15000 Lung benign tissue 5000 
Lung squamous cell carcinoma 5000 

Total 25000 

2.2 Data preprocessing 

The input data was preprocessed before training the model. First, the images were scaled to 250*250 pixels using bicubic 

interpolation. Bicubic interpolation produces higher-quality images with smoother transitions. It is generally the better choice 

for medical images due to its ability to preserve important image details, making it better suited for applications that require high 

accuracy in visualizing structures. CLAHE filtering was applied to enhance image quality for better suitability in the learning 

process. 

2.2.1 Contrast limited adaptive histogram equalization (CLAHE) filter 

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an adaptable histogram equalization technique [26, 27] that 

limits the excessive improvement of image contrast. CLAHE is commonly used to improve image contrast in computer vision 

and pattern recognition applications [28-29]. CLAHE was added to the image's L component to boost visibility before being 

converted back to RGB [30]. The LAB color space separates color and luminance information, making it easier to use contrast 

enhancement techniques [31-32]. Figure 3 shows the procedures for applying a contrast algorithm to the image's luminance 

channel. Figure 4 depicts the application of CLAHE to a histopathology image. This preprocessing stage is critical in medical 

imaging because it improves fine details, resulting in more accurate feature extraction and analysis.   

2.3 Feature extraction 

Feature extraction (FE) is critical in image retrieval, processing, data mining, and computer vision. FE is the process of 

extracting useful information from unstructured data. It is used to extract the most distinguishing features from a dataset (image, 

text, voice), which are then utilized to represent and describe the data. This paper employs color histogram and local binary 

pattern (LBP) feature extraction.  

2.3.1 color histogram 

The color histogram (CH) is the most extensively used technique for obtaining an image's color feature [33,34]. Proposed 

as a global color descriptor that examines all statistical color frequencies in an image [35]. An HSV color space was used because 

the hue and saturation of the human visual system are extremely similar [36]. Color histograms based on the HSV color space 

are more precise than other popular color representations, such as color layout descriptors, color moments, and color structure 

descriptors based upon retrieval in the HSV color space. Figure 5 (a - d) shows a histopathology image's HSV (hue, saturation, 

value) color space decomposition. A 512-bin color histogram uses 8 bins per channel (H: 0-256, S: 0-256, V: 0-256) to represent 
the color distribution of an image in HSV space. Figure 6 presents the extraction of color features from the Histopathology image 

for analysis using the "Color Histogram". The HSV (hue, saturation, value) color distribution is represented by red, green, and 

blue curves, respectively. 
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Figure 3: Enhance image by CLAHE      

 

Figure 4: CLAHE technique on the LC25000 Dataset 

 
                (a)                                                     (b)                                                    (c)                                                         (d) 

Figure 5: HSV color space decomposition for histopathology image (a) Original (b) Hue (c) Saturaction (d) Brightness 
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Figure 6: Color feature extraction using HSV histogram in histopathology images 

2.3.2 local binary pattern (LBP) 

One of the most often used texture descriptors in computer vision is LBP. Most applications utilize LBP histograms as 

texture features, creating a high-dimensional feature space, especially for tasks involving categorizing color textures. The LBP 

operator is commonly used to produce texture features for gray-level image classification because of its inherent simplicity and 

resilience [37]. This procedure applies throughout the full image to build an LBP feature map, capturing texture patterns for 

machine learning-based image classification and recognition tasks. Figure 7 shows LBP, where a grayscale image's pixels are 

compared to the center (e.g., 87), forming an 8-bit binary (e.g., 11100001 → 225), creating a texture-based feature map. 

 

Figure 7: LBP feature extraction 

Table 3 classifies distinct patterns of LBP into two distinct groups: uniform and non-uniform. Uniform patterns have no 

more than two-bit transitions, such as (00000000, 00000001). These patterns depict basic textures like smooth areas, edges, and 

corners. Non-uniform patterns, like 10101010, feature more than two-bit transitions and represent complex textures. Based on 

this classification, 10 LBP features were extracted. 

Figure 8 illustrates the feature extraction process for image analysis. It has 512 color histogram features and 10 additional 

Local Binary Pattern (LBP) features, for a total of 522. These properties are useful for image categorization and texture analysis. 

 



Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794 

 

781 

Table 3: LBP binary patterns and texture classification 

Bin LBP pattern Binary pattern Uniform/Non-Uniform 

0 (Smooth Regions) 00000000 Uniform 

1 (Edges) 00000001 Uniform 
2 (Edges) 00000011 Uniform 
3 (Edges) 00000111 Uniform 
4 (Edges) 00001111 Uniform 
5 (Corners) 11100011 Uniform 
6 (Corners) 10001111 Uniform 
7 (Corners) 11110001 Uniform 
8 (Corners) 11110011 Uniform 

9 (Complex Textures) 10101010 Non-Uniform 

 

Figure 8: Color histogram and LBP feature extraction 

2.4 Feature selection - recursive feature elimination (RFE) 

Recursive Feature Elimination (RFE) is an approach of generality that may be used with most models [38]. RFE is a common 
pruning approach for selecting features that enhance classification performance [39,40].  RFE is the process of gradually removing the 
least important features from a model by recursively training it and measuring feature relevance until the required number of features 
is achieved [41]. It assists in identifying the most relevant subset of characteristics for the best model performance. 

2.5 Machine learning models 

Over the past ten years, machine learning techniques have become a significant threat to traditional statistical models in 
terms of prediction [42]. Machine learning (ML) technology greatly aided the development of prediction systems, producing 
better and more affordable solutions. We experimented with various machine learning classifiers, such as decision Trees, support 
vector machines (SVM), random forests, and XGBoost. Decision trees are the most popular and efficient tool for categorizing 
and predicting difficulties [43]. It is hierarchically structured, including root, branches, and internal and leaf nodes. It has a tree-
like structure and is used to create a model that predicts the target value using judgments from the training dataset [44]. Support 
Vector Machines (SVMs) have been developed as an effective classifier and regression tool. [45]. Random forests are a set of 
tree predictors in which each tree is determined by the values of a random vector selected separately and uniformly across the 
forest [46]. It is a quick and computationally effective method for dealing with huge datasets [47]. XGBoost is a powerful 
gradient tree-boost software that can handle large-scale machine learning workloads [48]. Because of its outstanding performance 
and low time and memory requirements have been widely used in various research fields since its introduction, including cancer 
diagnosis and medical record analysis [49]. The benefit of regularization is that it helps prevent overfitting, allowing the model 
to generalize better to unseen data [50]. 

The model's hyperparameters were set to maintain computational efficiency while enhancing the model's ability to generalize 
well using grid search. Tables 4, 5, 6, and 7 display the DT, SVM, RF, and XGBoost hyperparameters, respectively.  

Figure 9 illustrates that Grid search is a systematic method for selecting the best hyperparameters for machine learning 
models by exhaustively evaluating predefined parameter combinations. The process begins by defining a parameter grid, which 
specifies the range of values for each hyperparameter (e.g., learning rate, tree depth, or regularization strength). The algorithm 
then trains and evaluates the model for each possible combination of these values, typically using cross-validation to ensure 
robust performance estimation. In this case, the model’s performance is measured using a predefined metric, such as accuracy. 
After testing all combinations, the hyperparameter set that yields the highest performance is selected as the optimal configuration. 
The key benefit of grid search is that it guarantees finding the best combination of hyperparameters within the specified search 
space. While it can be computationally expensive, grid search provides a reliable and straightforward method for hyperparameter 
optimization, improving the model’s performance and generalization ability. 
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Table 4: Hyperparameters of the decision tree model 

hyperparameters value 

Maximum depth of each tree 10 

Minimum number of leaf nodes 5 
Minimum number to split 5 

criterion entropy 
Random state 42 

Minimum impurity decrease 0.01 

Table 5: Hyperparameters of the SVM model 

hyperparameters value 

kernel linear 
gamma scale 
C 0.1 
probability True 
Random State 42 

Table 6: Hyperparameters of the random forest model 

hyperparameters value 

bootstrap sampling True 
Maximum depth of each tree 10 
Minimum number of leaf nodes. 4 
Minimum number to split 10 
Number of trees 150 
Maximum Features sqrt 
Random State 42 

Table 7: Hyperparameters of the XGBoost model 

hyperparameters value 

Column subsampling by tree 0.7 
Learning rate 0.05 
Maximum depth of each tree 4 
Number of trees 200 
Subsample ratio of instances 0.7 
Evaluation metric Mlogloss 
Minimum child weight 10 
Gamma 1.0 

Regularization alpha 2.0 
Regularization lambda 1.0 
Random state 42 
Use a label encoder False 

 

 

Figure 9: Grid search optimization for hyperparameter tuning 
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2.6 Model explainability  

SHAP and LIME are techniques for explaining machine learning predictions. SHAP assigns feature importance using game 

theory, while LIME approximates model behavior locally. Both improve model interpretability. 

SHAP uses values to demonstrate the transparency of the machine learning models. It calculates how much each attribute 

contributes to the forecast by calculating Shapley values throughout the dataset. Proposes explaining model prediction for a given 

input by computing each feature's contribution [51]. Equation 1 calculates the SHAP value (ϕi) for each feature by considering 

its contribution across all possible feature subsets, ensuring a fair distribution of feature importance. 

 𝜙𝑖 = ∑
∣𝑆∣!(∣𝑁∣−∣𝑆∣−1)!

∣𝑁∣!𝑆⊆𝑁∖{𝑖}  (𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆))  (1) 

 
N collection of all features, S subset of N excluding feature i, f (S) models prediction utilizing only the features in S,  f (S∪{i}) 

models prediction that involve feature i,  ϕiis the SHAP value, representing the contribution of feature i to the final prediction. 

LIME is another interpretable model used to show machine learning models' interpretability. Unlike SHAP, it supports local 

model interpretation. XAI approach for successfully explaining classifier or regressor predictions by approximating them locally 

with an interpretable model [52]. LIME is model-agnostic, which means it may be used with any machine-learning model [52]. 

To maintain both the interpretability and fidelity of the surrogate model to the original model, we optimize the objective function 

presented in Equation 2. 

 𝑎𝑟𝑔  𝑚𝑖𝑛
𝑔∈𝐺

  𝐿 (𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔)  (2) 

G is the set of possible interpretable models, L (f, g, πx) is the loss function measuring the variation from the initial model f and 

the  surrogate model g, weighted by πx , which assigns higher importance to points closer to x,  Ω (g) is a complexity penalty to 

ensure interpretability. 

3. Results and discussion 

The Lung and Colon Cancer Histopathological Image Dataset includes 25000 images separated into five groups (colon_aca, 

lung_aca, colon_n, lung_n, and lung_scc), each with 5000 images. The images are divided into two folders. The training folder 

has 20000 images, whereas the testing folder contains 5000 images. All images across the five classes were resized to 250 × 250 

pixels. After that, feature extraction was performed using two texture analysis techniques: color histogram and LBP. Table 7 

highlights the evaluation of model performance using these individual techniques and their combinations to determine the most 

effective feature extraction strategy with and without using the CLAHE filter. Following that, Table 8 highlights that the feature 

set was refined and optimized using Recursive Feature Elimination (RFE) without a CLAHE filter. Table 9 shows the results of 

the CLAHE filter to improve image quality and learning performance. 

Table 8 compares the classification accuracy of various machine learning models using three feature extraction strategies: 
Color Histogram, Local Binary Patterns (LBP), and their combination. The results indicate a clear trend in feature effectiveness, 

which can be explained based on the features' nature and complementary properties. 

color histogram alone 

 This feature captures the global color distribution in an image, which is particularly effective when color is a strong 

discriminative cue for classification. 

 It consistently achieves high accuracy across all models (above 95%), suggesting that color information alone is highly 
informative for the task. 

LBP alone 

 LBP is a texture descriptor that captures local spatial patterns, which is valuable in images where surface texture 

contributes to class distinction. 

 However, its performance is notably lower than Color Histogram in all models (dropping as low as ~83% with SVM). 

 This suggests that texture information alone may be insufficient for accurate classification in this dataset, possibly due to 
low texture variation or the dominance of color-based cues. 

color histogram and LBP 

 The combined feature set consistently outperforms the individual features, achieving the highest accuracy (e.g., 99.56% 

with XGBoost). 

 This improvement highlights the complementary nature of the features: while color histogram captures global color 

distribution, LBP adds local texture information that can resolve ambiguities when color alone is not decisive. 

 The synergy between these features likely allows the model to better generalize across varied image characteristics. 

 This analysis suggests that feature diversity enhances model performance by providing complementary information. 

XGBoost benefits the most from the combined features, due to its ability to handle complex feature interactions and 
perform fine-grained splits in high-dimensional space. 
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Table 8: Comparing the accuracy outcomes using the extraction of features for the various models without the CLAHE filter 

Feature extraction RF XGBoost SVM DT 

Color histogram 97.56% 98.98% 95.96% 97.32% 

LBP 86.94% 86.12% 83.52% 84.26% 
Color histogram + LBP 98.02% 99.56% 97.08% 98.26% 

 
Table 9 compares the performance of four models on image classification using different features selected by Recursive 

Feature Elimination (RFE). Decision Tree and SVM performance remain consistent, with only minor gains across different 
feature subsets, demonstrating that they are less susceptible to the selected number of features. In contrast, XGBoost and Random 
Forest gain considerably from additional features, obtaining the maximum accuracies (99.58%) with 100 features. 

RFE improves the performance of XGBoost and Random Forest by identifying the most important features, allowing these 
models to capture complicated patterns and increase accuracy. Random Forest works particularly well by aggregating forecasts 
from several decision trees using a diversified feature set. Overall, RFE contributes the most to XGBoost and Random Forest, 
resulting in significant gains in classification performance. 

Table 9: Accuracy of different models with varying numbers of features selected via (RFE) without the use of CLAHE filter 

Model NF= 50 NF= 100 NF= 200 NF= 250 

Random Forest 98.78% 98.70% 98.52% 98.18% 
XGBoost 99.32% 99.58% 99.50% 99.46% 
SVM 96.46 97.14 97.8 97.10 
Decision Tree 98.28% 98.32% 98.22% 98.26 

  Note: NF =number of feature selection 

Table 10 compares the accuracy results of several feature extraction models with the CLAHE filter. Without RFE, XGBoost 
had the greatest classification accuracy of 99.72%, followed closely by Random Forest at 98.70%. SVM and Decision Tree also 
performed well, scoring 97.92% and 98.52%, respectively. After adding RFE, all models improved somewhat, with Random 
Forest climbing to 98.78% and XGBoost to 99.80%. SVM and Decision Tree also improved performance, achieving 97.94% 
and 98.60%, respectively. 

Table 10: Comparing the accuracy outcomes using the extraction of features and RFE for the various models using the CLAHE filter 

Accuracy with CLAHE RF XGBoost SVM DT 

Accuracy without RFE 98.70% 99.72% 97.92% 98.52% 
Accuracy with RFE =250 98.78% 99.80% 97.94% 98.60% 

Table 11 shows average cross-validation accuracy across all four models for machine learning. Cross-validation entails training 
the model on many data sets and comparing its accuracy on unidentified data to evaluate a model's performance and generalizability. 
With an impressive 98.44% accuracy rate, the Random Forest model demonstrates its strong effectiveness and capacity for 
generalization over several data splits. With an accuracy of 99.46%, XGBoost showcases its exceptional capacity to manage 
complex data and consistently deliver strong results during cross-validation. At 98.25% and 97.93%, respectively, Decision Trees 
and SVMs have somewhat lower average accuracies. Despite their continued high performance, these models fall short of Random 
Forest and XGBoost in terms of accuracy and consistency across a wide range of data sets. The results generally show that Random 
Forest and XGBoost perform better than other ML models in cross-validation, providing higher reliability and accuracy. These 
models' performance may be explained by using cross-validation (5-fold) to determine the perfect hyperparameters. 

Table 11: Average cross-validation accuracy with the use of the CLAHE filter 

Model Result 

Random forest 98.44% 
XGBoost 99.46% 
SVM 97.93% 
Decision Tree 98.25% 

Table 12 displays the model performance based on multiple classification measurements, including F1 Score, Precision, Recall, 
and Accuracy. XGBoost is the top performer, with flawless 98.80% Precision, Recall, and F1 scores, demonstrating its extraordinary 
ability to categorize positive and negative cases properly. Overall, Random Forest and XGBoost excel at classification, particularly 
in balancing precision and recall, whereas Decision Tree and SVM are dependable but somewhat less successful. 

Table 12: Performance metrics of machine learning classification models with RFE = 250 Features and CLAHE filter 

Model Accuracy Precision Recall F1 Score 

Random Forest 98.78% 98.78% 98.78% 98.78% 
XGBoost 99.80% 99.80% 99.80% 99.80% 
SVM 97.94% 97.94% 97.94% 97.94% 
Decision tree 98.60% 98.60% 98.60% 98.60% 
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The LC25000 dataset consists of five distinct tissue classes: Colon Adenocarcinoma (colon_aca), a malignant tumor from 

glandular cells in the colon, showing irregular and disorganized tissue structure. Colon Benign (colon_n) normal colon tissue 
with well-organized gland structures and no signs of cancer. Lung adenocarcinoma (lung_aca) is a common lung cancer starting 

in mucus-producing glands and is usually found in the outer lung areas.  Lung Benign (lung_n) healthy lung tissue with normal 

cell patterns and no cancerous changes. Lung Squamous Cell Carcinoma (lung_scc) lung cancer type arising from squamous 

cells in the airways, often linked to smoking. Table 13 evaluates classification accuracy before and after feature selection. The 

performance metrics are expressed in percentages, clearly comparing how feature selection impacts each model's effectiveness 

across different tissue types. 

colon adenocarcinoma (colon_aca) 

XGBoost: 99.90%, RF: 98.30%, DT: 99.10%, SVM: 99.90% 

This class continues to demonstrate exceptionally high classification accuracy across all models. The consistently strong 

performance indicates that colon_aca has distinct and easily learnable features. The near-perfect scores suggest that even with 

different modeling strategies, the class is robustly separable from others. 

normal colon (colon_n) 

XGBoost: 99.90%, RF: 99.80%, DT: 98.90%, SVM: 100% 

This class is also very easily classifiable across all models. The features characterizing normal colon tissue appear well-

defined and do not overlap with pathological classes, resulting in uniformly high accuracy post-feature selection. 

lung adenocarcinoma (lung_aca) 

XGBoost: 99.90%, RF: 98.80%, DT: 97.40%, SVM: 95.50% 

This class shows strong performance, particularly with XGBoost and RF. However, SVM lags, which may indicate that this 

model is less effective at exploiting the refined feature set. The class seems to benefit from sophisticated ensemble methods that 

can better capture nuanced patterns. 

normal lung (lung_n) 

XGBoost: 100%, RF: 100%, DT: 99.60%, SVM: 100% 

This is the best-performing class overall. The features representing normal lung tissue are highly distinctive, leading to near-

perfect or perfect classification across all models. Feature selection likely has minimal impact because this class's inherent 

separability is already very high. 

lung squamous cell carcinoma (lung_scc) 

XGBoost: 99.30%, RF: 97.00%, DT: 98.00%, SVM: 94.30% 

Among all classes, lung_scc exhibits the most variation in accuracy across models, and the lowest performance with SVM. 

While XGBoost maintains high accuracy, RF and especially SVM show reduced performance compared to other tissue types. 

This suggests that lung_scc may be more challenging to represent, potentially due to feature overlap with other lung cancer types 
or greater intra-class variability, making it more sensitive to the choice of features and model complexity. 

Colon tissue types (both normal and cancerous) are consistently well-classified with very high accuracy, indicating that their 

features are inherently discriminative and stable across different models. Normal lung tissue is also trivially separable, reflecting a 

strong signal in the feature space. Lung cancer subtypes, particularly lung_scc, benefit most from thoughtful feature representation 

and model selection, revealing a greater dependence on feature quality and model capacity to capture complex patterns. 

Table 13: Model accuracy comparison across All classes on the LC25000 dataset 

 

Along with classification accuracy, Figure 10 (a - d) shows the confusion matrix for each model after feature selection in 

the LC25000 dataset, which provides a detailed view of class-wise prediction performance, misclassifications, and the 

distribution of true versus predicted labels. The authors of the most recently published research publications employed deep 

learning to categorize histological images of colon and lung tumors. Table 12 compares the results obtained using the 25,000 

images of the LC25000 dataset with those of publications across the literature. The results of our research show that feature 

engineering accomplishes results comparable to deep learning techniques. Our XGBoost model obtained 99.80% accuracy in 
classifying colon and lung cancer. This paper aims to show an interest in feature engineering techniques rather than competing 

with current approaches and illustrate how machine learning models might produce better results. Machine learning techniques 

Class name XGBoost RF DT SVM 

colon_aca 99.90% 98.30% 99.10% 99.90% 
colon_n 99.90% 99.80% 98.90% 100% 

lung_aca 99.90% 98.80% 97.40% 95.50% 
lung_n 100% 100% 99.60% 100% 
lung_scc 99.30% 97.00% 98.00% 94.30% 



Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794 

 

786 

for healthcare image classification are evaluated in Table 14. For example, Chehade et al. [18] used SHAP with XGBoost and 

other ML models, attaining a 99% accuracy in XGBoost with SHAP explanation. Using Grad-CAM, Vanitha et al. [20] evaluated 
explanation in an ensemble of Xception and MobileNet models with 99.44% accuracy. Hasan et al. [21] developed (LW-MS-

CCN) with 99.20% accuracy using Grad-CAM and SHAP. 

Table 14: Accuracy and explanation comparison of models for histopathological Image classification 

Machine Learning Model Results Explainable artificial intelligence (XAI) Ref. 

XGBoost, SVM, and other ML 
models trained on the LC25000 
dataset  

XGBoost Accuracy 99% SHAP for explainability [27] 

Ensemble of Xception and 

MobileNet architectures. 

Achieved accuracy of 99.44% Grad-CAM for explainability [29] 

Lightweight Multi-Scale CNN 
(LW-MS-CCN)  

Achieved accuracy of 99.20%  Grad-CAM & SHAP for explainability [30] 

Random Forest (RF), Support 
Vector Machine (SVM), 
Extreme Gradient Boosting 
(XGB), Decision Tree 

XGBoost Accuracy 99.80% LIME & SHAP for explainability Proposed model 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10: Accuracy of models on LC25000 dataset using confusion matrix (after feature selection) (a) xgboost  
                      (b) RF (c) DT (d) SVM 

Using XGBoost, the proposed model achieves 99.80% accuracy, surpassing all prior models. Unlike much of the previous 

research, which has focused primarily on accuracy, this combination sheds light on the importance of both local (LIME) and 

global (SHAP) factors, resulting in an extremely accurate and interpretable model. This is especially useful for medical 

applications, as reliability and trust rely on understanding model judgments. Medical practitioners may evaluate forecasts and 

enhance decision-making processes by promoting openness through combining LIME and SHAP. 

SHAP for feature importance enables better model diagnostics, optimized feature sets, and improved clinical interpretability 

in cancer image classification tasks. Each bar represents a feature (identified by an HSV index). The x-axis shows the mean 

SHAP value, indicating how much each feature contributes, on average, to the model's final decision. The mean SHAP value for 
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a feature is calculated by averaging the absolute SHAP values of that feature across all instances in the dataset. SHAP assigns 

an importance value to each feature for a particular prediction, indicating how much that feature contributes to the final model 
output. To evaluate overall importance, we compute the average of the absolute values of a feature’s SHAP contributions across 

all samples. This ensures that both positive and negative impacts are considered equally, as we are interested in the magnitude 

of the contribution, not its direction. Figure 11 shows SHAP bar plots for the dataset LC25000. In the LC25000 dataset, the 

SHAP bar plot reveals that color features derived from specific HSV bins, such as HSV-475, HSV-460, and HSV-171, dominate 

the XGBoost model’s decision-making. These high-ranking features likely capture important color and tissue colorations that 

differ across cancer types. Overall, the model relies on a specific subset of HSV features to effectively classify images, making 

these color-based features highly valuable for tissue discrimination in LC25000. The prominence of HSV features in the dataset 

validates using color histogram features in the HSV color space as a strong descriptor for histopathology image classification 

tasks. 

The SHAP beeswarm plots provided are a visual explanation tool used to interpret the predictions of the XGBoost classifier 

for medical image classification tasks. These plots are particularly useful for understanding how individual features (like HSV 
color components and local binary pattern texture descriptors) contribute to a model’s prediction for each class in a dataset. The 

datasets analyzed are LC25000, which includes histological images of lung and colon tissue. Each plot corresponds to a specific 

class (e.g., lung_aca, colon_n) and shows how various features impact the model's output for that class. 

 

Figure 11: SHAP feature importance bar plots for the LC25000 dataset based on the  
                                                  XGBoost classifier 
 

In each SHAP beeswarm plot, the x-axis represents SHAP values, which quantify the impact of each feature on the 
prediction. A positive SHAP value means the feature increases the likelihood of the model predicting the given class, while a 
negative SHAP value indicates that the feature decreases that likelihood. The y-axis lists the feature names, such as HSV-460 or 
LBP_4. Each dot represents a single sample, with its horizontal position showing the strength and direction of the feature’s 
contribution for that sample. The color of the dots represents the feature value: red dots indicate high feature values and blue 
dots indicate low feature values 

This color coding helps you see whether high or low values of a feature are associated with a stronger impact on the 
prediction. For instance, if red dots are clustered to the right (positive SHAP values), that feature's high values strongly contribute 
to the class prediction. Conversely, if blue dots are on the right, low values push the model toward the class prediction. The 
length and spread of the horizontal lines (the “beeswarm”) for each feature show the variability and importance of that feature 
across all samples:  

Longer lines mean the feature has a large and varied impact across the dataset. This indicates that the feature is generally 
important and influences predictions differently across different samples. Shorter lines mean the feature has a more consistent 
or smaller impact, possibly playing a minor or more stable role in decision-making. Figure 12 (a – e) shows the SHAP Beeswarm 
Plot per Class for the LC25000 dataset based on the XGBoost classifier. 

In the LC25000 plots: 

a) colon_aca class, features like HSV460, HSV017, and HSV440 have the highest SHAP values, indicating they strongly 
predict adenocarcinoma. High values in these HSV channels positively influence the model’s output for this class. 

b) colon_n relies on features like HSV360, HSV276, and HSV447, which help the model distinguish normal colon tissue, 
although the SHAP impact is more mixed, suggesting overlap with other classes. 

c) lung_aca class, features such as HSV370, HSV174, and HSV172 significantly contribute to classification, with high values 
strongly pushing predictions toward adenocarcinoma . 
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d) lung_n, HSV475, HSV267, and HSV577 dominate, where high feature values help the model identify normal lung tissue 
accurately. 

e) lung_scc class depends on fewer but more distinct features like HSV171 and HSV172, which show a clear influence, 
suggesting that squamous cell carcinoma has unique visual traits easily picked up by the model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 12: SHAP beeswarm plot per class for the LC25000 dataset based on the XGBoost classifier a) colon adenocarcinoma  

                b)normal colon c) lung adenocarcinoma d) normal lung e) lung squamous cell carcinoma 

LIME for tabular data explains a single prediction by showing which features had the most impact. It does this by slightly 
changing the input and seeing how the model’s output changes, making complex models easier to understand. Figure 13 
illustrates a LIME (Local Interpretable Model-Agnostic Explanations) explanation that shows how the machine learning model 
confidently classified the input histopathological image as colon adenocarcinoma (colon_aca) with a predicted probability of 
1.00. This type of explanation is particularly valuable in medical diagnostics, as it allows clinicians to interpret the model’s 
decision on a per-sample basis. The visualization highlights the most influential features that contributed to the model's decision, 
breaking them into those supporting the "colon_aca" prediction and those opposing other potential classifications such as 
"colon_n" (normal colon), "lung_aca" (lung adenocarcinoma), "lung_n" (normal lung), and "lung_scc" (lung squamous cell 
carcinoma). The features supporting the "colon_aca" prediction included color histogram (HSV) and texture (LBP) features, such 
as HSV-171, HSV-017, and LBP_2. Specifically, the condition –0.35 < HSV-171 ≤ 1.04 was associated with a contribution 
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weight of 0.15, indicating its significant influence in favoring the colon_aca class. Similarly, HSV-017 > –0.11 and LBP_2 > 
0.68 contributed weights of 0.13 and 0.09, respectively.  

These features likely capture specific chromatic and structural characteristics of malignant colon tissue, distinct from other 
classes' features. On the other hand, features such as LBP_6 ≤ –0.67 had a lower contribution weight (0.05), suggesting a mild 
opposition to the colon_aca classification, potentially because such texture values are less common in adenocarcinoma cases. 
The right-hand side of the figure presents a tabular view of the actual feature values extracted from the image. For example, 
HSV-171 had a value of –0.04, HSV-017 measured 0.41, and LBP_2 was significantly high at 1.87, all of which fall within the 
influential thresholds that supported the colon_aca prediction. This transparency confirms the model’s decision and allows 
medical experts to cross-reference these values with known pathological patterns in cancer diagnosis. Compared to global 
explanation methods like SHAP, which offer generalized insights across the entire dataset, LIME’s local explanation approach 
focuses on the current image. It yields actionable, interpretable results for that individual prediction. This can be particularly 
critical in clinical settings, where understanding the "why" behind a model’s classification helps build trust and supports more 
informed decision-making. 

 

Figure 13: XGBoost model LIME explainability for a single instance (colon_aca) 

Figure 14 shows a step-by-step procedure for enhancing, segmenting, and explaining a histopathology image utilizing 

Contrast Limited Adaptive Histogram Equalization (CLAHE), Superpixel Segmentation, and Local Interpretable Model-

Agnostic Explanations. The top-left image displays the original histopathology image without any alterations. Applying CLAHE 

(top-right) enhances the contrast, making fine histological details more visible. Its superpixel segment (bottom-right) connects 

similar regions, depicted in yellow, to aid in targeted feature extraction. Lastly, the LIME explanation (bottom-left) highlights 

the most important points that influence the model's conclusion while excluding the less important ones. This method greatly 

enhances the understanding and trustworthiness of AI-based histopathology classified images. Superpixel divides guarantee 

organized feature extraction, the CLAHE stage improves transparency, and LIME offers an unambiguous presentation of model 
decisions. This method enhances model transparency and helps with crucial diagnostic choices by enabling medical personnel 

to assess AI predictions. The process guarantees that AI models learn useful patterns rather than worthless noise by concentrating 

on medically significant fields, improving the reliability of these models for healthcare applications. 

 

Figure 14: LIME Explanation for Histopathological Image Classification 

LIME is a valuable interpretability technique, especially effective in misclassification cases or uncertain predictions. When 

a model outputs similar probabilities for two or more classes, it indicates ambiguity in decision-making, precisely the scenario 
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where LIME is most insightful. By providing a localized explanation around a single prediction, LIME allows researchers and 

practitioners to understand which specific features contributed most to the classification and in which direction. This granular 
insight is particularly useful in medical image classification tasks, such as distinguishing between histopathological images of 

lung and colon cancers. 

Figure 15 presents a LIME explanation for a lung_aca prediction, offering a visual breakdown of how individual features 

influenced the model’s decision. On the vertical axis, we see the top features expressed as conditional statements involving HSV 

color channel values, such as "-0.61 < HSV-156 ≤ 0.51"—representing specific pixel value ranges extracted from the image 

using color-based feature engineering. These features are ordered from top to bottom by their impact magnitude on the model's 

output. The horizontal axis quantifies each feature’s contribution to the prediction, with values ranging from -0.015 to +0.015. 

Positive values (green bars) indicate features that support the predicted class (lung_aca), whereas negative values (red bars) 

represent features that push against this class, nudging the model toward lung_scc in this case. 

The bar chart shows that "-0.61 < HSV-156 ≤ 0.51" had the strongest positive influence, increasing the confidence in 

lung_aca prediction by about +0.0145. Other supporting features include "HSV-245 > 0.14" and "HSV-272 > 0.33", which made 
smaller yet meaningful contributions. On the other hand, "HSV-271 > 0.65", "HSV-376 ≤ -0.42", and "HSV-152 > 0.29" had the 

most negative impact, with values close to -0.013, pulling the prediction away from lung_aca, most likely toward lung_scc. This 

tension between supportive and opposing features visually confirms that the model’s prediction was made under considerable 

uncertainty, with small shifts in feature values potentially tipping the outcome toward another class. Thus, the LIME chart reveals 

what influenced the model and how strongly it influenced it, enabling a transparent interpretation of near-boundary or 

misclassified cases.   

 

Figure 15: LIME-based feature contributions toward Lung_aca prediction 

4. Conclusion   

This study presents research that introduces a robust and interpretable machine learning pipeline for classifying lung and 

colon cancer histopathological images. We achieved highly discriminative feature sets through comprehensive feature 

engineering using color histograms and Local Binary Patterns (LBP) and refinement via Recursive Feature Elimination (RFE). 
Among the classifiers evaluated, the XGBoost model consistently outperformed others, reaching an exceptional accuracy of 

99.80%. Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing significantly improved model performance 
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across all classifiers. As demonstrated in Table 10, including CLAHE led to improved classification accuracies—for instance, 

XGBoost accuracy increased from 99.56% to 99.80%, and Random Forest from 98.02% to 98.78% after applying RFE. Table 
11 further confirms the benefit with higher cross-validation accuracy for models trained on CLAHE-enhanced images, 

particularly for XGBoost (99.46%) and Random Forest (98.44%). These improvements indicate that CLAHE enhances image 

contrast, leading to more discriminative feature extraction, ultimately boosting classification accuracy and reliability. 

Explainable AI (XAI) tools such as SHAP and LIME were employed to ensure model transparency and interpretability. SHAP 

provided global and local insights into feature contributions, enabling us to identify that color and texture features played critical 

roles in distinguishing benign and malignant tissues. LIME further enhanced interpretability by visually highlighting the specific 

regions of histopathological images influencing model decisions, thereby offering meaningful support for clinical decision-making. 

This study validates that integrating advanced feature extraction, RFE-based feature selection, CLAHE preprocessing, and XAI 

methods significantly enhances AI models' predictive performance and trustworthiness in medical imaging applications. 

This study demonstrates that feature selection significantly enhances classification performance for certain tissue types in 

the LC25000 dataset, particularly for challenging classes like Lung Squamous Cell Carcinoma (lung_scc). While classes such 
as Colon Adenocarcinoma, Normal Colon, and Normal Lung are inherently easier to classify—with models achieving near-

perfect accuracy—classes like lung_aca and especially lung_scc show more sensitivity to feature representation, benefiting from 

more informative and well-selected features. Confusion matrices were generated for each model to assess classification 

effectiveness thoroughly, offering insights into model strengths and class-specific weaknesses. These matrices revealed that most 

misclassifications were concentrated in the lung cancer subclasses, reinforcing the importance of tailored feature selection 

strategies for such categories. 

Additionally, to better understand model decisions and improve interpretability, we employed LIME (Local Interpretable 

Model-agnostic Explanations). LIME is particularly valuable for analysing misclassified instances, as it identifies and displays 

the most influential features contributing to a prediction. By visualizing these feature weights, LIME helps uncover potential 

reasons behind classification errors, providing both model transparency and guidance for further refinement of feature 

engineering or model tuning. In future research, we plan to expand and enhance the proposed pipeline in several directions: 

 Explore advanced feature extraction techniques such as Haralick texture features, Gabor filters, Zernike moments, and 

Histogram of Oriented Gradients (HOG), which may offer additional discriminatory power for capturing morphological 

and textural patterns specific to cancer subtypes. 
 Apply deep learning-based feature extraction through convolutional neural networks (CNNs) to learn hierarchical and 

spatially rich representations directly from histopathological images. When combined with handcrafted features, this could 

potentially improve classification performance. 

 Test generalizability by evaluating the proposed framework on various histopathological datasets from different medical 

centers, scanners, and staining protocols to ensure robustness and real-world applicability. 

 Integrate multi-modal data, such as patient metadata or genomic profiles, alongside histopathological images to develop 
more holistic and precise cancer diagnostic models. 

These future directions aim to improve the clinical readiness of AI-assisted diagnostic tools, ensuring that they not only 

achieve high accuracy but also earn the trust of medical professionals through transparency, adaptability, and consistent 

performance. 

Author contributions 

Conceptualization, M. Amer and Z. Sultani; data curation, M. Amer; formal analysis, M. Amer; investigation, M. Amer; 

methodology, M. Amer; project administration, Z. Sultani; resources, M. Amer; software, M. Amer; supervision, Z. Sultani; 

validation, Z. Sultani and M. Amer; visualization, M. Amer; writing—original draft preparation, M. Amer; writing—review 

and editing, Z. Sultani. All authors have read and agreed to the published version of the manuscript. 

Funding 

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.  

Data availability statement 

The data that support the findings of this study are available on request from the corresponding author. 

Conflicts of interest 

The authors declare that there is no conflict of interest.  

References 

[1] M. Masud, N. Sikder, A. A. Nahid, A. K. Bairagi, M. A. AlZain, A machine learning approach to diagnosing lung and colon 

cancer using a deep learning-based classification framework, Sensors, 21 (2021) 748. https://doi.org/10.3390/s21030748 

[2] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal, Global cancer statistics 2022: 

GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 74 (2024) 

229-263. https://doi.org/10.3322/caac.21834 

https://doi.org/10.3390/s21030748
https://doi.org/10.3322/caac.21834


Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794 

 

792 

[3] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates 

of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 68 (2018) 394–424. 

https://doi.org/10.3322/caac.21492 

[4] A. Bermúdez, I. Arranz-Salas, S. Mercado, J. A. López-Villodres, V. González, F. Ríus, M. V. Ortega, C. Alba, I. Hierro, D. 

Bermúdez, Her2-Positive and Microsatellite Instability Status in Gastric Cancer Clinicopathological Implications, 

Diagnostics, 11 (2021) 944. https://doi.org/10.3390/diagnostics11060944 

[5] M. Togaçar, Disease type detection in lung and colon cancer images using the complement approach of inefficient sets, 

Comput. Biol. Med., 137 (2021) 104827. https://doi.org/10.1016/j.compbiomed.2021.104827 

[6] L. F. Sánchez-Peralta, L. Bote-Curiel, A. Picón, F. M. Sánchez-Margallo, J. B. Pagador, Deep learning to find colorectal 

polyps in colonoscopy: A systematic literature review, Artif. Intell. Med., 108 (2020) 101923. 

https://doi.org/10.1016/j.artmed.2020.101923. 

[7] N. Wijethilake, D. Meedeniya, C. Chitraranjan, I. Perera, M. Islam, H. Ren, Glioma survival analysis empowered with data 

engineering A survey, IEEE Access, 9 (2021) 43168–43191. https://doi.org/10.1109/ACCESS.2021.3065965. 

[8] N. Alangari, M. El Bachir Menai, H. Mathkour, I. Almosallam, Exploring evaluation methods for interpretable machine 

learning: A survey, Information, 14 (2023) 469. https://doi.org/10.3390/info14080469. 

[9] A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker, C. Mooney, Current challenges and future 

opportunities for XAI in machine learning-based clinical decision support systems: A systematic review, Appl. Sci., 11 

(2021) 5088. https://doi.org/10.3390/app11115088. 

[10] J. Xu, P. Yang, S. Xue, B. Sharma, M. Sanchez-Martin, F. Wang, B. Parikh, Translating cancer genomics into precision 

medicine with artificial intelligence: applications, challenges and future perspectives, Hum. Genet., 138 (2019) 109–124. 

https://doi.org/10.1007/s00439-019-01970-5 

[11] O. Loyola-Gonzalez, Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of 

view, IEEE Access, 7 (2019) 154096–154113. https://doi.org/10.1109/ACCESS.2019.2949286 

[12] S. K. Ghosh, A. H. Khandoker, Investigation on explainable machine learning models to predict chronic kidney diseases, 

Sci. Rep., 14 (2024) 3687. https://doi.org/10.1038/s41598-024-54375-4 

[13] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. 

Benjamins, Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward 

responsible AI, Inf. Fusion, 58 (2020) 82–115. https://doi.org/10.1016/j.inffus.2019.12.012 

[14] A. Adadi, M. Berrada, Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI), IEEE Access, 

6 (2018) 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052 

[15] Z. C. Lipton, The mythos of model interpretability, Queue, 16 (2018) 31–57. https://doi.org/10.1145/3236386.3241340 

[16] C. Hu, et al., Application of interpretable machine learning for early prediction of prognosis in acute kidney injury, Comput. 

Struct. Biotechnol. J., 20 (2022) 2861–2870. https://doi.org/10.1016/j.csbj.2022.06.003 

[17] S. M. Lundberg, From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell., 2 (2020) 

56–67. https://doi.org/10.1038/s42256-019-0138-9 

[18] A. Hage Chehade, N. Abdallah, J. M. Marion, M. Oueidat, P. Chauvet, Lung and colon cancer classification using medical 

imaging: A feature engineering approach, Phys. Eng. Sci. Med., 45 (2022) 729–746. https://doi.org/10.1007/s13246-022-01139-x 

[19] M. Al-Jabbar, M. Alshahrani, E. M. Senan, I. A. Ahmed, Histopathological analysis for detecting lung and colon cancer 

malignancies using hybrid systems with fused features, Bioengineering, 10 (2023) 383. 

https://doi.org/10.3390/bioengineering10030383 

[20] K. Vanitha, S. S. Sree, S. Guluwadi, Deep learning ensemble approach with explainable AI for lung and colon cancer 

classification using advanced hyperparameter tuning, BMC Med. Inform. Decis. Mak., 24 (2024) 222. 

https://doi.org/10.1186/s12911-024-02628-7 

[21] M. A. Hasan, F. Haque, S. R. Sabuj, H. Sarker, M. O. F. Goni, F. Rahman, M. M. Rashid, An end-to-end lightweight multi-

scale CNN for the classification of lung and colon cancer with XAI integration, Technologies, 12 (2024) 56. 

https://doi.org/10.3390/technologies12040056 

[22] A. A. Borkowski, M. M. Bui, L. B. Thomas, C. P. Wilson, L. A. DeLand, S. M. Mastorides, Lung and Colon Cancer 

Histopathological Image Dataset (LC25000), arXiv, 1912 (2019) 12142. https://arxiv.org/abs/1912.12142 

[23] S. A. El-Ghany, M. Azad, M. Elmogy, Robustness fine-tuning deep learning model for cancer diagnosis based on 

histopathology image analysis, Diagnostics, 13 (2023) 699. https://doi.org/10.3390/diagnostics13040699 

[24] S. Tummala, S. Kadry, A. Nadeem, H. T. Rauf, N. Gul, An explainable classification method based on complex scaling in 

histopathology images for lung and colon cancer, Diagnostics, 13 (2023) 1594. https://doi.org/10.3390/diagnostics13091594 

https://doi.org/10.3322/caac.21492
https://doi.org/10.3390/diagnostics11060944
https://doi.org/10.1016/j.compbiomed.2021.104827
https://doi.org/10.1016/j.artmed.2020.101923
https://doi.org/10.1109/ACCESS.2021.3065965
https://doi.org/10.3390/info14080469
https://doi.org/10.3390/app11115088
https://doi.org/10.1007/s00439-019-01970-5
https://doi.org/10.1109/ACCESS.2019.2949286
https://doi.org/10.1038/s41598-024-54375-4
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1016/j.csbj.2022.06.003
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/s13246-022-01139-x
https://doi.org/10.3390/bioengineering10030383
https://doi.org/10.1186/s12911-024-02628-7
https://doi.org/10.3390/technologies12040056
https://arxiv.org/abs/1912.12142
https://doi.org/10.3390/diagnostics13040699
https://doi.org/10.3390/diagnostics13091594


Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794 

 

793 

[25] M. Sakli, C. Essid, B. B. Salah, H. Sakli, Flexible framework for lung and colon cancer automated analysis across multiple 

diagnosis scenarios, Int. J. Adv. Comput. Sci. Appl., 16 (2025). https://dx.doi.org/10.14569/IJACSA.2025.0160258 

[26] J. C. M. Dos Santos, G. A. Carrijo, C. F. d. S. De Cardoso, J. C. Ferreira, P. M. Sousa, A. C. Patrocínio, Fundus image 

quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter, Res. Biomed. Eng., 

36 (2020) 107–119. https://doi.org/10.1007/s42600-020-00046-y 

[27] A. M. Reza, Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement, 

J. VLSI Signal Process, Syst. Signal Image Video Technol., 38 (2004) 35–44.  

https://doi.org/10.1023/B:VLSI.0000028532.53893.82  

[28] T. Ayyavoo, J. J. Suseela, Illumination pre-processing method for face recognition using 2D DWT and CLAHE, IET 

Biometrics, 7 (2017) 380–390. https://doi.org/10.1049/iet-bmt.2016.0092 

[29] S. Sahu, A. K. Singh, S. P. Ghrera, M. Elhoseny, An approach for de-noising and contrast enhancement of retinal fundus 

image using CLAHE, Optics & Laser Technol., 110 (2019) 87–98. https://doi.org/10.1016/j.optlastec.2018.06.061 

[30] W. N. J. H. W. Yussof, M. Man, R. Umar, A. N. Zulkeflee, E. A. Awalludin, N. Ahmad, Enhancing moon crescent visibility 
using contrast-limited adaptive histogram equalization and bilateral filtering techniques, J. Telecommun. Inf. Technol., 1 

(2022) 3–13. http://dx.doi.org/10.26636/jtit.2022.155721 

[31] J. Ahmad, M. Batool, K. Kim, Sustainable wearable system: Human behavior modeling for life-logging activities using K-

Ary tree hashing classifier, Sustainability, 12 (2020) 10324. https://doi.org/10.3390/su122410324 

[32] I. Nosheen, A. Naseer, A. Jalal, Efficient vehicle detection and tracking using blob detection and Kernelized filter, 2024 5th 

International Conference on Advancements in Computational Sciences, 2024, 1–8. 

https://doi.org/10.1109/ICACS60934.2024.10473292  

[33] Q. Zhao, J. Yang, H. Liu, Stone images retrieval based on color histogram, IEEE Int. Image Anal. Signal Process., 2009 

(2009) 157–161. https://doi.org/10.1109/IASP.2009.5054590 

[34] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, W. Niblack, Efficient color histogram indexing for quadratic form distance 

functions, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995) 729–736. https://doi.org/10.1109/34.391417 

[35] M. J. Swain, D. H. Ballard, Color indexing, Int. J. Comput. Vis., 7 (1991) 11–29. https://doi.org/10.1007/BF00130487 

[36] S. Sural, G. Qian, and S. Pramanik, Segmentation and histogram generation using the HSV color space for image retrieval, 

Proceedings of IEEE International Conference on Image Processing, 2 (2002) 589–592. 

https://doi.org/10.1109/ICIP.2002.1040019 

[37] T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured 

distributions, Pattern Recognit., 29 (1996) 51–59. https://doi.org/10.1016/0031-3203(95)00067-4 

[38] V. E. Staartjes, L. Regli, C. Serra, Machine learning in clinical neuroscience: foundations and applications, Conference 

proceedings  Machine Learning in Clinical Neuroscience Foundations and Applications, 2017. 

http://dx.doi.org/10.1007/978-3-030-85292-4 

[39] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. 

Learn., 46 (2002) 389–422. https://doi.org/10.1023/A:1012487302797 

[40] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res., 3 (2003) 1157. 

http://dx.doi.org/10.1162/153244303322753616 

[41] C. A. Ramezan, Transferability of recursive feature elimination (RFE)-derived feature sets for support vector machine land 

cover classification, Remote Sens., 14 (2022) 6218. https://doi.org/10.3390/rs14246218 

[42] N. K. Ahmed, A. F. Atiya, N. E. Gayar, H. El-Shishiny, An empirical comparison of machine learning models for time 

series forecasting, Econometric Rev., 29 (2010) 594–621. https://doi.org/10.1080/07474938.2010.481556 

[43]  L. U. Ying, Decision tree methods: applications for classification and prediction, Shanghai Arch. Psychiatry, 27 (2015) 

130. https://doi.org/10.11919/j.issn.1002-0829.215044 

[44] B. Charbuty, A. Abdulazeez, Classification based on decision tree algorithm for machine learning, J. Appl. Sci. Technol. 

Trends, 2 (2021) 20–28. https://doi.org/10.38094/jastt20165 

[45] C. Gold, P. Sollich, Model selection for support vector machine classification, Neurocomputing, 55 (2003) 221–249. 

https://doi.org/10.1016/S0925-2312(03)00375-8 

[46] L. Breiman, Random forests, Mach. Learn., 45 (2001) 5–32. https://doi.org/10.1023/A:1010933404324 

[47] T. M. Oshiro, P. S. Perez, J. A. Baranauskas, How many trees in a random forest?, Mach. Learn. Data Min. Pattern Recognit., 

8 (2012) 154–168. https://doi.org/10.1007/978-3-642-31537-4_13 

https://dx.doi.org/10.14569/IJACSA.2025.0160258
https://doi.org/10.1007/s42600-020-00046-y
https://doi.org/10.1023/B:VLSI.0000028532.53893.82
https://doi.org/10.1049/iet-bmt.2016.0092
https://doi.org/10.1016/j.optlastec.2018.06.061
http://dx.doi.org/10.26636/jtit.2022.155721
https://doi.org/10.3390/su122410324
https://doi.org/10.1109/ICACS60934.2024.10473292
https://doi.org/10.1109/IASP.2009.5054590
https://doi.org/10.1109/34.391417
https://doi.org/10.1007/BF00130487
https://doi.org/10.1109/ICIP.2002.1040019
https://doi.org/10.1016/0031-3203(95)00067-4
http://dx.doi.org/10.1007/978-3-030-85292-4
https://doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1162/153244303322753616
https://doi.org/10.3390/rs14246218
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.38094/jastt20165
https://doi.org/10.1016/S0925-2312(03)00375-8
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-31537-4_13


Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794 

 

794 

[48] M. Shepovalov, V. Akella, FPGA and GPU-based acceleration of ML workloads on Amazon cloud – A case study using 

gradient boosted decision tree library, Integration, 70 (2020) 1–9. https://doi.org/10.1016/j.vlsi.2019.09.007 

[49] C. W. Wang, Y. C. Lee, E. Calista, F. Zhou, H. Zhu, R. Suzuki, D. Komura, S. Ishikawa, S.-P. Cheng, A benchmark for 

comparing precision medicine methods in thyroid cancer diagnosis using tissue microarrays, Bioinformatics, 34 (2017) 

1767–1773. https://doi.org/10.1093/bioinformatics/btx838 

[50] N. Nusrat, S. B. Jang, A comparison of regularization techniques in deep neural networks, Symmetry, 10 (2018) 648. 

https://doi.org/10.3390/sym10110648 

[51] S. Das, M. Sultana, S. Bhattacharya, D. Sengupta, D. De, XAI–reduct: accuracy preservation despite dimensionality 

reduction for heart disease classification using explainable AI, J. Supercomput., 79 (2023) 18167–18197. 

https://doi.org/10.1007/s11227-023-05356-3 

[52] J. An, Y. Zhang, I. Joe, Specific-input LIME explanations for tabular data based on deep learning models, Appl. Sci., 13 

(2023) 8782. https://doi.org/10.3390/app13158782 

 

https://doi.org/10.1016/j.vlsi.2019.09.007
https://doi.org/10.1093/bioinformatics/btx838
https://doi.org/10.3390/sym10110648
https://doi.org/10.1007/s11227-023-05356-3
https://doi.org/10.3390/app13158782

	1. Introduction
	2. Materials and methods
	2.1 Lung and colon cancers datasets
	2.2 Data preprocessing
	2.2.1 Contrast limited adaptive histogram equalization (CLAHE) filter

	2.3 Feature extraction
	2.3.1 color histogram
	2.3.2 local binary pattern (LBP)

	2.4 Feature selection - recursive feature elimination (RFE)
	2.5 Machine learning models
	2.6 Model explainability

	3. Results and discussion
	color histogram alone
	LBP alone
	color histogram and LBP
	colon adenocarcinoma (colon_aca)
	XGBoost: 99.90%, RF: 98.30%, DT: 99.10%, SVM: 99.90%

	normal colon (colon_n)
	XGBoost: 99.90%, RF: 99.80%, DT: 98.90%, SVM: 100%

	lung adenocarcinoma (lung_aca)
	XGBoost: 99.90%, RF: 98.80%, DT: 97.40%, SVM: 95.50%

	normal lung (lung_n)
	XGBoost: 100%, RF: 100%, DT: 99.60%, SVM: 100%

	lung squamous cell carcinoma (lung_scc)
	XGBoost: 99.30%, RF: 97.00%, DT: 98.00%, SVM: 94.30%
	In the LC25000 plots:


	4. Conclusion
	Author contributions
	Funding
	Data availability statement
	Conflicts of interest
	References


