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ABSTRACT

e An image-based method was developed to
classify lung and colon cancer using CLAHE-
enhanced histopathology images.

e Color histograms and LBP features were
combined to improve classification across five
cancer-related classes.

e XGBoost with RFE achieved 99.80%
accuracy by selecting the most relevant
handcrafted features.

e CLAHE preprocessing enhanced feature
clarity, improving model accuracy and
interpretability.

e SHAP and LIME tools were used to explain
model decisions, supporting transparent Al-
driven cancer diagnosis.
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Lung and colon cancers are two of the most common and deadly tumors around the
world, creating significant public health concerns. Artificial intelligence (Al) and
machine learning (ML) have heavily improved cancer research, particularly in early
detection, histopathological analysis, and personalized therapy planning. However,
despite their remarkable accuracy, ML models sometimes lack transparency, making
explainability crucial in medical applications. Although various machine learning
(ML)-based classifications for cancer models exist, their interpretation is not
understood. The current research overcomes the diagnostic gap by developing a
highly accurate system that uses XAl (Explainable Artificial Intelligence) methods
to clarify its predictions. We used Kaggle's LC25000 dataset, which included
histology images for lung and colon tumors in humans. To determine the best cancer
classification strategy, we tested various machine learning algorithms, including
Random Forest, Decision Tree, Support Vector Machine (SVM), and Extreme
Gradient Boosting. Furthermore, XAl approaches such as LIME (Local Interpretable
Model-Agnostic Explanations) and SHAP (Shapley Additive Explanations) were
utilized to evaluate model predictions and identify important information affecting
classification outcomes. XGBoost confirmed that it was useful in identifying colon
and lung cancer by achieving the highest accuracy of 99.80% among the models
used. Also, XAl techniques offered useful information on the most significant
features. SHAP analysis highlighted LBP and color histogram features as key for
distinguishing lung and colon tissues, while LIME confirmed their importance by
identifying critical image regions influencing predictions.

1. Introduction

Cancer is the leading cause of mortality worldwide, second only to cardiovascular disease [1]. In 2018, they were responsible
for 2.9 million new instances and more than 2.5 million fatalities in the United States alone [2]. Lung cancer is responsible for
18.4% of cancer fatalities, whereas 9.2% of cases are of colon cancer [3-4]. Approximately 17% of lung and colon cancer cases
occur simultaneously. This is unlikely, yet in the absence of early exploration, cancer cell transmission across these two organs
is rather common [5]. It is difficult to detect cancer without a comprehensive diagnostic test such as a computed tomography
(CT) scan, magnetic resonance imaging (MRI), positron emission tomography (PET) scan, ultrasound, or biopsy. In many
situations, individuals show little to no symptoms in the early stages, and when symptoms do appear, the diagnosis is usually too
late [1]. Currently, adequate therapy as well as quick detection are just ways to minimize deaths from cancer [6]. This study only
uses histological images to diagnose colon and lung cancers automatically. Health professionals commonly utilize
histopathological images for diagnosis, and they are critical in estimating patients' chances of survival [1]. Traditionally, health
experts had to go through a lengthy procedure to diagnose cancer by reviewing histopathological images; however, with the
technological tools accessible today, this process can now be completed with less time and effort [5].

With the growth of Al and machine learning for medical imaging, image processing methods such as image vision,
classification, and segmentation assist radiologists in diagnosing illnesses as early as feasible compared to manual examinations
[7]. The advancement of machine learning has permitted the creation of decision support systems that display predictive
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accuracy, outperforming the skills of humans in some contexts [8]. However, the model's complexity level has increased due to
this advancement, leading to models of black boxes that conceal their underlying reasoning from users [8]. This is especially
noticeable when users need to interpret the output of Al systems [9]. Because technology is used in medical applications such as
cancer prediction, the solutions must be dependable and efficient, as they put human lives at risk, where errors can have serious
implications [10]. Because black-box characteristics are classified across multiple fields, people and experts find these ML
models’ applications unreliable [11].

To solve this problem, explainable artificial intelligence (XAI) was created, explaining how machine learning (ML) makes
decisions. Explainable machine learning aims to make "black box™ modeling decisions more transparent and trustworthy [12].
To putit simply, XAl is the action of making Al systems simpler for people to understand [13-15]. Shapley Additive ExPlanation
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME) are two major XAl approaches [16-17]. The paper's
primary achievements include establishing an accurate and interpretable diagnostic approach for lung and colon cancers. Color
histograms and Local Binary Patterns (LBP) were used to determine important image features. After extracting features,
Recursive Feature Elimination (RFE) was applied to streamline the feature set. These features were then used as input into
classification models. The system delivers remarkable diagnostic performance using machine learning models such as Decision
Tree, Random Forest, SVM, and XGBoost with XAl techniques. Integrating Explainable Al (XAl) approaches such as SHAP
and LIME promotes transparency by exposing the characteristics that influence predictions. This method builds confidence,
facilitates clinical decision-making, and reduces the gap between useful applications for healthcare and potent Al technologies,
resulting in earlier identification and better patient outcomes. The following sections comprise the paper's structure: The related
work is covered in the second section, the material and methods are covered in the third, and the results and the discussion are
covered in the fourth. Additionally, the conclusion is covered in the fifth section.

Developments in machine learning (ML) and deep learning (DL) techniques have improved the classification of lung and
colon tumors. Researchers have examined various methods and procedures to improve diagnosis accuracy and model
interpretability, two factors crucial in clinical applications. The LC25000 dataset has been utilized in recent research to classify
histological images shows in Table 1.

Chehade et al. [18], concentrate on classifying photos of lung and colon cancer histopathology using machine learning
techniques. Histopathological image downsizing to 200x200 pixels can be found in the LC25000 collection. During
preprocessing, contrast is enhanced using the Unsharp Masking (UM) approach. The three feature extraction techniques are first-
order statistics, the gray-level co-occurrence matrix (GLCM), and Hu invariant moments. The Recursive Feature Elimination
(RFE) method is used for feature selection. Many machine learning models, such as XGBoost, Support Vector Machine (SVM),
Random Forest (RF), Linear Discriminant Analysis (LDA), and Multilayer Perceptron (MLP), are used for categorization. When
training on the entire LC25000 dataset (25,000 images) with 70% training and 30% testing, XGBoost obtained the greatest
accuracy of 99%. When Explainable Al (XAIl) techniques are implemented, feature contributions are understood using SHAP
(Shapley Additive exPlanations). The study demonstrates that machine learning algorithms can accurately diagnose lung and
colon cancer and generate easily comprehensible results. Al-Jabbar et al. [19], classified lung and colon cancers. The averaging
filter and CLAHE are employed to increase contrast and lower noise. While DWT, LBP, FCH, and GLCM extract handcrafted
features, GooglLe Net and VGG-19 extract deep features. The overlap in selecting features has been removed via PCA. By
attaining 99.64% accuracy with VGG-19 and handcrafted features and 99.22% accuracy with GoogLeNet and handcrafted
features, the main classifier, ANN, demonstrated the effectiveness of feature fusion in cancer diagnosis.

Table 1: Comparing the obtained outcomes with different methods utilizing the same lung and colon cancer dataset

Focus Machine Learning Model Results Ref.
Classification: Lung & Colon Cancer XGBoost, SVM, and other ML models trained  XGBoost Accuracy 99% [18]
on the LC25000 dataset with feature
engineering techniques

Early diagnosis of lung and colon GooglLeNet, VGG-19, ANN achieving 99.64% accuracy with [19]
cancer VGG-19, 99.22% accuracy with
GoogLeNet

Classification of lung and colon cancer  Ensemble of Xception and MobileNet Achieved exceptional precision [20]
using an ensemble deep learning architectures and recall for malignant tissues,
approach with advanced with a 99.44% classification
hyperparameter tuning. accuracy.
Lung and colon cancer classifier using  Lightweight Multi-Scale CNN (LW-MS- Achieved 99.20% accuracy on [21]
Explainable Al (XAl) CCN) with Grad-CAM & SHAP for LC25000 dataset

explainability

Vanitha et al. [20], offered a deep-learning ensemble method for detecting lung and colon cancer using histopathology images.
It uses the LC25,000 dataset, which comprises 25,000 histopathology images divided into five groups. The images were consistently
downsized to 224x224 pixels and evaluated using two deep learning architectures, Xception and MobileNet. These algorithms were
adapted for classifying cancer after being pre-trained on the ImageNet dataset. An ensemble technique was used to improve
classification accuracy, pooling the output of both models. Explainable Al (XAl) was developed using Gradient-weighted Class
Activation Mapping (Grad-CAM), visually depicting the model's decision-making procedure. The suggested methodology
demonstrated a remarkable 99.44% accuracy rate in categorizing histological images of colon and lung cancer.

A lightweight multi-scale convolutional neural network (LW-MS-CCN) model was suggested by Hasan et al. [21], for
classifying lung as well as colon cancers using histopathology images. The dataset used in the current study is LC25000. The
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dataset was prepared by downsizing to 180x180 pixels and using data augmentation techniques like flips and rotations to improve
the model's resilience. By selecting and extracting features using multi-scale convolutional layers, a machine could identify
patterns in histopathological images at the global and local levels. The model's 99.20% accuracy in cancer classification shows
how well it worked. Furthermore, Explainable Al (XAl) tools such as Grad-CAM and SHAP were included in the model to
visually understand its judgments, improving the algorithm's transparency and dependability for medical professionals.

2. Materials and methods

Figure 1 shows the overall layout of the recommended method for classifying lung and colon cancer using histopathological
images. The LC25000 dataset contains 25,000 images, of which 5,000 have been reduced to 250 by 250 pixels for every class.
Prior to collecting each image's attributes, the contrast of each image was increased using the Contrast Limited Adaptive
Histogram Equalization (CLAHE) technique. The most effective features are selected using a feature selection technique called
Recursive Feature Elimination. 80% of the dataset was utilized for training (chosen at random), while 20% of it was used for
testing. The training set's image properties are used for training a machine learning method. The efficacy of the model is assessed
using the testing set image features. Lastly, SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-
agnostic Explanations) are employed to improve interpretation and better understand the predictions.

Dataset LC25000
(20000) Training
(5000) Testing

Image preprocessing
(CLAHE)
(Training & Testing)

!

Feature Extraction
(Color histogram & LBP)
(Training & Testing)

Lo

Normalize features & Label encoding
class
(Training & Testing)

Feature selection

RFE
Cross Validation (l'ramlng&Testmg) —
K-fold =5 — l
Trainin : e
( g) - Model Training
i (Training)
""" Machine learning l o
Algorithms
SVM, RF, XGBoost, DT 1 e A = S Model Evaluation
(Training) 1 Class:ﬁcar:::: el:'redlctlon <— (Accuracy & Recall & F1-Score)

o .

Model Explainability
(SHAP & LIME)

Figure 1: Block diagram of the approach used to classify cancer types by histopathological images

2.1 Lung and colon cancers datasets

This paper made use of A. Borkowski and his associates' histopathology images (LC25000) dataset that was released [22].
There are 25,000 images of lung and colon tissues in this collection, arranged within five categories, with 15,000 depicting lung
cancer and 10,000 depicting colon cancer [23]. The LC25000 dataset is divided into five files, each representing one
class/category: lung aca (adenocarcinoma), lung scc (squamous carcinoma), lung n (benign), colon aca (adenocarcinoma), and
colon n (benign). Each folder contains 5,000 tissue images [24]. All images on LC25000 have the same resolution, 768x768
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pixels. The original developers also enhanced the images (random rotation, horizontal and vertical flip) to increase the data in
the dataset [25]. Figure 2 (a - e) depicts images from the dataset that demonstrate significant tissue types such as colon
adenocarcinoma, lung squamous cell carcinoma, benign colon and lung tissue, and lung adenocarcinoma, illustrating the variety
of the dataset. Table 2 shows 25,000 histopathology images from the LC25000 dataset split into tissues of the colon (10,000
samples) and the lung (15,000 samples). Each group contains both normal and malignant samples.

colon_aca lung_aca colon_n lung_n
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Figure 2: Several histopathology image samples from the LC25000 dataset (a) colon adenocarcinoma (b) lung adenocarcinoma (c) normal
colon (d) normal lung (e) lung squamous cell carcinoma

Table 2: Summary of the LC25000 dataset

Cancer Type Samples Colon and Lung
Colon adenocarcinoma 5000

Colon benign tissue 5000 :IL 10000

Lung adenocarcinoma 5000

Lung benign tissue 5000 } 15000

Lung squamous cell carcinoma 5000

Total 25000

2.2 Data preprocessing

The input data was preprocessed before training the model. First, the images were scaled to 250*250 pixels using bicubic
interpolation. Bicubic interpolation produces higher-quality images with smoother transitions. It is generally the better choice
for medical images due to its ability to preserve important image details, making it better suited for applications that require high
accuracy in visualizing structures. CLAHE filtering was applied to enhance image quality for better suitability in the learning
process.

2.2.1 Contrast limited adaptive histogram equalization (CLAHE) filter

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an adaptable histogram equalization technique [26, 27] that
limits the excessive improvement of image contrast. CLAHE is commonly used to improve image contrast in computer vision
and pattern recognition applications [28-29]. CLAHE was added to the image's L component to boost visibility before being
converted back to RGB [30]. The LAB color space separates color and luminance information, making it easier to use contrast
enhancement techniques [31-32]. Figure 3 shows the procedures for applying a contrast algorithm to the image's luminance
channel. Figure 4 depicts the application of CLAHE to a histopathology image. This preprocessing stage is critical in medical
imaging because it improves fine details, resulting in more accurate feature extraction and analysis.

2.3 Feature extraction

Feature extraction (FE) is critical in image retrieval, processing, data mining, and computer vision. FE is the process of
extracting useful information from unstructured data. It is used to extract the most distinguishing features from a dataset (image,
text, voice), which are then utilized to represent and describe the data. This paper employs color histogram and local binary
pattern (LBP) feature extraction.

2.3.1 color histogram

The color histogram (CH) is the most extensively used technique for obtaining an image's color feature [33,34]. Proposed
as a global color descriptor that examines all statistical color frequencies in an image [35]. An HSV color space was used because
the hue and saturation of the human visual system are extremely similar [36]. Color histograms based on the HSV color space
are more precise than other popular color representations, such as color layout descriptors, color moments, and color structure
descriptors based upon retrieval in the HSV color space. Figure 5 (a - d) shows a histopathology image's HSV (hue, saturation,
value) color space decomposition. A 512-bin color histogram uses 8 bins per channel (H: 0-256, S: 0-256, V: 0-256) to represent
the color distribution of an image in HSV space. Figure 6 presents the extraction of color features from the Histopathology image
for analysis using the "Color Histogram". The HSV (hue, saturation, value) color distribution is represented by red, green, and
blue curves, respectively.
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Figure 6: Color feature extraction using HSV histogram in histopathology images
2.3.2 local binary pattern (LBP)

One of the most often used texture descriptors in computer vision is LBP. Most applications utilize LBP histograms as
texture features, creating a high-dimensional feature space, especially for tasks involving categorizing color textures. The LBP
operator is commonly used to produce texture features for gray-level image classification because of its inherent simplicity and
resilience [37]. This procedure applies throughout the full image to build an LBP feature map, capturing texture patterns for
machine learning-based image classification and recognition tasks. Figure 7 shows LBP, where a grayscale image's pixels are
compared to the center (e.g., 87), forming an 8-bit binary (e.g., 11100001 — 225), creating a texture-based feature map.

Grayscale

1 1 1 \ 13'S 132 117
1
1 o m oz 71
/
O O (o] ‘ 79 55 35

Binary: 11 1 0000 1
Decimal: 225

Figure 7: LBP feature extraction

Table 3 classifies distinct patterns of LBP into two distinct groups: uniform and non-uniform. Uniform patterns have no
more than two-bit transitions, such as (00000000, 00000001). These patterns depict basic textures like smooth areas, edges, and
corners. Non-uniform patterns, like 10101010, feature more than two-bit transitions and represent complex textures. Based on
this classification, 10 LBP features were extracted.

Figure 8 illustrates the feature extraction process for image analysis. It has 512 color histogram features and 10 additional
Local Binary Pattern (LBP) features, for a total of 522. These properties are useful for image categorization and texture analysis.
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Table 3: LBP binary patterns and texture classification

Bin LBP pattern Binary pattern Uniform/Non-Uniform
0 (Smooth Regions) 00000000 Uniform

1 (Edges) 00000001 Uniform

2 (Edges) 00000011 Uniform

3 (Edges) 00000111 Uniform

4 (Edges) 00001111 Uniform

5 (Corners) 11100011 Uniform

6 (Corners) 10001111 Uniform

7 (Corners) 11110001 Uniform

8 (Corners) 11110011 Uniform

9 (Complex Textures) 10101010 Non-Uniform

@ F N
A Ay
—X7 % §
Extraction Feature
v
joFeat® Total Extraction
Feature = 522

Figure 8: Color histogram and LBP feature extraction

Extraction Feature

2.4 Feature selection - recursive feature elimination (RFE)

Recursive Feature Elimination (RFE) is an approach of generality that may be used with most models [38]. RFE is a common
pruning approach for selecting features that enhance classification performance [39,40]. RFE is the process of gradually removing the
least important features from a model by recursively training it and measuring feature relevance until the required number of features
is achieved [41]. It assists in identifying the most relevant subset of characteristics for the best model performance.

2.5 Machine learning models

Over the past ten years, machine learning techniques have become a significant threat to traditional statistical models in
terms of prediction [42]. Machine learning (ML) technology greatly aided the development of prediction systems, producing
better and more affordable solutions. We experimented with various machine learning classifiers, such as decision Trees, support
vector machines (SVM), random forests, and XGBoost. Decision trees are the most popular and efficient tool for categorizing
and predicting difficulties [43]. It is hierarchically structured, including root, branches, and internal and leaf nodes. It has a tree-
like structure and is used to create a model that predicts the target value using judgments from the training dataset [44]. Support
Vector Machines (SVMs) have been developed as an effective classifier and regression tool. [45]. Random forests are a set of
tree predictors in which each tree is determined by the values of a random vector selected separately and uniformly across the
forest [46]. It isa quick and computationally effective method for dealing with huge datasets [47]. XGBoost is a powerful
gradient tree-boost software that can handle large-scale machine learning workloads [48]. Because of its outstanding performance
and low time and memory requirements have been widely used in various research fields since its introduction, including cancer
diagnosis and medical record analysis [49]. The benefit of regularization is that it helps prevent overfitting, allowing the model
to generalize better to unseen data [50].

The model's hyperparameters were set to maintain computational efficiency while enhancing the model's ability to generalize
well using grid search. Tables 4, 5, 6, and 7 display the DT, SVM, RF, and XGBoost hyperparameters, respectively.

Figure 9 illustrates that Grid search is a systematic method for selecting the best hyperparameters for machine learning
models by exhaustively evaluating predefined parameter combinations. The process begins by defining a parameter grid, which
specifies the range of values for each hyperparameter (e.g., learning rate, tree depth, or regularization strength). The algorithm
then trains and evaluates the model for each possible combination of these values, typically using cross-validation to ensure
robust performance estimation. In this case, the model’s performance is measured using a predefined metric, such as accuracy.
After testing all combinations, the hyperparameter set that yields the highest performance is selected as the optimal configuration.
The key benefit of grid search is that it guarantees finding the best combination of hyperparameters within the specified search
space. While it can be computationally expensive, grid search provides a reliable and straightforward method for hyperparameter
optimization, improving the model’s performance and generalization ability.
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Table 4: Hyperparameters of the decision tree model

hyperparameters value
Maximum depth of each tree 10
Minimum number of leaf nodes 5
Minimum number to split 5
criterion entropy
Random state 42
Minimum impurity decrease 0.01
Table 5: Hyperparameters of the SVM model
hyperparameters value
kernel linear
gamma scale
C 0.1
probability True
Random State 42
Table 6: Hyperparameters of the random forest model
hyperparameters value
bootstrap sampling True
Maximum depth of each tree 10
Minimum number of leaf nodes. 4
Minimum number to split 10
Number of trees 150
Maximum Features sqrt
Random State 42
Table 7: Hyperparameters of the XGBoost model
hyperparameters value
Column subsampling by tree 0.7
Learning rate 0.05
Maximum depth of each tree 4
Number of trees 200
Subsample ratio of instances 0.7
Evaluation metric Mlogloss
Minimum child weight 10
Gamma 1.0
Regularization alpha 2.0
Regularization lambda 1.0
Random state 42
Use a label encoder False

Grid Search Optimization Cycle

)

Se EEE

1

Define Train Model

Parameter Grid Train the model with

Create a grid of each para'meter Assess model Choose the .

hyperparameter combination performance using parameter set with

values cross-validation optimal
performance

Figure 9: Grid search optimization for hyperparameter tuning
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2.6 Model explainability

SHAP and LIME are techniques for explaining machine learning predictions. SHAP assigns feature importance using game
theory, while LIME approximates model behavior locally. Both improve model interpretability.

SHAP uses values to demonstrate the transparency of the machine learning models. It calculates how much each attribute
contributes to the forecast by calculating Shapley values throughout the dataset. Proposes explaining model prediction for a given
input by computing each feature's contribution [51]. Equation 1 calculates the SHAP value (¢;) for each feature by considering
its contribution across all possible feature subsets, ensuring a fair distribution of feature importance.

ISII(INT—1S]—1)!
INI!

@i = Zscm(i FEu{ih - 1) (€Y

N collection of all features, S subset of N excluding feature i, f (S) models prediction utilizing only the features in S, f (SU{i})
models prediction that involve feature i, ¢;is the SHAP value, representing the contribution of feature i to the final prediction.

LIME is another interpretable model used to show machine learning models' interpretability. Unlike SHAP, it supports local
model interpretation. XAl approach for successfully explaining classifier or regressor predictions by approximating them locally
with an interpretable model [52]. LIME is model-agnostic, which means it may be used with any machine-learning model [52].
To maintain both the interpretability and fidelity of the surrogate model to the original model, we optimize the objective function
presented in Equation 2.

arg min L(f,g.m) +02(g) 2

G is the set of possible interpretable models, L (f, g, ) is the loss function measuring the variation from the initial model f and
the surrogate model g, weighted by m, , which assigns higher importance to points closer to X, Q (g) is a complexity penalty to
ensure interpretability.

3. Results and discussion

The Lung and Colon Cancer Histopathological Image Dataset includes 25000 images separated into five groups (colon_aca,
lung_aca, colon_n, lung_n, and lung_scc), each with 5000 images. The images are divided into two folders. The training folder
has 20000 images, whereas the testing folder contains 5000 images. All images across the five classes were resized to 250 x 250
pixels. After that, feature extraction was performed using two texture analysis techniques: color histogram and LBP. Table 7
highlights the evaluation of model performance using these individual techniques and their combinations to determine the most
effective feature extraction strategy with and without using the CLAHE filter. Following that, Table 8 highlights that the feature
set was refined and optimized using Recursive Feature Elimination (RFE) without a CLAHE filter. Table 9 shows the results of
the CLAHE filter to improve image quality and learning performance.

Table 8 compares the classification accuracy of various machine learning models using three feature extraction strategies:
Color Histogram, Local Binary Patterns (LBP), and their combination. The results indicate a clear trend in feature effectiveness,
which can be explained based on the features' nature and complementary properties.

color histogram alone

e This feature captures the global color distribution in an image, which is particularly effective when color is a strong
discriminative cue for classification.

e It consistently achieves high accuracy across all models (above 95%), suggesting that color information alone is highly
informative for the task.

LBP alone

e LBP is a texture descriptor that captures local spatial patterns, which is valuable in images where surface texture
contributes to class distinction.

e However, its performance is notably lower than Color Histogram in all models (dropping as low as ~83% with SVM).

e This suggests that texture information alone may be insufficient for accurate classification in this dataset, possibly due to
low texture variation or the dominance of color-based cues.

color histogram and LBP

e The combined feature set consistently outperforms the individual features, achieving the highest accuracy (e.g., 99.56%
with XGBoost).

e This improvement highlights the complementary nature of the features: while color histogram captures global color
distribution, LBP adds local texture information that can resolve ambiguities when color alone is not decisive.

e The synergy between these features likely allows the model to better generalize across varied image characteristics.

e This analysis suggests that feature diversity enhances model performance by providing complementary information.
XGBoost benefits the most from the combined features, due to its ability to handle complex feature interactions and
perform fine-grained splits in high-dimensional space.

783



Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794

Table 8: Comparing the accuracy outcomes using the extraction of features for the various models without the CLAHE filter

Feature extraction RF XGBoost SVM DT

Color histogram 97.56% 98.98% 95.96% 97.32%
LBP 86.94% 86.12% 83.52% 84.26%
Color histogram + LBP 98.02% 99.56% 97.08% 98.26%

Table 9 compares the performance of four models on image classification using different features selected by Recursive
Feature Elimination (RFE). Decision Tree and SVM performance remain consistent, with only minor gains across different
feature subsets, demonstrating that they are less susceptible to the selected number of features. In contrast, XGBoost and Random
Forest gain considerably from additional features, obtaining the maximum accuracies (99.58%) with 100 features.

RFE improves the performance of XGBoost and Random Forest by identifying the most important features, allowing these
models to capture complicated patterns and increase accuracy. Random Forest works particularly well by aggregating forecasts
from several decision trees using a diversified feature set. Overall, RFE contributes the most to XGBoost and Random Forest,
resulting in significant gains in classification performance.

Table 9: Accuracy of different models with varying numbers of features selected via (RFE) without the use of CLAHE filter

Model NF= 50 NF= 100 NF= 200 NF= 250
Random Forest 98.78% 98.70% 98.52% 98.18%
XGBoost 99.32% 99.58% 99.50% 99.46%
SVM 96.46 97.14 97.8 97.10
Decision Tree 98.28% 98.32% 98.22% 98.26

Note: NF =number of feature selection

Table 10 compares the accuracy results of several feature extraction models with the CLAHE filter. Without RFE, XGBoost
had the greatest classification accuracy of 99.72%, followed closely by Random Forest at 98.70%. SVM and Decision Tree also
performed well, scoring 97.92% and 98.52%, respectively. After adding RFE, all models improved somewhat, with Random
Forest climbing to 98.78% and XGBoost to 99.80%. SVM and Decision Tree also improved performance, achieving 97.94%
and 98.60%, respectively.

Table 10: Comparing the accuracy outcomes using the extraction of features and RFE for the various models using the CLAHE filter

Accuracy with CLAHE RF XGBoost SVM DT
Accuracy without RFE 98.70% 99.72% 97.92% 98.52%
Accuracy with RFE =250 98.78% 99.80% 97.94% 98.60%

Table 11 shows average cross-validation accuracy across all four models for machine learning. Cross-validation entails training
the model on many data sets and comparing its accuracy on unidentified data to evaluate a model's performance and generalizability.
With an impressive 98.44% accuracy rate, the Random Forest model demonstrates its strong effectiveness and capacity for
generalization over several data splits. With an accuracy of 99.46%, XGBoost showcases its exceptional capacity to manage
complex data and consistently deliver strong results during cross-validation. At 98.25% and 97.93%, respectively, Decision Trees
and SVMs have somewhat lower average accuracies. Despite their continued high performance, these models fall short of Random
Forest and XGBoost in terms of accuracy and consistency across a wide range of data sets. The results generally show that Random
Forest and XGBoost perform better than other ML models in cross-validation, providing higher reliability and accuracy. These
models' performance may be explained by using cross-validation (5-fold) to determine the perfect hyperparameters.

Table 11: Average cross-validation accuracy with the use of the CLAHE filter

Model Result

Random forest 98.44%
XGBoost 99.46%
SVM 97.93%
Decision Tree 98.25%

Table 12 displays the model performance based on multiple classification measurements, including F1 Score, Precision, Recall,
and Accuracy. XGBoost is the top performer, with flawless 98.80% Precision, Recall, and F1 scores, demonstrating its extraordinary
ability to categorize positive and negative cases properly. Overall, Random Forest and XGBoost excel at classification, particularly
in balancing precision and recall, whereas Decision Tree and SVM are dependable but somewnhat less successful.

Table 12: Performance metrics of machine learning classification models with RFE = 250 Features and CLAHE filter

Model Accuracy Precision Recall F1 Score
Random Forest 98.78% 98.78% 98.78% 98.78%
XGBoost 99.80% 99.80% 99.80% 99.80%
SVM 97.94% 97.94% 97.94% 97.94%
Decision tree 98.60% 98.60% 98.60% 98.60%

784



Mahmood Th. Amer & Zainab N. Sultani Engineering and Technology Journal 43 (10) (2025) 775-794

The LC25000 dataset consists of five distinct tissue classes: Colon Adenocarcinoma (colon_aca), a malignant tumor from
glandular cells in the colon, showing irregular and disorganized tissue structure. Colon Benign (colon_n) normal colon tissue
with well-organized gland structures and no signs of cancer. Lung adenocarcinoma (lung_aca) is a common lung cancer starting
in mucus-producing glands and is usually found in the outer lung areas. Lung Benign (lung_n) healthy lung tissue with normal
cell patterns and no cancerous changes. Lung Squamous Cell Carcinoma (lung_scc) lung cancer type arising from squamous
cells in the airways, often linked to smoking. Table 13 evaluates classification accuracy before and after feature selection. The
performance metrics are expressed in percentages, clearly comparing how feature selection impacts each model's effectiveness
across different tissue types.

colon adenocarcinoma (colon_aca)

XGBoost: 99.90%, RF: 98.30%, DT: 99.10%, SVM: 99.90%

This class continues to demonstrate exceptionally high classification accuracy across all models. The consistently strong
performance indicates that colon_aca has distinct and easily learnable features. The near-perfect scores suggest that even with
different modeling strategies, the class is robustly separable from others.

normal colon (colon_n)

XGBoost: 99.90%, RF: 99.80%, DT: 98.90%, SVM: 100%

This class is also very easily classifiable across all models. The features characterizing normal colon tissue appear well-
defined and do not overlap with pathological classes, resulting in uniformly high accuracy post-feature selection.

lung adenocarcinoma (lung_aca)

XGBoost: 99.90%, RF: 98.80%, DT: 97.40%, SVM: 95.50%

This class shows strong performance, particularly with XGBoost and RF. However, SVM lags, which may indicate that this
model is less effective at exploiting the refined feature set. The class seems to benefit from sophisticated ensemble methods that
can better capture nuanced patterns.

normal lung (lung_n)

XGBoost: 100%, RF: 100%, DT: 99.60%, SVM: 100%

This is the best-performing class overall. The features representing normal lung tissue are highly distinctive, leading to near-
perfect or perfect classification across all models. Feature selection likely has minimal impact because this class's inherent
separability is already very high.

lung squamous cell carcinoma (lung_scc)

XGBoost: 99.30%, RF: 97.00%, DT: 98.00%, SVM: 94.30%

Among all classes, lung_scc exhibits the most variation in accuracy across models, and the lowest performance with SVM.
While XGBoost maintains high accuracy, RF and especially SVM show reduced performance compared to other tissue types.
This suggests that lung_scc may be more challenging to represent, potentially due to feature overlap with other lung cancer types
or greater intra-class variability, making it more sensitive to the choice of features and model complexity.

Colon tissue types (both normal and cancerous) are consistently well-classified with very high accuracy, indicating that their
features are inherently discriminative and stable across different models. Normal lung tissue is also trivially separable, reflecting a
strong signal in the feature space. Lung cancer subtypes, particularly lung_scc, benefit most from thoughtful feature representation
and model selection, revealing a greater dependence on feature quality and model capacity to capture complex patterns.

Table 13: Model accuracy comparison across All classes on the LC25000 dataset

Class name XGBoost RF DT SVM
colon_aca 99.90% 98.30% 99.10% 99.90%
colon_n 99.90% 99.80% 98.90% 100%
lung_aca 99.90% 98.80% 97.40% 95.50%
lung_n 100% 100% 99.60% 100%
lung_scc 99.30% 97.00% 98.00% 94.30%

Along with classification accuracy, Figure 10 (a - d) shows the confusion matrix for each model after feature selection in
the LC25000 dataset, which provides a detailed view of class-wise prediction performance, misclassifications, and the
distribution of true versus predicted labels. The authors of the most recently published research publications employed deep
learning to categorize histological images of colon and lung tumors. Table 12 compares the results obtained using the 25,000
images of the LC25000 dataset with those of publications across the literature. The results of our research show that feature
engineering accomplishes results comparable to deep learning techniques. Our XGBoost model obtained 99.80% accuracy in
classifying colon and lung cancer. This paper aims to show an interest in feature engineering techniques rather than competing
with current approaches and illustrate how machine learning models might produce better results. Machine learning techniques

785



Mahmood Th. Amer & Zainab N. Sultani

Engineering and Technology Journal 43 (10) (2025) 775-794

for healthcare image classification are evaluated in Table 14. For example, Chehade et al. [18] used SHAP with XGBoost and
other ML models, attaining a 99% accuracy in XGBoost with SHAP explanation. Using Grad-CAM, Vanitha et al. [20] evaluated
explanation in an ensemble of Xception and MobileNet models with 99.44% accuracy. Hasan et al. [21] developed (LW-MS-
CCN) with 99.20% accuracy using Grad-CAM and SHAP.

Table 14: Accuracy and explanation comparison of models for histopathological Image classification

Machine Learning Model Results Explainable artificial intelligence (XAl) Ref.
XGBoost, SVM, and other ML~ XGBoost Accuracy 99% SHAP for explainability [27]
models trained on the LC25000

dataset

Ensemble of Xception and Achieved accuracy of 99.44% Grad-CAM for explainability [29]
MobileNet architectures.

Lightweight Multi-Scale CNN Achieved accuracy of 99.20% Grad-CAM & SHAP for explainability [30]

(LW-MS-CCN)

Random Forest (RF), Support

XGBoost Accuracy 99.80%

Vector Machine (SVM),
Extreme Gradient Boosting
(XGB), Decision Tree

LIME & SHAP for explainability
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Figure 10: Accuracy of models on LC25000 dataset using confusion matrix (after feature selection) (a) xgboost

(b) RF (c) DT (d) SVM

Using XGBoost, the proposed model achieves 99.80% accuracy, surpassing all prior models. Unlike much of the previous
research, which has focused primarily on accuracy, this combination sheds light on the importance of both local (LIME) and
global (SHAP) factors, resulting in an extremely accurate and interpretable model. This is especially useful for medical
applications, as reliability and trust rely on understanding model judgments. Medical practitioners may evaluate forecasts and
enhance decision-making processes by promoting openness through combining LIME and SHAP.

SHAP for feature importance enables better model diagnostics, optimized feature sets, and improved clinical interpretability
in cancer image classification tasks. Each bar represents a feature (identified by an HSV index). The x-axis shows the mean
SHAP value, indicating how much each feature contributes, on average, to the model's final decision. The mean SHAP value for
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a feature is calculated by averaging the absolute SHAP values of that feature across all instances in the dataset. SHAP assigns
an importance value to each feature for a particular prediction, indicating how much that feature contributes to the final model
output. To evaluate overall importance, we compute the average of the absolute values of a feature’s SHAP contributions across
all samples. This ensures that both positive and negative impacts are considered equally, as we are interested in the magnitude
of the contribution, not its direction. Figure 11 shows SHAP bar plots for the dataset LC25000. In the LC25000 dataset, the
SHAP bar plot reveals that color features derived from specific HSV bins, such as HSV-475, HSV-460, and HSV-171, dominate
the XGBoost model’s decision-making. These high-ranking features likely capture important color and tissue colorations that
differ across cancer types. Overall, the model relies on a specific subset of HSV features to effectively classify images, making
these color-based features highly valuable for tissue discrimination in LC25000. The prominence of HSV features in the dataset
validates using color histogram features in the HSV color space as a strong descriptor for histopathology image classification
tasks.

The SHAP beeswarm plots provided are a visual explanation tool used to interpret the predictions of the XGBoost classifier
for medical image classification tasks. These plots are particularly useful for understanding how individual features (like HSV
color components and local binary pattern texture descriptors) contribute to a model’s prediction for each class in a dataset. The
datasets analyzed are LC25000, which includes histological images of lung and colon tissue. Each plot corresponds to a specific
class (e.g., lung_aca, colon_n) and shows how various features impact the model's output for that class.

HSV-475
HSV-460
HSV-171
HSV-172
HSV-474
HSV-470
HSV-370
HSV-420
HSV-276

HSV-115

]IIIII||||

0 005 010 015 02 025 030 035 040
mean(|SHAP value|) (average impact on model output magnitude)

[=Tu

0.

Figure 11: SHAP feature importance bar plots for the LC25000 dataset based on the
XGBoost classifier

In each SHAP beeswarm plot, the x-axis represents SHAP values, which quantify the impact of each feature on the
prediction. A positive SHAP value means the feature increases the likelihood of the model predicting the given class, while a
negative SHAP value indicates that the feature decreases that likelihood. The y-axis lists the feature names, such as HSV-460 or
LBP_4. Each dot represents a single sample, with its horizontal position showing the strength and direction of the feature’s
contribution for that sample. The color of the dots represents the feature value: red dots indicate high feature values and blue
dots indicate low feature values

This color coding helps you see whether high or low values of a feature are associated with a stronger impact on the
prediction. For instance, if red dots are clustered to the right (positive SHAP values), that feature's high values strongly contribute
to the class prediction. Conversely, if blue dots are on the right, low values push the model toward the class prediction. The
length and spread of the horizontal lines (the “beeswarm”) for each feature show the variability and importance of that feature
across all samples:

Longer lines mean the feature has a large and varied impact across the dataset. This indicates that the feature is generally
important and influences predictions differently across different samples. Shorter lines mean the feature has a more consistent
or smaller impact, possibly playing a minor or more stable role in decision-making. Figure 12 (a — e) shows the SHAP Beeswarm
Plot per Class for the LC25000 dataset based on the XGBoost classifier.

In the LC25000 plots:

a) colon_aca class, features like HSV460, HSV017, and HSV440 have the highest SHAP values, indicating they strongly
predict adenocarcinoma. High values in these HSV channels positively influence the model’s output for this class.

b) colon_n relies on features like HSV360, HSV276, and HSV447, which help the model distinguish normal colon tissue,
although the SHAP impact is more mixed, suggesting overlap with other classes.

c) lung_aca class, features such as HSV370, HSV174, and HSV172 significantly contribute to classification, with high values
strongly pushing predictions toward adenocarcinoma .
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d) lung_n, HSV475, HSV267, and HSVV577 dominate, where high feature values help the model identify normal lung tissue
accurately.

e) lung_scc class depends on fewer but more distinct features like HSV171 and HSV172, which show a clear influence,
suggesting that squamous cell carcinoma has unique visual traits easily picked up by the model.

SHAP Beeswarm Plot - Class: colon_aca SHAP Beeswarm Plot - Class: colon_n
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Figure 12: SHAP beeswarm plot per class for the LC25000 dataset based on the XGBoost classifier a) colon adenocarcinoma
b)normal colon c) lung adenocarcinoma d) normal lung €) lung squamous cell carcinoma

LIME for tabular data explains a single prediction by showing which features had the most impact. It does this by slightly
changing the input and seeing how the model’s output changes, making complex models easier to understand. Figure 13
illustrates a LIME (Local Interpretable Model-Agnostic Explanations) explanation that shows how the machine learning model
confidently classified the input histopathological image as colon adenocarcinoma (colon_aca) with a predicted probability of
1.00. This type of explanation is particularly valuable in medical diagnostics, as it allows clinicians to interpret the model’s
decision on a per-sample basis. The visualization highlights the most influential features that contributed to the model's decision,
breaking them into those supporting the "colon_aca" prediction and those opposing other potential classifications such as
"colon_n" (normal colon), "lung_aca" (lung adenocarcinoma), "lung_n" (normal lung), and "lung_scc" (lung squamous cell
carcinoma). The features supporting the "colon_aca" prediction included color histogram (HSV) and texture (LBP) features, such
as HSV-171, HSV-017, and LBP_2. Specifically, the condition —0.35 < HSV-171 < 1.04 was associated with a contribution
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weight of 0.15, indicating its significant influence in favoring the colon_aca class. Similarly, HSV-017 > —-0.11 and LBP_2 >
0.68 contributed weights of 0.13 and 0.09, respectively.

These features likely capture specific chromatic and structural characteristics of malignant colon tissue, distinct from other
classes' features. On the other hand, features such as LBP_6 < —0.67 had a lower contribution weight (0.05), suggesting a mild
opposition to the colon_aca classification, potentially because such texture values are less common in adenocarcinoma cases.
The right-hand side of the figure presents a tabular view of the actual feature values extracted from the image. For example,
HSV-171 had a value of —0.04, HSV-017 measured 0.41, and LBP_2 was significantly high at 1.87, all of which fall within the
influential thresholds that supported the colon_aca prediction. This transparency confirms the model’s decision and allows
medical experts to cross-reference these values with known pathological patterns in cancer diagnosis. Compared to global
explanation methods like SHAP, which offer generalized insights across the entire dataset, LIME’s local explanation approach
focuses on the current image. It yields actionable, interpretable results for that individual prediction. This can be particularly
critical in clinical settings, where understanding the "why" behind a model’s classification helps build trust and supports more
informed decision-making.

Prediction probabilities NOT colon aca colon aca

colon_aca (I 1.00
colon_n

lung_aca LBP 25068 HSVA017
0.09

lung_n HSV:276 <=-0.30 LBP 2

lung_sec

V;
.0.35 <HSV-171 <= 1.04 Feature  Value
0.15

HSV-017 > -0.11 HSV-171

HSV-276
HSVA475
LBP 4

HSV-170

LBP 6

Figure 13: XGBoost model LIME explainability for a single instance (colon_aca)

Figure 14 shows a step-by-step procedure for enhancing, segmenting, and explaining a histopathology image utilizing
Contrast Limited Adaptive Histogram Equalization (CLAHE), Superpixel Segmentation, and Local Interpretable Model-
Agnostic Explanations. The top-left image displays the original histopathology image without any alterations. Applying CLAHE
(top-right) enhances the contrast, making fine histological details more visible. Its superpixel segment (bottom-right) connects
similar regions, depicted in yellow, to aid in targeted feature extraction. Lastly, the LIME explanation (bottom-left) highlights
the most important points that influence the model's conclusion while excluding the less important ones. This method greatly
enhances the understanding and trustworthiness of Al-based histopathology classified images. Superpixel divides guarantee
organized feature extraction, the CLAHE stage improves transparency, and LIME offers an unambiguous presentation of model
decisions. This method enhances model transparency and helps with crucial diagnostic choices by enabling medical personnel
to assess Al predictions. The process guarantees that Al models learn useful patterns rather than worthless noise by concentrating
on medically significant fields, improving the reliability of these models for healthcare applications.
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Figure 14: LIME Explanation for Histopathological Image Classification

LIME is a valuable interpretability technique, especially effective in misclassification cases or uncertain predictions. When
a model outputs similar probabilities for two or more classes, it indicates ambiguity in decision-making, precisely the scenario
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where LIME is most insightful. By providing a localized explanation around a single prediction, LIME allows researchers and
practitioners to understand which specific features contributed most to the classification and in which direction. This granular
insight is particularly useful in medical image classification tasks, such as distinguishing between histopathological images of
lung and colon cancers.

Figure 15 presents a LIME explanation for a lung_aca prediction, offering a visual breakdown of how individual features
influenced the model’s decision. On the vertical axis, we see the top features expressed as conditional statements involving HSV
color channel values, such as "-0.61 < HSV-156 < 0.51"—representing specific pixel value ranges extracted from the image
using color-based feature engineering. These features are ordered from top to bottom by their impact magnitude on the model's
output. The horizontal axis quantifies each feature’s contribution to the prediction, with values ranging from -0.015 to +0.015.
Positive values (green bars) indicate features that support the predicted class (lung_aca), whereas negative values (red bars)
represent features that push against this class, nudging the model toward lung_scc in this case.

The bar chart shows that "-0.61 < HSV-156 < 0.51" had the strongest positive influence, increasing the confidence in
lung_aca prediction by about +0.0145. Other supporting features include "HSV-245 > 0.14" and "HSV-272 > 0.33", which made
smaller yet meaningful contributions. On the other hand, "HSV-271 > 0.65", "HSV-376 <-0.42", and "HSV-152 > 0.29" had the
most negative impact, with values close to -0.013, pulling the prediction away from lung_aca, most likely toward lung_scc. This
tension between supportive and opposing features visually confirms that the model’s prediction was made under considerable
uncertainty, with small shifts in feature values potentially tipping the outcome toward another class. Thus, the LIME chart reveals
what influenced the model and how strongly it influenced it, enabling a transparent interpretation of near-boundary or
misclassified cases.
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Figure 15: LIME-based feature contributions toward Lung_aca prediction

4. Conclusion

This study presents research that introduces a robust and interpretable machine learning pipeline for classifying lung and
colon cancer histopathological images. We achieved highly discriminative feature sets through comprehensive feature
engineering using color histograms and Local Binary Patterns (LBP) and refinement via Recursive Feature Elimination (RFE).
Among the classifiers evaluated, the XGBoost model consistently outperformed others, reaching an exceptional accuracy of
99.80%. Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing significantly improved model performance
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across all classifiers. As demonstrated in Table 10, including CLAHE led to improved classification accuracies—for instance,
XGBoost accuracy increased from 99.56% to 99.80%, and Random Forest from 98.02% to 98.78% after applying RFE. Table
11 further confirms the benefit with higher cross-validation accuracy for models trained on CLAHE-enhanced images,
particularly for XGBoost (99.46%) and Random Forest (98.44%). These improvements indicate that CLAHE enhances image
contrast, leading to more discriminative feature extraction, ultimately boosting classification accuracy and reliability.

Explainable Al (XAl) tools such as SHAP and LIME were employed to ensure model transparency and interpretability. SHAP
provided global and local insights into feature contributions, enabling us to identify that color and texture features played critical
roles in distinguishing benign and malignant tissues. LIME further enhanced interpretability by visually highlighting the specific
regions of histopathological images influencing model decisions, thereby offering meaningful support for clinical decision-making.
This study validates that integrating advanced feature extraction, RFE-based feature selection, CLAHE preprocessing, and XAl
methods significantly enhances Al models' predictive performance and trustworthiness in medical imaging applications.

This study demonstrates that feature selection significantly enhances classification performance for certain tissue types in
the LC25000 dataset, particularly for challenging classes like Lung Squamous Cell Carcinoma (lung_scc). While classes such
as Colon Adenocarcinoma, Normal Colon, and Normal Lung are inherently easier to classify—with models achieving near-
perfect accuracy—classes like lung_aca and especially lung_scc show more sensitivity to feature representation, benefiting from
more informative and well-selected features. Confusion matrices were generated for each model to assess classification
effectiveness thoroughly, offering insights into model strengths and class-specific weaknesses. These matrices revealed that most
misclassifications were concentrated in the lung cancer subclasses, reinforcing the importance of tailored feature selection
strategies for such categories.

Additionally, to better understand model decisions and improve interpretability, we employed LIME (Local Interpretable
Model-agnostic Explanations). LIME is particularly valuable for analysing misclassified instances, as it identifies and displays
the most influential features contributing to a prediction. By visualizing these feature weights, LIME helps uncover potential
reasons behind classification errors, providing both model transparency and guidance for further refinement of feature
engineering or model tuning. In future research, we plan to expand and enhance the proposed pipeline in several directions:

1) Explore advanced feature extraction techniques such as Haralick texture features, Gabor filters, Zernike moments, and
Histogram of Oriented Gradients (HOG), which may offer additional discriminatory power for capturing morphological
and textural patterns specific to cancer subtypes.

2) Apply deep learning-based feature extraction through convolutional neural networks (CNNSs) to learn hierarchical and
spatially rich representations directly from histopathological images. When combined with handcrafted features, this could
potentially improve classification performance.

3) Test generalizability by evaluating the proposed framework on various histopathological datasets from different medical
centers, scanners, and staining protocols to ensure robustness and real-world applicability.

4) Integrate multi-modal data, such as patient metadata or genomic profiles, alongside histopathological images to develop
more holistic and precise cancer diagnostic models.

These future directions aim to improve the clinical readiness of Al-assisted diagnostic tools, ensuring that they not only
achieve high accuracy but also earn the trust of medical professionals through transparency, adaptability, and consistent
performance.
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