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1. Introduction 
The construction of today's organizations relies on databases, which are used to store important information such as financial 

records, information on individuals, intellectual property, and other data that spans all sectors of an economy. The sensitive 
information contained in these databases requires protection, as organizations rely on digital systems to gain a competitive edge 
and ensure compliance with relevant regulations. For the better part of the last century, traditional database security systems, 
which focus on access control, input validation for databases, and meeting encryption standards, have effectively put a barrier in 
place against conventional cyberattack threats [1]. The cyberspace in which organizations operate is dynamic. The advancement 
of technologies such as artificial intelligence has changed the landscape of cybersecurity threats. New attack methods have 
emerged that target old weaknesses and new vulnerabilities introduced by the adoption of AI systems. Cybercriminals utilize 
machine learning to automate weaknesses in systems, design techniques to evade detection, and consistently modify strategies 
to bypass them, thereby targeting protected systems [2]. 

According to the latest reports from security intelligence, there have been significant developments in AI-enabled attacks, 
particularly in voice phishing, which has increased by 442%, as well as deepfake impersonation campaigns targeting database 
administrators and security personnel [3]. The introduction of AI-powered attack tools has altered the risk calculus when it comes 
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to database security, as illustrated by high-profile attacks, such as the Change Healthcare ransomware attack, which cost $ 22 
million. The Snowflake data breach, which affected 165 organizations, clearly demonstrates the potential damage that AI attacks 
can cause to database systems [4]. 

There is a group of academic and industry literature that examines the emerging threat landscape, including methodologies 
of attacks and frameworks of defense, along with strategies for countermeasures. There appears to be a lack of focus, however, 
as most of the research seems to be focused on single attack vectors without considering the sophisticated, integrated threat 
ecosystem and the comprehensive defense required to combat AI attacks on databases, which most address. This research aims 
to address these significant gaps by developing a comprehensive framework that captures the intricate complexity of AI attacks, 
based on systems, which outlines the level of sophistication in contemporary attacks and the defense frameworks that 
complement the threats modern systems face. 

2. Background theory 
Machine learning neural networks, database security flaws, and automated attack techniques converge as the theoretical 

foundation upon which AI-driven threats to databases are based. This analysis encompasses multiple attack patterns that utilize 
intelligent systems, examining the evolution of AI-driven attacks in the context of adversarial AI, the theoretical frameworks of 
defensive and offensive AI architectures, and the database protection systems employed by AI neural networks in information 
systems. 

Intrusive AI assists in comprehending an AI ego that has been built to reach goals set for it outside the boundaries of the 
legal and ethical frameworks and systems [5] to which it has been programmed, thus necessitating its subsumption. It has been 
established that there exist holes in deep neural networks that can be exploited through the use of strategically crafted input 
perturbations to sophisticated relay attacks. The traditional assumption that attack databases closed by automated protective 
measures systems are immune to attack is counterintuitive, given that these automated AI protective systems can become their 
own self-innovated attack surfaces, potentially unbounded in their ability to obfuscate and record patterns of unauthorized 
information acquisition. 

The classification of adversarial attacks against database protection is separated into three primary types: evasion attacks, 
poisoning attacks, and extraction attacks. Evasion attacks pose the primary challenge to the implementation of AI systems, as 
they employ sophisticated tactics to mask adversarial inputs, allowing malicious database queries to cross AI boundaries 
undetected [6]. In contrast, poisoning attacks attack AI security systems by embedding malicious modifications into the training 
datasets, weakening the system and exposing it to development vulnerabilities. In contrast, extraction attacks utilize sensitive 
information to reconstruct the database's fundamental architecture, analyze the system and telemetry, and then formulate novel 
methods for defeating systems that protect the database. 

The traditional frameworks for database security focus on principles such as access control layers, validating inputs, 
encrypting data, and logging all system activities to perform audits. The addition of AI components introduces a new layer of 
complexity, along with a distinct class of vulnerabilities that diverge from standard security concerns. Database security with the 
use of AI relies on the quality of training data, the strength of the model, and learning mechanisms, which is a new class of 
attacks on refined adversaries. The dynamic nature of systems powered by AI tools, especially those with continuous learning 
mechanisms, differentiates them from traditional, porous security systems by offering windows of unprotected, vulnerable, and 
exploitable functionality. 

Through automation and artificial intelligence (AI) systems, the scale, complexity, and accuracy of process automation are 
enhanced. The use of databases in attempts to compromise an organization’s information typically entails a manual find-and-
exploit methodology, where the operator gradually approaches a target and engages with them painstakingly. It is possible to 
automate exploit processes, program target exploitation on the fly, and conduct synchronized or multi-layered strikes on systems 
in real-time, thereby overcoming all the barriers of the defense perimeter using AI systems [7]. Machine learning processes can 
customize attack and defense strategies in real-time on multi-layered systems using databases tailored for evasive subnetworks 
of defensive systems, and execute strategies defined for autonomous multi-layered systems in complex database defense systems. 

Recent advancements of GANs and large language models (LLMs) have increased the sophistication of attacks powered by 
AI. GANs can create realistic attack patterns, and advanced models in natural language processing can craft social engineering 
attacks aimed at phishing database admins. The level of sophistication of these attacks is advanced, and so must the defense 
systems be to counter them. 

The relationship between the capabilities of AI technology and the weaknesses of a database creates a complex threat 
landscape that other untrained systems cannot defend against. Current frameworks need to enhance their AI-centric defense 
capabilities, recognizing that AI systems will invent novel, dynamically evolving, and increasingly complex attack vectors, as 
illustrated in (Figure 1) that data compiled from CrowdStrike Global Threat Report 2024 [1], NIST AI Security Framework 2023 
[2], Check Point Security Predictions 2024 [3], and academic studies [8,9,10]. Capability metrics normalized to a 0-100 scale 
for comparative analysis. Understanding the need for and creating countermeasures to tackle these advanced, theoretically backed 
frameworks requires in-depth knowledge of AI and database architecture to address complex adversarial threats. 

3. Methodology 
The approach taken in this work is a literature review in conjunction with taxonomy analysis to gain insights into the 

comprehensiveness and implications of database security threats. The approach consists of four major parts: systematic literature 
gathering and analysis, attack classification and taxonomy creation, defense mechanism comparison analysis, and synthesis of a 
comprehensive threat evaluation framework. 
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3.1 Literature collection strategy 
The review in this study adhered to cybersecurity research standards by utilizing various academic and security databases to 

capture the most recent literature. The primary sources included IEEE Explorer, ACM Digital Library, ScienceDirect, Scopus, 
and specialized cybersecurity sources such as NIST publications and industry security reports. The search strategy employed 
Boolean logic with phrases such as, AI-driven attacks, database security, adversarial machine learning, SQL injection, data 
poisoning, and machine learning security. 

Publications from 2022 to 2025 were selected to examine emerging methodologies for attacks and defense innovations, 
ensuring they align with contemporary security threats. This period marks a surge in AI advancements, with their integration 
into cybersecurity leading to sophisticated attacks and countermeasures, providing critical context for understanding the evolving 
dynamics of securing databases. Selected sources were based on review status, the number of citations, credentials of the authors, 
and their relevance to the context of database security. 

3.2 Attack classification framework 
The development process of taxonomy concerning attacks followed a specific hierarchy based on AI-powered attack 

databases. The classification hierarchy includes the attack vector, methodology, target systems, and impact. Primary 
classification dimensions incorporated the level of attack automation, AI techniques (if used), the type of database system 
targeted, and evasion techniques utilized. The framework provides foundational structures for comparative analyses, allowing 
for a systematic exploration of the evolution of attack relationships.  

Classification criteria capture levels of sophistication, from the use of automation to advanced adversarial machine learning. 
There is an impact assessment that captures the immediate repercussions, such as gaining access or extracting data, and long-
term impacts, including system compromise, reputation damage, and non-compliance with legally mandated regulations. The 
framework captures emerging variations of attack while ensuring stable coherence across different categories of threats. 

3.3 Comparative analysis methodology 
The focus of the comparative analysis section is on the defenses and countermeasures for the different categories of attacks 

and how they could be improved. These metrics focused on effectiveness, implementation complexity, and resource expenditure. 
The criteria of the analysis included detection accuracy, the prevalence of false positive flags, performance cost, ease of 
scalability, and the capability to adjust to new threat levels. The gaps in current defensive measures are highlighted, enabling the 
identification of specific scenarios where innovative strategies are needed. 

The quantitative assessment included performance metrics from published literature, such as detection rates, bypass success 
rates, and computational efficiency. Maintenance, ease of implementation, and integration with existing security systems were 
evaluated under the qualitative assessment. The comparative framework facilitates the strategic selection of defensive measures 
and resource allocation for comprehensive security systems. 

3.4 Framework synthesis process 
The methodology aims to build a comprehensive understanding of AI-based database security vulnerabilities by integrating 

the gaps identified in literature reviews, attack taxonomies, and comparative studies. It analyzes the connections between attack 
patterns and the corresponding defensive techniques to show what is sufficiently defended and what is under-defended. The 
framework emphasizes an immediate response to threats while incorporating defense adaptability that evolves to address the 
increasingly advanced nature of AI-driven attacks. 

 
Figure 1: Attacks sophistication evolution timeline (2020-2025) 
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4. Literature review 
This literature review assesses the advancements and associated research conducted in the field of database security attacks 

utilizing artificial intelligence. The review assessed 23 academic and industrial publications from the years 2022 to 2025. The 
study records a notable increase in the sophistication of attacks and their associated defenses, particularly in the context of 
machine learning applications on both the offensive and defensive sides. 

4.1 SQL injection and AI enhancement research 
Mohamed et al. [7], proposed groundbreaking AI solutions to both the detection and mitigation of SQL injection attacks in 

transportation web applications. A comprehensive dataset of real-world attack instances, including both successful and 
unsuccessful attempts, was utilized to address the class imbalance problem. The study demonstrated that considerable 
improvement in detection accuracy can be achieved by combining AI techniques with natural language processing, resulting in 
detection rates exceeding 95% against traditional variations of SQL injection, utilizing high artificial intelligence with a low 
false positive rate. Deriba et al. [11], designed a comprehensive framework based on machine learning algorithms for detecting 
SQL injection attacks, with a special emphasis on compressive techniques that reduce computational cost without compromising 
detection accuracy. Their incorporated feature selection methods and ensemble learning improved detection results across the 
variances of the targeted attack. The study highlighted the impact of the quality of training data and feature engineering on the 
development of robust systems for detecting SQL Injections. 

The systematic review of literature done by Alghawazi et al. [12], discusses machine learning algorithms for detecting SQL 
injection attacks, including naive Bayes, gradient boosting, support vector machines, and decision trees. Their analysis showed 
that ensemble methods, such as random forest and gradient boosting, outperformed individual algorithms by achieving the 
highest detection rates. The study also pointed out the importance of dataset quality and variety for training effective detection 
models. In their work, Arasteh et al. [9], developed new methods for detecting SQL injections using binary gray wolf 
optimization algorithms in conjunction with machine learning. These algorithms improved the most effective feature subset 
characteristics of the training dataset, thereby enhancing detection accuracy, precision, and overall sensitivity. This work 
demonstrates that evolutionary algorithms can be effectively applied to enhance machine learning techniques in the field of 
cybersecurity. 

4.2 Adversarial machine learning and database security 
The review by Macas et al. [10], examined adversarial examples and their associated defenses within the context of deep 

learning-enabled cybersecurity systems, with a particular focus on database security. Their analysis revealed critical gaps in AI-
driven security infrastructures, highlighting how adversarial perturbations can compromise detection fidelity and facilitate high-
degree bypass attacks. The study emphasized the importance of integrating adversarial training and effective counter-strategy 
development into production security systems. Khaleel et al. [13], synthesized work on defense mechanisms for adversarial 
attacks, focusing on network and cyber applications and employing both machine learning and deep learning techniques. Their 
systematic review of 42 studies highlighted a lack in current defense schemes, especially regarding new attack scenarios and 
adaptive adversarial strategies. The findings of this study underline the need for model retention through continuous updating 
and adversarial engagement to sustain security. 

The NIST adversarial machine learning taxonomy, as presented by Pedroso et al. [14], provides a comprehensive framework 
for understanding the types of attacks and the mitigation frameworks for AI systems. This fundamental publication pinpointed 
significant gaps in defensive methods, for instance, that there are no absolute solutions to safeguard AI systems from adversarial 
attempts. The taxonomy defined common terms and systematizations for categorizing assaults on AI, enabling better 
collaboration and coordination of work within research and knowledge development. 

4.3 Data poisoning and training data security 
Zhang et al. [15], studied data poisoning attacks on cyber-physical systems within smart grids, revealing the susceptibility 

of machine learning methods to maliciously crafted training data. Focused on edge computing frameworks, their research 
illustrated how attackers can corrupt training datasets and alter critical models and predictive results. The study also discussed 
optimization problems that arise from implementing data poisoning techniques while attempting to maintain a defined level of 
attack effectiveness. 

The overarching analysis provided by Cina et al. [16], reveals wild patterns embedded in the domain of machine learning 
security, specifically related to training data poisoning, and assesses multiple attack and counter-defensive strategies. Their 
scrutineers' examination revealed distinct subversive sophistication in data poisoning, whereby attackers employ advanced 
concealment strategies that avoid detection while achieving their intent to inflict harm. The study emphasized the importance of 
ensuring the provenance and integrity of the information provided in machine learning security systems. Alber et al. [17], 
provided evidence of the vulnerability of medical large language models to data poisoning attacks and underscored the threats 
posed to healthcare database systems. Their findings suggest that carefully designed poisoning attacks on medical AI systems 
can lead to significant misdiagnoses and ill-advised treatment proposals. The study emphasized the importance of thorough data 
validation and ongoing scrutiny in medical AI applications. 
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4.4 Intrusion detection systems and AI applications 
The case study, which integrated blockchain with cloud-enabled decentralized private healthcare systems by Deebak and 

Hwang [18], reviewed, included AI-based intrusion detection systems. Their research demonstrated increased accuracy, with 
detection exceeding 98% against variants of attacks using hybrid machine learning and deep learning approaches, while 
maintaining an acceptable computational overhead.  

For Internet of Drones applications, Heidari et al. [19], have built secure blockchain-based intrusion detection systems that 
are radially integrated with basis function neural networks. They preserved privacy while enhancing accuracy and detection by 
incorporating distributed learning and a consensus algorithm. The research presented combines the robustness of blockchain 
technologies with AI-powered security systems to demonstrate the reliability and efficiency of a fortified distributed defense 
mechanism. Maseer et al. [20], conducted an exhaustive benchmarking of machine learning methodologies using the 
CICIDS2017 dataset for anomaly-based intrusion detection systems. Analysis revealed that differing algorithms and feature 
selection methods yielded significantly different results, with ensemble methods consistently outperforming other methods in 
terms of detection rates. The research underscored the effect a chosen dataset and its preprocessing techniques had on the efficacy 
of intrusion detection systems. 

4.5 Emerging threats and advanced attack techniques 
Goldilock’s analysis [8], examined new AI-infused malware threats while projecting 2025 challenges, highlighting advanced 

attack potentials such as adaptive evasion attacks and real-time alteration of strategies. Their research revealed increased 
automation in coordinating attacks and selecting targets, along with AI-enabled malware that appeared to adapt its strategy based 
on the defenses implemented. Check Point’s comprehensive security prediction [3], AI raised concern alongside quantum threats 
and social media manipulation of databases as the foremost issues. Their study revealed a heightened level of sophistication in 
social engineering scams utilizing AI-generated content, including deepfake impersonations of authorized personnel who had 
previously accessed the database. NIST’s recent work [21], on cyber-attacks that manipulate AI system governance has exposed 
underlying gaps within current implementations of AI systems, particularly in AI-enabled database security. The study listed 
several types of attacks, including poisoning, abuse, and privacy attacks, that could undermine the AI-based security systems 
shielding database systems. 

4.6 Defense mechanisms and countermeasures 
The systematic review by He et al. [22], focused on adversarial machine learning relevant to network intrusion detection 

systems in the context of Information Technology and has been noted for its detailed survey of attack tactics and defense 
mechanisms. From their analysis, it was clear that adversarial training and effective model architectures are crucial for sustaining 
detection capabilities in the face of advanced attacks. Such reaffirming comments highlighted the need for model combat 
updating and verification against new variations of attacks. Alotaibi and Rassam [23], focused on understanding the complexities 
of adversarial machine learning attacks on intrusion detection systems, providing a comprehensive analysis that includes different 
adversarial and defensive approaches to the problem. Their research highlighted the blind spots in the current frameworks of 
intrusion detection system implementations, particularly regarding the transferability of adversarial samples between different 
architectures. The work highlighted the need to cross-pollinate different established systems to build effective defensive 
measures.  

Recent advancements in the security of federated learning systems have been analyzed by Nair et al. [24], who discussed the 
new vulnerabilities introduced with the use of distributed AI for database security in their work. Their study illustrated the extent 
to which adversarial attacks can be sustained across a federation and compromise multiple security systems simultaneously. Such 
distributed protection implementations require robust aggregation and Byzantine fault tolerance. 

4.7 Comparative analysis summary 
The literature review highlights some important trends in the study of AI-powered database security. To start with, the level 

of attacks continues to develop at a greater pace; the use of Adversarial machine learning facilitates sophisticated evasion and 
infiltration attacks against AI-powered security systems. Second, older paradigms of security will not suffice against the 
enhanced AI-infused attacks; therefore, a reevaluation of database security frameworks is fundamental. Third, strategies 
defending against attacks must integrate elements of adversarial robustness and possess the ability to adapt over time to counter 
threats, as shown in Table 1. 

The research also has critical gaps in the available knowledge, such as mechanisms for defending against new variants of 
attacks and counterplans for long-term system security. Most studies focus on a specific type of attack or a defensive technique, 
which hinders the integration of findings and results in a lack of unified, multifaceted threat frameworks. Furthermore, there is 
a lack of research on the costs and operational burdens associated with deploying advanced defenses in operational database 
systems. 
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Table 1: Comparison study between related works 

Method Used Dataset/Domain Key Findings Limitations Ref. 
AI + NLP for SQL 
injection detection. 

Transportation 
web applications. 

95% detection rate with low 
false positives. 

Limited to the transportation domain, 
requires domain-specific training. 

[7] 

Binary Gray Wolf 
Optimizer + ML. 

Custom SQL injection 
dataset. 

Enhanced accuracy through 
feature optimization. 

Computationally intensive optimization 
process. 

[9] 

Systematic review of 
adversarial examples. 

Cybersecurity 
systems survey. 

Fundamental vulnerabilities in 
AI security systems. 

Limited practical defense solutions 
provided. 

[10] 

Systematic review of 
defense strategies. 

Network 
security 
applications. 

Significant gaps in current 
defensive capabilities. 

Focus on analysis rather than novel 
solutions. 

[13] 

Taxonomy 
development. 

Adversarial ML 
systems. 

No foolproof defenses currently 
exist. 

Primarily taxonomic, limited technical 
solutions. 

[14] 

Data poisoning 
optimization. 

Smart grid systems. Successful manipulation of 
critical models. 

Resource constraints limit attack 
scalability. 

[15] 

Wild patterns analysis. ML security survey. Increasing poisoning attack 
sophistication. 

Survey-based, limited empirical 
validation. 

[16] 

Medical LLM 
poisoning. 

Healthcare AI systems. Critical vulnerabilities in 
medical AI. 

Domain-specific findings, limited 
generalizability. 

[17] 

Blockchain + AI 
hybrid. 

Healthcare 
applications. 

98% detection rate with privacy 
preservation. 

Complex implementation requirements. [18] 

Blockchain + RBF 
neural networks. 

Internet of Drones. Distributed defense with 
privacy protection. 

Limited scalability in large networks. [19] 

ML benchmarking. CICIDS2017 dataset. Ensemble methods achieve 
superior performance. 

Dataset age limits contemporary 
relevance. 

[20] 

Threat analysis and 
forecasting. 

AI-powered malware. Adaptive evasion and real-time 
strategy modification. 

Primarily predictive, limited validation. [8] 

Security predictions 
analysis. 

Enterprise 
security 
landscape. 

AI-driven social engineering 
sophistication. 

Industry report, limited academic rigor. [3] 

Adversarial ML 
survey. 

Network 
intrusion 
detection. 

Adversarial training importance 
for robustness. 

Survey methodology, limited novel 
contributions. 

[22] 

Attack strategy 
analysis. 

Intrusion 
detection 
systems. 

Significant vulnerabilities in the 
current IDS. 

Limited defense mechanism development. [23] 

Federated learning 
security. 

Distributed AI systems. Attack propagation across 
federated networks. 

Complex distributed system requirements. [24] 

Compressive ML 
framework. 

SQL injection 
detection. 

Reduced overhead while 
maintaining effectiveness. 

Limited to traditional SQL injection 
variants. 

[11] 

ML techniques survey. SQL injection 
detection. 

Ensemble methods consistently 
outperform individual 
algorithms. 

Survey-based analysis, limited novel 
techniques. 

[12] 

SVM + XGBoost 
hybrid. 

NSL-KDD, UNR-IDD 
datasets. 

Crow Search Algorithm 
optimization improves 
performance. 

Dataset limitations affect contemporary 
relevance. 

[25] 

CNN-LSTM hybrid. Network 
intrusion 
detection. 

Deep neural network 
effectiveness for IDS. 

Computational complexity concerns. [26] 

Systematic study. ML and DL 
approaches. 

Comprehensive analysis of 
current methods. 

Limited novel algorithmic contributions. [27] 

Federated learning + 
SCNN. 

Wireless sensor 
networks. 

Privacy-preserving intrusion 
detection. 

Scalability challenges in large networks. [28] 

Comprehensive 
empirical analysis. 

Multiple IDS datasets. Regression-based feature 
selection effectiveness. 

Limited to linear SVM classifiers. [29] 

5. Discussion 
A comprehensive study of attacks targeting database security with AI tools highlights the need for automating security 

technologies, underscoring the importance of diverse branches of cybersecurity disciplines, as well as academic sectors, to 
reassess their frameworks regarding protective measures policies. The danger arises from the pairing of advanced AI technologies 
with destructive purposes, resulting in exceptionally adaptive and self-regulating multi-level attack systems. 

5.1 Attack evolution and sophistication trends 
The literature review highlights adaptations designed to enhance the sophistication of devices intended to inflict harm. It 

confirms the existence of a distinct qualitative shift resulting from the incorporation of automation into previous methods. The 
application of AI within cybersecurity commenced with the elementary application of automating already existing 
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methodologies, such as automated scanning for network vulnerabilities and simple evasion strategies. Nowadays, research 
demonstrates that there is unprecedented employment and misuse of machine learning alongside generative forms, as well as 
adaptive polymorphic techniques, which give rise to entirely new types of attacks.  

Such a leap from the level of basic automation to one that is capable of intelligent reasoning marks a significant milestone 
in the realm of threats. Today’s AI-based systems for fashioning assault literally do just that: AI trains itself based on previous 
moves taken by the defenders, adapts core techniques while the offensive action is in progress, and devises ways to outsmart 
established policies within classic security frameworks. This type of development is associated with ever-increasing expectations 
of multi-layered, sophisticated perpetrator devices, which are anticipated to advance even further with the addition of multimodal 
AI, quantum evading technology, coupled with autonomous coordination of assault strategies. 

As illustrated in Figure 2, the statistical evaluation of detection rates across different studies reveals some concerning trends 
in defensive efficacy. As is the case with traditional rule-based security systems, their detection rates are said to drop from 
approximately 90% against conventional attacks to below 60% against more sophisticated variants that utilize AI. Defensive 
systems based on machine learning appear to perform better, sustaining detection rates between 85-95%. However, capture and 
retention are said to require constant modification to remain effective against ever-changing threats. 

 
Figure 2: Traditional vs AI-Enhanced attack detection effectiveness 

5.2 Vulnerability analysis and attack surface expansion 
The hybridization of AI technologies with existing database security systems appears to have unintentionally altered classical 

attack surfaces by introducing new exploitable vulnerabilities. Traditional database security primarily focused on access control, 
input validation, network security, and broader security measures. There were well-defined defensive postures and established 
threat models to counter them. The addition of machine learning components creates under-researched and inadequately 
mitigated vulnerabilities in traditional security models: training data vulnerabilities, model tampering, bias exploitation, and 
algorithmic sabotage. Poisoning data is one of the most sophisticated attacks, as it alters the training processes, thereby putting 
the entire security system at risk. Many researchers indicate that even the slightest enhancements or changes to training data can 
lead to the creation of backdoors, the addition of dormant biases, and the introduction of persistent presence, all of which allow 
access to strategically important database systems. These types of attacks are extremely difficult to mitigate, as they are designed 
to be revealed much later, which makes detection and remediation incredibly challenging, often involving a complete system 
retraining and validation.  

Demonstrating adversarial attacks on the AI security systems showcases the extent of the challenge facing today’s machine 
learning systems: current implementations are fundamentally unstable in adversarial settings. For some reason, minor 
modifications to input data can cause the most sophisticated and complex AI security systems to misidentify dangerous activities 
as safe, allowing attackers to use straightforward approaches to evade detection frameworks. Such a concern is worrying as it 
uses state-of-the-art deep learning systems that perform excellently on ignored inputs. 

5.3 Economic and operational impact assessment 
The economic implications of AI-driven database attacks extend far beyond immediate financial losses from data breaches 

or system downtime. The Change Healthcare incident, resulting in $22 million ransom payments and affecting over 100 million 
individuals, illustrates the scale of potential economic impact from sophisticated AI-enhanced attacks. However, indirect costs, 
including reputation damage, regulatory penalties, legal liabilities, and erosion of long-term customer trust, often exceed direct 
financial losses by significant margins. 



Diyar W. Naaman et al. Engineering and Technology Journal 43 (10) (2025) 822-834 
 

829 
 

 

Unlike traditional cyber threats, operational AI-driven attack disruption demonstrates unique features that differentiate it 
from other cybersecurity incidents. The amplified and adaptive nature of AI-driven attacks enables a perpetual operational reset 
and drain of resources due to the extensive shifts required to counter the defenses put forth. Organizations cite difficulty in 
restoring business-as-usual activities post-AI incidents because counter-adaptive responses are already placeholders formed by 
incessant learning systems. 

As with most organizations, resource constraints pose the most significant challenge when defending against AI-driven 
attacks. Custom-tailored, responsive strategies demand, at the very least, specialized, proprietary knowledge, extensive 
computational facilities, advanced monitoring infrastructures, and constant model updates—such requirements stretch already 
thin cybersecurity budgets. Adequate responses pose the biggest challenge for SMEs, as they foster dangers in interconnected 
database ecosystems. 

Success rates were compiled from performance metrics reported in reviewed studies [7, 9, 10, 11, 12, 20]. Traditional 
Defense rates derived from Mohamed et al. [7], (SQL injection: 85% success against rule-based systems), Alghawazi et al. [12], 
(average 90% bypass rate), and Deriba et al. [11], (conventional detection limitations). ML-Based Defense effectiveness from 
Maseer et al. [20], (CICIDS2017 benchmarking), Deebak and Hwang [18], (98% detection rate), and Heidari et al. [19] 
(distributed learning results). Adversarial Training performance from Macas et al. [10], and He et al. [22], systematic reviews. 
Average Detection Time calculated from computational overhead metrics reported across 8 studies. Values represent weighted 
averages normalized to a percentage scale for comparative analysis, as shown in Figure 3. 

 
Figure 3: Quantitative analysis of attack effectiveness and detection performance 

5.4 Defensive strategy effectiveness analysis 
A comparative assessment of defensive strategies reveals significant differences in effectiveness across various types of 

attacks and implementation cases. For example, while adversarial training appears to hold promise for enhancing robustness 
against certain known attack types, it remains largely ineffective against novel attack variations. On the other hand, ensembles 
comprising numerous detection algorithms perform better; however, they necessitate greater computational power as well as 
intricate orchestration systems and interdependencies.  

The temporal evolution of AI-powered attacks offers distinct challenges for the execution of defensive strategies. 
Conventional security frameworks rely on signature-based marking and the application of static checklists, which yield a certain 
level of performance over prolonged periods. Able to adapt and evolve, AI-powered attacks slowly weaken static counters over 
time. This necessitates ongoing learning and adaptation from defensive systems, adding operational sophistication and persistent 
resources. While Blockchain approaches can enhance data integrity and provide distributed consensus mechanisms for security 
decisions, their implementation complexity and scalability issues limit their real-world usefulness, especially in high-throughput 
database environments. Frameworks based on federated learning provide sufficient privacy guarantees for the collaborative 
development of defenses; however, they also pose new vulnerabilities due to Byzantine attacks and model poisoning in 
distributed networks. 

Figure 4 illustrates that six performance dimensions were scored on a 0-100 scale based on quantitative and qualitative 
assessments from the literature review. Detection Accuracy: averaged from reported precision/recall metrics [7,18,19,20]. 
Adaptability: qualitative assessment of system flexibility reported in studies [10, 13, 22]. Low False Positives: inverse of false 
positive rates where reported [7, 11, 12]. Efficiency: computational overhead assessments from performance studies [18, 19 ,20]. 
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Easy Implementation: complexity ratings derived from implementation descriptions and resource requirements [9, 16, 22]. 
Scalability: system capacity limitations noted in reviewed studies. Machine Learning scores represent traditional ML approaches. 
Ensemble Methods combine the results of multiple algorithms. Adversarial Training reflects robustness-focused approaches. 
Scoring methodology: quantitative metrics where available, expert assessment scale (1-5) converted to percentage for qualitative 
factors, weighted average across multiple studies for each dimension. 

 
Figure 4: Comparative defense mechanism effectiveness 

6. Research gaps and future directions 
Based on our comprehensive analysis, there are glaring gaps in current research on AI-driven database security are worth 

investigating: 

6.1 Targeted technological gaps 
 GAN-based Database Attacks: There’s a distinct lack of scholarship on the use of generative adversarial networks’ 

database schema inference and query generation attack capabilities. 
 Standardized Defense Metrics:  No standardized, universally accepted criterion for assessing the effectiveness of 

AI-driven database defense systems. 
 Cross-Domain Attack Analysis: There is a disproportionate lack of research on the cross-system and cross-

organization attack transferability for the different database management systems. 
 Real-time Adaptive Defense Mechanisms:  Autonomous defense systems that are capable of adapting 

countermeasures to the patterns of new, ongoing attacks are still largely undeveloped in research. 

6.2 Gaps in methodology 
 Long-term Coevolution Studies: Much of the research available presents a still picture of the attack-defend systems 

cycle, rather than analyzing it as a dynamic evolutionary process. 
 Quantitative Impact Assessment: There are gaps in research covering the operational and financial implications of 

AI-driven attacks on databases. 
 Human Factor Integration: There is a gap in research on the behavioral and organizational aspects as frameworks 

for technical defenses. 

7. Case study: attacks on a diagnostic imaging system based on convolutional neural networks 
Context: A hospital system was equipped with a deep learning diagnostic system developed using convolutional neural 

networks (CNNs) that distinguished between pneumonia and a normal chest X-ray. 
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7.1 Attack sequence 
 Reconnaissance: Attackers were successful in phishing the hospital and accessing the PACS (Picture Archiving and 

Communication System) system. 
 Data Poisoning: Using the fast gradient sign method, adversarial perturbations were added to a small subset of 

training X-ray images. 
 Model Exploitation: The tainted model misclassified clear images as pathological and healthy images as 

pathological. Radiologists were unable to notice the perturbations.  

7.2 Impact assessment 
1. False Negative Rate: rose by 23%. 
2. Model Accuracy: adversarial sample accuracy dropped to 68% from 94%.  
3. Detection Delay: Attacks were not detected for 3 weeks. 
4. Recovery Time: After 12 days of model retraining and system validation, the model was ready.  

7.3 Lessons learned from defense and suggestions 
1. Robustness to adversarial training: Introduce adversarial examples in training to improve robustness.  
2. Input Sanitization: Use automatic denoising to cleanse the data. 
3. Shifting Prediction Monitoring: Use abnormal prediction and distribution sensors. 
4. Federated learning: Train node-deployed models independently to mitigate monetization of centralized data breach 

loss. 

7.4 Implementation into defense frameworks 
 In this scenario, it highlights the need for multilayered defenses that combine adversarial training, real-time monitoring, and 

privacy-preserving techniques such as federated learning to safeguard medical AI systems [30]. 

8. Research limitations 
This study is accompanied by several limitations that may affect the scope of its applicability and the generalizability of its 

findings. Given the pace at which AI technologies and attack techniques evolve, some findings may inevitably become outdated 
and necessitate ongoing research monitoring. The literature review emphasized publicly available research alongside 
documentation of attacks, potentially excluding classified or proprietary research that may provide useful information concerning 
more advanced techniques and adequate defenses.  

As a result of attacking the problem from all possible relevant domains, including the interdisciplinary nature of AI, gaps 
are created in the coverage of material. Understanding the problem of posing boundaries requires mastery in Machine Learning, 
Database Systems, Cybersecurity, and even Organizational Behavior. Given the provided exploration, the claim cannot be 
safeguarded on the true nature of gaps covered from relevant views. Equally, more recent publications, dated 2022-2025, pose 
the notion of being published without pre-existing literature, thereby jeopardizing other credible innovations and phenomena 
related to modern-day threats. Given the rapid evolution of AI technologies and attack techniques, some findings may become 
outdated within 12 to 18 months of publication. The cybersecurity landscape evolves at a pace that outstrips traditional academic 
publication cycles, potentially limiting the contemporary relevance of certain conclusions. 

The comparative effectiveness metrics presented in Figures 3 and 4 synthesize results from studies employing different 
evaluation methodologies, datasets, and performance criteria. This heterogeneity necessitates normalization procedures that may 
introduce analytical artifacts or mask important nuances in original findings, as mentioned in Table 2. 

Table 2: Summary of methodological limitations by review category 

Category Primary Limitation Mitigation Strategy 
SQL Injection Studies Limited to known attack variants. Continuous monitoring of emerging attack 

patterns. 
Adversarial ML Research Theoretical focus with limited real-world 

validation. 
Integration of industry case studies and field 
testing. 

Data Poisoning Analysis Controlled dataset experiments may not 
reflect production complexity. 

Multi-domain validation across different 
database systems. 

Defense Mechanism Studies Performance metrics lack standardization 
across studies. 

Development of standardized evaluation 
frameworks. 

Intrusion Detection Research Dataset age and limited diversity. Regular dataset updates and diversification 
efforts. 

Industry Report Analysis Commercial bias and limited methodological 
transparency. 

Cross-validation with academic sources and 
independent verification. 
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9. Technical recommendations 
Given the high costs and difficulties of operationalizing these strategies, especially from the point of view of small and mid-

sized enterprises (SMEs), it is best to take a practical approach rather than a complete protection when it comes to the tiered 
approach to protection. 

9.1 Tier 1: Essential Security Measures (All Organizations) 
All organizations, regardless of industry, should implement at least basic forms of adversarial model training and ensure that 

there is some form of basic monitoring model degradation performance protocol. These basic forms of protection will safeguard 
against the most fundamental types of attack while remaining cost-effective for those with limited funding. 

9.2 Tier 2: Enhanced Protection (Medium-Large Organizations) 
Allocating greater resources towards the cohesion of systems comprising multiple components and integrating the 

duplication of core functional systems, such as automated monitoring and prediction systems for the model, core data provenance 
systems, and pre-visualization schemes. These systems, when harmonized, are the basic forms of advanced data protection. 

9.3 Tier 3: Advanced Defense Systems (Large Organizations/Critical Applications)  
Multi-tiered systems: full implementation of multi-layered security systems, full of redundancy, seamless real-time 

integration of systems from the threat intelligence layer, threat monitoring, and sophisticated, dedicated systems from the security 
layer, and complete integration of supporting and adaptive systems. These systems will provide advanced backup and rapid 
recovery capabilities, enabling the system to learn from newly acquired attack vectors continuously. 

Implementation Considerations for small and mid-tier enterprises by applying centralized collaborative systems for 
collaborative threat intelligence, and collaborative configurations of basic and refined security proxies. Rather than attempting 
to implement elaborate solutions beyond their capabilities, organizations should focus on their risk profile and operational 
capacity to allocate critical resources to security research and system maintenance. Gradual Scaling by organizations should 
implement security measures that allow for the gradual scaling of defenses as resources and threats change, rather than requiring 
an all-or-nothing approach to immediate deployment. 

10. Conclusion 
The current investigation highlights that database security incorporating AI-based threats is likely an emerging shift requiring 

organizational attention on a global scale for response and remediation. Our taxonomy identifies five types of AI-driven attacks 
whose collective success is unprecedented. SQL injection attacks are automated and, bordering on AI, achieve 85% success in 
bypassing perimeter security. The 32% drop in success rate (from 90% to 58%) of rule-based systems exposed to advanced AI 
attacks represents a fundamental threat that is AI-related, not database security. 

The contributions of this study to the field of cybersecurity industry include the synthesis of an extensive taxonomy of attacks 
on databases using AI that is systemically derived from the study of literature, the reduction of defensive capability against 
attacks using AI, and the introduction of a practical implementation model for a layered defensive posture approach which varies 
from organization to organization. The developing threats imply that more work needs to be done in the areas of adaptive defense, 
inter-domain attacks, and security of information systems, a philosophy that puts the user at the center. Future work should focus 
more on developing standardized defense frameworks for evaluation, quantum security, and the convergence of behavioral and 
technical defense systems. There is a need to invest in a fundamental overhaul of security, rather than just incremental 
improvements to existing systems that are reactive to perceived threats. 
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