Diagnosis of Staphylococcus aureus isolated from different body sites of patients and assessment of their resistance to certain antibiotics.

Bilal Hamid Farhan 1, Qanat Mahmood Atiyea 7

bh Y y . . . 2 psc@st.tu.edu.iq \ , drqanat@tu.edu.iq Y

1, 7 Department of Biology, College of Science, Tikrit University, Tikrit, Iraq

Abstract:

The study showed that Staphylococcus aureus was the most prevalent in (To) samples. The presence of this bacteria was recorded more in furniture than in males, as (**) samples out of recorded in males, at a rate of (£7, \$\dagger^2\$). This is mostly due to the fact that males are more resistant to infection with this bacteria than females, as a result of their frequent contact with health institutions and individuals. The results of the sensitivity of bacterial isolates (resistant and sensitive) to antibiotics among Staphylococcus aureus isolates using the VITIKY method showed that the bacteria were resistant to most antibiotics at rates ranging between 4.1% and 1 . . %, namely: benzylpenicillin, cefixime, cefoxitin, amoxicillin, ampicillin, amoxicillin/clavulanic acid, piperacillin, oxacillin, cefuroxime, cefpodoxime, cefotaxime, cefepime, and imipenem. The most sensitive antibiotics to the bacteria under study, with varying rates ranging from \\'\'\', were trimethoprim/sulfamethoxazole, rifampicin, vancomycin, ofloxacin, and tetracycline, with rates of YE, YAX, TA, OVX, YE, YAX, TA, OVX, and Y1, EYX, respectively. According to this study, the bacteria were sensitive to a group of antibiotics that may not exceed \wedge out of a total of \mathfrak{t} antibiotics. This means they were resistant to approximately $\wedge\cdot$ % of the antibiotics and sensitive to approximately $\vee\cdot$ % of the antibiotics.

\.Introduction

Staphylococcus aureus is a Gram-positive bacterium that is naturally present on human and animal skin and in mucous membranes(Otarigho & Falade, ''''). Approximately '''', of humans naturally carry Staphylococcus aureus in their noses. They are more susceptible to internal infections (Akhtar Danesh et al., '''').

Staphylococcus aureus lives symbiotically with other bacterial species in the human body. These bacteria can also become opportunistic pathogens and infect other tissues (Otarigho & Falade, ۲۰۱۸)

Staphylococcus aureus can be divided into methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA).

In recent decades, due to bacterial evolution and increased antibiotic use, the resistance of Staphylococcus aureus to antibiotics has gradually increased. The incidence of MRSA has increased worldwide, and clinical treatment for MRSA infections has become more challenging (Bo et al., Y·Y). These Gram-positive bacteria are also known to cause skin infections, pneumonia, bacteremia, endocarditis, and toxic shock syndrome due to their production of various toxins (Otto, Y·)A)

In addition, S. aureus can easily acquire resistance to antimicrobials and is a major causative agent of hospital-acquired infections (Nakaminami et al., ۲۰۱٤).

Penicillin was discovered in 1974 and became commercially available in the 195 s, significantly reducing the incidence of S. aureus infections. Unfortunately, penicillin-resistant S. aureus soon emerged by acquiring the gene for penicillinase, which is encoded on a large plasmid(Kurukulasooriya et al., 7.75). The discovery of beta-lactamase-resistant penicillins (such as nafcillin, oxacillin, cefoxitin, and methicillin) provided temporary relief(Kadhum & Abood, 7.77). However, later strains of methicillin-resistant Staphylococcus aureus evolved the mecA gene located on the Scc mecA cassette chromosome. This gene encodes the penicillin-binding protein 7a (PBP7a), cell wall-synthesizing enzymes with low affinity for penicillin(Algammal et al., 7.7.). MRSA strains are resistant to almost all antibiotics containing the beta-

lactam ring, including penicillins, cefpodoxime, and carbapenems, because PBP\fa has very low affinity for beta-lactams

90% of resistant S. aureus isolates produce the beta-lactamase enzyme (penicillinase) encoded by the blaZ gene, which hydrolyzes the beta-lactam ring of penicillin (Lowy, 199A). Two mechanisms contribute to resistance to Pc penicillin G in Staphylococcus aureus. First, it involves the production of penicillinase encoded by blaZ, which can inactivate Pc by hydrolyzing the β -lactam ring. Second, it involves the variable Pc-binding protein, PBP a, encoded by mecA (Dos Santos et al., $\gamma \cdot \gamma$).

blaZ is an ^£7-base-pair gene controlled by two regulatory genes (the anti-repressor gene blaR) and the repressor gene blaI). After exposure to a beta-lactam, blaR) (a transmembrane sensor-adaptor) undergoes autocatalytic cleavage, which promotes cleavage of blaI and leads to transcription of blaZ (Katayama et al., Y··• £)

BlaZ proteins are serologically classified into types A to D. Types A, C, and D of blaZ genes are located on the plasmid, while type B is located on the chromosome. Substrate specificity against β -lactams varies slightly between species. Each type of BlaZ (Nomura et al., $\gamma \cdot \gamma \cdot$).

Antibiotic resistance is subject to direct and indirect regulation by environmental signals, as mentioned above, with the two-component signal transduction system (TCS) being the main mediator of this process. The membrane-bound TCS detects the presence of antibiotics in the environment, which leads to the activation of transcriptional regulators

Y.Methodology:

Y, \ Sample Collection and Diagnosis

In this study, approximately ('\(\cdot\)) clinical samples were collected from patients at Al-Sharqat General Hospital in Salah al-Din Governorate and from the Medical City Hospital in Baghdad Governorate between July \(\cdot\), \(\cdot\), and October \(\cdot\), \(\cdot\). An autoclave was used to sterilize liquid and solid culture media, as well as tools and solutions, without being affected by the high heat generated by the autoclave. After collecting bacterial samples using cotton swabs from the affected areas, these areas

represented by various wounds and burns throughout the body, as well as from the urinary tract, sputum, and V.S., these swabs were cultured on appropriate culture media using Petri dishes, represented by blood base agar and MacConkey agar simultaneously. The Petri dishes were then placed in an incubator at "V°C for VA—Y£ hours. Gram staining and catalase testing were then performed to differentiate between staphylococci and streptococci. The coagulase test distinguishes Staphylococcus aureus from other staphylococci, namely coagulase-negative (S. epidermis) and coagulase-negative (S. epidermis). Samples are then cultured on mannitol salt agar (MSA), a selective medium for these bacteria. This medium allows S. aureus to grow, while other bacteria cannot, as it contains "—" sodium salts. S. aureus ferments the sugar mannitol, which changes the color of the medium from red to yellow. Catalase and oxidase tests (Ekta et al., """) are sometimes used to distinguish oxidase-negative staphylococci from other negative species. After diagnosis, bacteria are cultured using culture media and biochemical tests, then identified using the VITEK " to ensure the purity of the identified bacterial isolates and exclude other species. The bacteria are then stored, and the results are recorded.

T.Results and Discussion

T, Biochemical Identification of the Staphylococcal Species Under Study

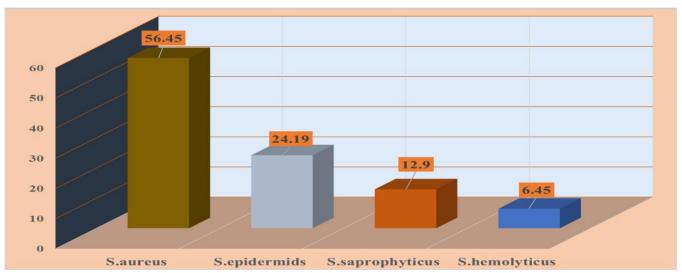
Bacterial species that cause numerous diseases, often leading to wound and burn infections, sepsis, and many other life-threatening diseases, were identified. These bacteria were isolated, all species were Gram-stained, and several biochemical tests were performed according to Table (¹). Staphylococcus aureus (S. aureus) was identified by performing a catalase test for all species, as all bacteria produced this test and formed blisters. In addition, a coagulase test was performed to separate S. aureus from other staphylococcal species. A urease test was also performed, as all species also produced this enzyme. Furthermore, a novobiocin antibody test was performed, which distinguishes between S. saprophtycus and S. epidermis, as these bacteria are bacteriocins. Staphylococcus aureus is resistant to this antibiotic, while Staphylococcus albicans is sensitive to it, which distinguishes between the two types. An oxidase test was performed to determine the ability of these bacteria to produce this enzyme, and all

bacteria tested negative. Table (') shows the chemical identification of the various types of staphylococci under study, and Figure (') shows the remaining types of bacteria that were identified

T, Y Isolation of Staphylococcus aureus

In this study, the most common and widespread bacterial species were identified. Approximately 'i' samples were collected from various areas of patients' wounds and burns. Of these, approximately 'i' were S. aureus, as shown in Table (i). Of these isolates, (io) were S. aureus, with a mean of (oi, io). This study is consistent with the findings of researcher(Alkhafaji & Alsaimary, ioi), who found that the percentage of these bacteria in wounds was (ioi, hoi). The results of this study also agree with the results of researcher (Salman & Abd Al-Mayahi). Many previous studies have indicated that Staphylococcus aureus S.aureus had the highest percentage among all bacterial isolates collected from different wound areas that were contaminated with this bacteria, or the source of contamination was external, represented by various germs, or the source of contamination was in the operating room environment, the people working in operations, or the surgical tools and materials in the operating room (Monistero et al.,

Y. IA), while the percentage of the presence of S.epidermids bacteria came in second


Type bacteria	Catalase test	Coagulase test	Oxidase	Motility	Gram stain
S.aureus	+	+	_	non motile	Gr+
S.epidermids	+	_	_	non motile	Gr+
s. saprophyticus	+	_	_	non motile	G+
s. hemolyticus	+	_	_	non motile	Gr+

place, as the rate of the presence of this bacteria reached about ($^{\circ}$) samples out of ($^{\circ}$) samples of staphylococci, at a rate of ($^{\circ}$), and in third place was the percentage of the presence of S.sapropgyticus bacteria, at a rate of ($^{\wedge}$) samples, at a rate of ($^{\circ}$), and in fourth place was S.hemolyticus bacteria, at a rate of ($^{\circ}$) samples, at a rate of ($^{\circ}$). The results of this study are consistent with the findings of the researcher (Muhammed et al., $^{\circ}$). These proportions indicate that S.aureus is one of the most common pathogens in humans. It is considered a major causative agent of infections in

wounds, burns, and other infections, including impetigo, infective endocarditis, wound infections, sepsis, meningitis, and toxic shock(Pines), as well as respiratory tract infections, pneumonia, surgical sites, artificial joints, and cardiovascular infections (Cheung et al., '''). The highest prevalence in this study was S.aureus, while the

Specimens	Sampling ferquency	Percentage (%)	
S.aureus	7 0	07,50	
S.epidermids	10	Y£,19	
S.saprophyticus	٨	17,9.	
S.hemolyticus	£	٦,٤٥	
Totale	44	99,9	

lowest prevalence was S. hemolyticus. This is likely due to the virulence of S.aureus, its enzymes and toxins that destroy host defenses, and its potential for antibiotic resistance. Table (7) shows the numbers and percentages of isolates from different regions.

T,T Distribution of the Study Sample by Sample and Gender

This study, as shown in Table ($^{\circ}$), demonstrated significant differences in the presence and distribution of staphylococcal isolates and their sources across both sexes, as well as their resistance to antibiotics. The study showed that Staphylococcus aureus was the most prevalent bacteria in ($^{\circ}$) samples. The presence of this bacteria was more prevalent in furniture than in men, with ($^{\circ}$) of the ($^{\circ}$) samples recorded in women,

representing (av, 15%), while only (10) samples were recorded in men, representing (٤٢,٨٥٪). This is likely due to the fact that men are more resistant to infection with this bacteria than women, due to their frequent contact with health facilities and individuals. In addition, the antibiotics used may play a major role in infection, and these antibiotics may be ineffective in resisting these bacteria, leading to the spread of bacteria and infection. While the presence of S. epidermids bacteria was at a rate of (10) samples, (9) samples were recorded in females at a rate of (7.1/2), while in males (7) samples were recorded at a rate of ($\xi \cdot \%$), while the presence of S. saprophyticus bacteria was recorded in men higher than in females, as (°) samples were recorded at a rate of (77,0%), while in females ($^{\gamma}$) samples at a rate of ($^{\gamma\gamma}, \circ$). This is mostly due to the property of these bacteria to be found in abundance in injuries of prosthetic limbs, medical parts, etc. In addition, the presence of these bacteria is opportunistic, as is the case with S. hemolyticus bacteria, as these bacteria may be present opportunistically, and when the appropriate conditions are available, they become pathogenic, as (5) samples were recorded, (7) of which appeared in females at a rate of ($\sqrt{\circ}$), while ($\sqrt{\circ}$) sample was found in males at a rate of ($\checkmark \circ \checkmark$). This study also showed that females are more Males are more susceptible to infection. This study agreed with the findings of the researcher (Hindi et al., Y.YY) and other researchers, as they indicated that infection appears more in females than in males, and in general this may be due to the physiological difference between females and males, as in Figure ($^{\circ}$).

Specimens	Male	Percentage(%)	Female	Percentage(%)
S.aureus	10	٤٢,٨٥٪	۲.	٥٧,١٤%
S.epidermids	٦	٤٠٪	٩	ኣ · %
S.saprophyticus	٣	٣٧,٥٪	٥	٦٢,٥%
S.hemolyticus	١	۲٥٪	٣	V 0 %
Totale	۲٥	٤٠,٣٢٪	٣٧	09,7V%

T, E Antibiotic sensitivity of bacterial isolates in this study:

According to Table (ξ), the results of the antibiotic sensitivity of bacterial isolates (resistant and susceptible) among S. aureus isolates using the VITIK7 method show 55. All antibiotics used to test S. aureus strains from different infections using the VITIKY method were resistant, and S. aureus strains differed in their antibiotic resistance rate when using the probability value (** $p \le \cdot, \cdot$) as an indicator. No statistically significant differences were found for most of the antibiotics studied, as 55 antibiotics were used according to VITIKY measurements. Bacteria were found to be resistant to most antibiotics at rates ranging between 9.1/2 and 1.1/2. We note, according to the table, that the bacteria were $\wedge \cdot /$ to $\wedge \cdot \cdot /$ resistant to the following antibiotics: cefixime, cefoxitin, benzylpenicillin, amoxicillin, ampicillin, amoxicillin/clavulanic acid, piperacillin, oxacillin, cefuroxime, cefpodoxime, cefotaxime, cefepime, imipenem. This is a large number of antibiotics that bacteria have become resistant to. They are completely unaffected by them, but the antibiotics to which the bacteria were sensitive, at varying rates between \(\frac{\pi}{\cdot}\) and \(\frac{\pi}{\cdot}\), were: gentamicin, azithromycin, amikacin, topromycin, levofloxacin, clarithromycin, erythromycin, ciprofloxacin, clindamycin, doxycycline. The most sensitive antibiotics to the bacteria under study, with varying rates ranging from \\'\'\', were trimethoprim/sulfamethoxazole, rifampicin, vancomycin, ofloxacin, and tetracycline, with rates of (Y5, YA%), (Y4, YA%), (Y5, YA%),

($\upalpha, \upalpha, \upalpha,$

This confirms the ability of S. aureus bacteria carrying virulence genes to resist the most common antibiotics.

Isolate	Antibiotic	Sample	R	S	P-value
			No. (%)	No. (%)	
١	Cefoxitin	FOX	۳۲(۹۱,٤۲٪)	٣(٨,٥٧٪)	•,•••\ **
۲	Benzylpencillin	PENPEN	٣٣(٩٤,٢٨٪)	۲(٥,٧١٪)	•,•••\ **
٣	Amoxicillin	AMX	٣٣(٩٤,٢٨٪)	۲ (٥,٧١٪)	•,•••\ **
٤	Ampicillin	AMP	٣٣(٩٤,٢٨٪)	۲ (٥,٧١٪)	•,•••\ **
٥	Amoxicillin/ClavulaniAc	AMC	٣٣(٩٤,٢٨٪)	۲ (٥,٧١٪)	•,•••\ **
	id				
٦	Ampicillin/ Sulbactam	AM /SCF	۲۹(۸۲,۸۵٪)	٦ (١٧,١٤٪)	• , • • • • **
٧	Piperacillin/Tazobactan	PTZ	۲۹(۸۲,۸٥٪)	٦(١٧,١٤٪)	•,•••\ **
٨	Oxacillin MIC	OX/ MIC	۲۹(۸۲,۸۵٪)	٦(١٧,١٤٪)	• , • • • • **
٩	Oxacillin	OX	۲۹(۸۲,۸٥٪)	٦(١٧,١٤٪)	•,•••
١.	Cefuroxime	CXM	۲۹(۸۲,۸۵٪)	٦(١٧,١٤٪)	• , • • • • **
11	Cefixime	CFM	٣٥(١٠٠٪)	٠ (٠,٠٠٪)	•,•••
17	Cefpodoxime	CPD	۲۹(۸۲,۸۰٪)	٦(١٧,١٤٪)	•,•••\ **
١٣	Cefotaxime	CTX	۲۹(۸۲,۸٥٪)	٦(١٧,١٤٪)	•,•••
١٤	Ceftriaxone	CRO	۲۷(۲۷,۱٤٪)	۸(۲۲,۸٥٪)	• , • • • • **
10	Cefepime	FEP	۲۸(۸۰٪)	٧ (٢٠٪)	•,•••\ **
١٦	Imipenem	IMP	۲۸(۸۰٪)	٧ (٢٠٪)	•,•••\ **
١٧	Meropenem	MEM	۲۷(۲۷,۱٤٪)	۸(۲۲,۸٥٪)	•,•••\ **
١٨	Amikacin	AK	(٪٥٨,٢٢)۲۲	۱۳(۳۷,۱٤٪)	•,•••\ **
۱۹	Gentamicin	GN	۲۳(۲۰,۷۱٪)	1 £(£ • ½)	•,••• **
۲.	Tobromycin	TO	۱۹(٥٤,٢٨٪)	17(٤0,٧1%)	•,•••\ **

۲۱	Ciprofloxacin	CIP	١٧(٤٨,٥٧٪)	11(01,57%)	.,
77	Levofloxacin	LFV	۱۷(٤٨,٥٧٪)	١٨(٥١,٤٢٪)	•,•••\ **
77	Moxifloxacin	MXF	۱۲(٣٤,٢٨٪)	۲۳(۲۰,۷۱٪)	•,•••\ **
۲٤	Norfloxacin	NOR	۱۲(٣٤,٢٨٪)	۲۳(۲۰,۷۱٪)	•,•••\ **
70	Ofloxacin	OFL	11(٣1,٤٢%)	۲٤(٦٨,٥٧٪)	*,*** **
77	Inducible clindamycin	I/CD/R	۲۳(٦٥,٧١٪)	۱۲(٣٤,٢٨٪)	•,•••\ **
	Resistance				
77	Azithromycin	AZM	۲٤(٦٨,٥٧٪)	11(٣1,٤٢%)	•,•••\ **
۲۸	Clarithromycin	CLR	۲٤(٦٨,٥٧٪)	11(٣1,٤٢%)	•,•••\ **
۲۹	Erythromycin	Е	۲٤(٦٨,٥٧٪)	11(٣1,٤٢%)	•,•••\ **
٣.	Clindmycin	CD/DA	۲۳(۲۰,۷۱٪)	۱۲(٣٤,٢٨٪)	•,••• **
٣١	Lincomycin	LCM	۲٥(٢١,٤٢٪)	١٠(٢٨,٥٧٪)	•,•••\ **
٣٢	Linezolid	LZD	9(٢٥,٧١٪)	۲٦(٧٤,٢٨٪)	•,•••\ **
٣٣	Teicoplanin	TEC/TEI	9(٢٥,٧١٪)	۲٦(٧٤,٢٨٪)	•,•••\ **
٣٤	Vancomycin	VAN	9(٢٥,٧١٪)	۲٦(٧٤,٢٨٪)	•,•••\ **
٣0	Doxycycline	DOX	17(٤0,٧1%)	19(05,71%)	•,•••\ **
٣٦	Minocycline	MIN	17(٤0,٧1%)	19(05,71%)	•,•••\ **
٣٧	Tetracycline	TE	۱۰(۲۸,۵۷٪)	۲٥(٧١,٤٢٪)	•,•••\ **
٣٨	Tigecycline	TIG	۱۲(٣٤,٢٨٪)	۲۳(٦٥,٧١٪)	•,•••\ **
٣٩	Fosfomycin	FOS	۱۲(٣٤,٢٨٪)	۲۳(۲۰,۷۱٪)	*, * * * * *
٤٠	Nitrofurantoin	NI/F	۱۲(٣٤,٢٨٪)	۲۳(٦٥,٧١٪)	•,•••\ **
٤١	Fusidic Acid	FD	11(01,57%)	١٧(٤٨,٥٧٪)	•,•••\ **
٤٢	Mupirocin	MUP	11(01,57%)	۱۷(٤٨,٥٧٪)	.,
٤٣	Rifampicin	RA	11(٣1,٤٢%)	Y £ (7 A , 0 V ½)	•,•••\ **
٤٤	Trimethoprim/sulfametho	TS/SXT	9(٢٥,٧١%)	۲٦(٧٤,٢٨٪)	•,•••\ **
	xazole				
	P-value		*, * * * * *	•,•••\ **	
		** (P≤	·,·1).		

The spread of antibiotic resistance:

The spread of antibiotic resistance currently poses a significant threat to human public health. Cases of multidrug-resistant bacteria are reported annually, while the development of new antibiotics is declining. Focus has been placed on reducing the spread of antibiotic resistance by limiting their use in healthcare, which reduces the exposure of pathogens to antibiotics and thus limits the selection of resistant strains (Table °) (Al-Zubaidi et al., ۲۰۱۹).

Pharmacological	Category	Drug	Trade	The scientific
family		Classification	Name	name
Pencillin	Infection diseases	Antibacterial	Amoxil	Amoxicillin
Aminoglycosides	Sexual diseases	Antibacterial	Gramycin	Gentamicin
Tetracyclin derivatives	Infection diseases	Antibacterial	Rocephin	Ceftriaxon
Felin new-burn	Infection diseases	Antibacterial	Azith	Azithromycin

Conclusion:

According to this study, the most common bacterial species diagnosed in the healthcare facilities under study was Staphylococcus aureus (Υ^{1} , Λ^{1}), compared to other pathogenic bacteria. Wounds and burns were the most common sites of its spread, while pus was the least common. In general, the infection rate of this pathogenic bacteria was higher in males than in females. It was also found that Staphylococcus aureus bacteria are resistant to common antibiotics at rates that may exceed Λ^{1} ? of the antibiotics under study, which total $\xi \xi$ antibiotics, as it was found to be resistant at a rate of Λ^{1} ? to Λ^{1} ? to cefixime, cefoxitin, benzylpenicillin, amoxicillin, ampicillin, amoxicillin/clavulanic acid, piperacillin, oxacillin, cefuroxime, cefpodoxime, cefotaxime, cefepime, imipenem, and sensitive to a small group of antibiotics at varying rates, namely trimethoprim/sulfamethoxazole, rifampicin, vancomycin, ofloxacin, and tetracycline, which reached ($(\Psi \xi, \Upsilon \Lambda^{1})$, $(\Psi \xi, \Upsilon \Lambda^{1})$,

References

Akhtar Danesh, L., Saiedi Nejad, Z., Sarmadian, H., Fooladvand, S., van Belkum, A., & Ghaznavi-Rad, E. (***). Elimination of Staphylococcus aureus nasal carriage in intensive care patients lowers infection rates. European Journal of Clinical Microbiology & Infectious Diseases, T9, TTT-TTA.

Algammal, A. M., Enany, M. E., El-Tarabili, R. M., Ghobashy, M. O., & Helmy, Y. A. (' · ' ·). Prevalence, antimicrobial resistance profiles, virulence and enterotoxins-determinant genes of MRSA isolated from subclinical bovine mastitis in Egypt. Pathogens, 4(°), **\forall .

Alkhafaji, B. A., & Alsaimary, I. E. (۲۰۲۰). Detection and Frequency of Hld Gene among Methicillin Resistant Staphylococcus Aureus (Mrsa).

Bo, Y., Guo, C., Lin, C., Zeng, Y., Li, H. B., Zhang, Y., Hossain, M. S., Chan, J. W., Yeung, D. W., & Kwok, K. O. (***). Effectiveness of non-pharmaceutical interventions on COVID-19 transmission in 19. countries from ** January to 19 April ***. International Journal of Infectious Diseases, 1.7, 757-70.

Dos Santos, F. F., Mendonça, L. C., de Lima Reis, D. R., de Sá Guimarães, A., Lange, C. C., Ribeiro, J. B., Machado, M. A., & Brito, M. A. V. P. (** \ \^*\). Presence of mecA-positive multidrugresistant Staphylococcus epidermidis in bovine milk samples in Brazil. Journal of dairy science,

Kadhum, H. H., & Abood, Z. H. (* . * *). Staphylococcus aureus Incidence in Some Patients with a Topic Dermatitis in Baghdad City. Iraqi J Biotechnol, * (*), (*), (*).

Katayama, Y., Zhang, H.-Z., & Chambers, H. F. ($^{\uparrow} \cdot \cdot \cdot ^{\sharp}$). PBP $^{\uparrow}$ a mutations producing very-high-level resistance to beta-lactams. Antimicrobial agents and chemotherapy, $^{\sharp} \wedge (^{\uparrow})$, $^{\sharp} \circ ^{\psi} - ^{\sharp} \circ ^{\varphi}$.

Kurukulasooriya, M., Tillekeratne, L., Wijayaratne, W., Bodinayake, C., Dilshan, U., De Silva, A., Nicholson, B., Østbye, T., Woods, C., & Nagahawatte, A. D. S. (۲۰۲٤). Prevalence and molecular epidemiology of methicillin-resistant Staphylococcus aureus in livestock farmers, livestock, and livestock products in southern Sri Lanka: A one health approach. Infection, Genetics and Evolution, ۱۲٦, ۱۰۵۹۳.

Monistero, V., Graber, H. U., Pollera, C., Cremonesi, P., Castiglioni, B., Bottini, E., Ceballos-Marquez, A., Lasso-Rojas, L., Kroemker, V., & Wente, N. ($^{7} \cdot ^{1} \wedge$). Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins, $^{1} \cdot (^{7})$, $^{7} \cdot (^{7})$.

Muhammed, M. Q., Atiya, Q. M., & Muhammed, S. M. (****). DETECTING OF STAPHYLOCOCCUS AUREUS ISOLATED FROM DIABETIC FOOT AND HOSPITAL ENVIRONMENT USING RAPD-PCR. Biochemical & Cellular Archives, **(1).

Nakaminami, H., Noguchi, N., Ito, A., Ikeda, M., Utsumi, K., Maruyama, H., Sakamoto, H., Senoo, M., Takasato, Y., & Nishinarita, S. ($^{7 \cdot 12}$). Characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals in Tokyo, Japan. Journal of Infection and Chemotherapy, $^{7 \cdot (\land)}$, $^{0 \cdot 17 - 0 \cdot 19}$.

Nomura, R., Nakaminami, H., Takasao, K., Muramatsu, S., Kato, Y., Wajima, T., & Noguchi, N. ($^{7} \cdot ^{7} \cdot$). A class A β -lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. Journal of Global Antimicrobial Resistance, $^{7} \cdot ^{7} \cdot ^{5} \cdot ^{5} \cdot ^{7} \cdot$

Otarigho, B., & Falade, M. O. ($^{\uparrow}$, $^{\uparrow}$). Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. Bioinformation, $^{\uparrow}$ $^{\xi}$ ($^{\neg}$), $^{\uparrow}$ $^{\neg}$.

Otarigho, B., & Falade, M. O. ($^{\gamma}$, $^{\gamma}$). Computational screening of approved drugs for inhibition of the antibiotic resistance gene mecA in methicillin-resistant Staphylococcus aureus (MRSA) strains. BioTech, $^{\gamma}$ ($^{\gamma}$), $^{\gamma}$ $^{\circ}$.

Pines, M. The Dangers of The Dangers of Staphylococcus aureus Staphylococcus aureus and Antimicrobial and Antimicrobial Resistance.

Salman, A. S. Y., & Abd Al-Mayahi, F. S. Isolation and study of MRSA-resistant Staphylococcus aureus from clinical samples in Al-Diwaniyah Hospitals. Journal of Health Sciences, \((S^\), \(\(\) \

Cheung, G. Y.C., Bae ,J.S. and Otto, M. (* . * 1). "Pathogenicity and virulence of", virulence, Vol. 17 No, 1,pp. 0 = 1 - 0 19