التاثير المتداخل بين محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في التربة في جاهزية العناصر الغذائية ال N,P,K في التربة حميد رشيد صالح سلام اسماعيل ابراهيم الملخص

اجريت هذه الدراسة من اجل معرفة تاثير التداخل بين محتوى التربة الجبس وعمق التربة وملوحة مياه الري في جاهزية بعض العناصر الغذائية في التربة، نفذت التجربة في مدينة الخالدية (منطقة غزوان) للموسم الزراعي 2009-2008 وتم اجراء هذه التجربة في سنادين بلاستيكية ارتفاعها 90 سم وعرضها 42سم واستخدم التصميم العشوائي الكامل C.R.D اذ اشتملت التجربة على ثلاثة عوامل، العامل الاول هو محتوى التربة من الجبس (P) بمستويين الاول 98 (غم. كغم 1 تربة) والثاني 194 (غم. كغم 1 تربة)، والعامل الثاني عمق التربة (b) الذي تضمن عمقين العمق الاول 15 سم والعمق الثاني 30 سم، العامل الثالث ملوحة ماء الري (w) بثلاثة مستويات عمقين العمق الاول 15 سم والعمق الثاني 30 سم، العامل الثالث ملوحة ماء الري (w) بثلاثة مستويات Triticum aestivum 99: درعت بذور الحنطة صنف اباء 200 كغم 8. هـ1 والفسفور بمقدار 200 كغم 8. السماد النتروجيني بمقدار 200 كغم 8. والفسفور بمقدار 120 كغم 8 هـ1 والبوتاسيوم بمقدار 80 كغم 8. هـ1 ورويت المعاملات حسب المستويات المطلوبة وعندما يستنزف 120% من الماء الجاهز وحصدت بتاريخ 2009/5/15 وتم اخذ نماذج تربة لاجراء بعض التحاليل الكيميائية . وقد اظهرت النتائج ماياتي:

1- ادى محتوى التربة من الجبس وملوحة مياه الري الى تاثير معنوي في جاهزية النتروجين في التربة وتم الحصول على العلاقة الرياضية التالية:

Y=73.822-0.452P+3.963w

2- ادى محتوى التربة من الجبس وملوحة مياه الري الى تاثير معنوي في جاهزية الفسفور في التربة وتم الحصول على العلاقة الرياضية التالية :

Y=71.227-0.454P-7.838w

3- ادى محتوى التربة من الجبس وملوحة مياه الري والتداخل بين محتوى التربة من الجبس وملوحة مياه الري والتداخل الثلاثي بين محتوى التربة من الجبس وعمق التربة وملوحة مياه الري الى تاثير معنوي في جاهزية البوتاسيوم في التربة وتم الحصول على العلاثة الرياضية التالية:

Y=130.889-0.31P+14.713W-0.008pdw

المقدمة

تعد محدودية مساحة الاراضي الزراعية التي لا تزيد عن 22% من مساحة اليابسة لذا تبرز اهمية التوسع في استغلال اراضي جديدة لتوفير امنم غذائي يتماشى مع الزيادة السكانية (13). فإن غالبية مناطق التوسع الزراعي هي اراضي جبسية اذ تشغل مساحات واسعة من العالم وخاصة في المناطق الجافة وشبه الجافة والعراق من ضمنها، اذ تشغل الترب الجبسية مساحة لاتقل عن 20% لمحتوى التربة من الجبس وعمق التربة عملاً فعالا في خصائص التربة اذ آن وجود الجبس بنسب صغيرة لا تزيد عن 20% قد يحسن بعض صفات التربة الكيميائية والفيزيائية اما زيادة محتوى التربة من الجبس عن حد معين فإنها تؤدي الى تدهور صفات التربة فيما يخص عمق التربة فوق الافق الجبسي

مديرية الزراعة في محافظة الانبار – وزارة الزراعة – بغداد، العراق.

المؤتمر العلمي التاسع للبحوث الزراعية

فيعد احد معايير صلاحية التربة الجبسية للزراعة المروية (4) اما الماء فيعد العامل الاساس المحدد في التوسع الزراعي اذ يبلغ اجمالي الموارد المائية العذبة تقريبا 263 مليار 8 وان زيادة حاجة الى الماء، اذ تصل الى 413 مليار 8 عام المياه غير العذبة (مياه الابار ومياه المبازل) فقد اشارت الكثير من الدراسات الى امكان استعمال المياه الختلفة الملوحة سواءا كانت سطحية ام جوفية (3) ومن هنا جاءت هذه الدراسة لدراسة تاثير التداخل بين محتوى التربة من الجبس وعق التربة وملوحة مياه الري في بعض الصفات الكيميائية للترب الجبسية.

المواد وطرائق البحث

نفذت تجربة بايلوجية بسنادين بالاستيكية في مدينة الخالدية (غزوان) التي تبعد شرق مدينة الرمادي 18 كم ألموسم الزراعي الخريفي 2009-2009 جلبت تربتان مختلفتان لمحتوى التربة من الجبس من منطقتين الاولى تربة ذات نسجة مزيجة طينية من منطقة الصقلاوية (قرية ابو بكر) ذات محتوى جبسي 98 غم. كغم $^{-1}$ تربة (1 وقلا والثانية : تربة ذات نسجة مزيجة طينية رملية من مدينة الفلاحات ذات محتوى جبسي 194 غم . كغم $^{-1}$ تربة (2 وقلا اخذت النماذج وجففت الترب ثم طحنت ونخلت بمنخل قطر فتحاته 2 ملم. خلطت كل تربة على حدة بصورة جيدة واخذت نماذج ترابية لا جراء بعض التحاليل الكيميائية (جدول 1) وتم جلب تربة ذات محتوى جبسي 580 غم. كغم $^{-1}$ تربة طحنت ووضعت في سنادين بالاستيكية قطرها 42 سم وارتفاعها 90 سم رطبت وتم دكها ورصها بواسطة كتلة حديدية بحيث اصبحت طبقة تربة جبسية مضغوطة وصلدة تمنع تغلغل الماء الى الاسفل. بحيث اصبح سمك هذه الطبقة 35 سم في حالة التربة بعمق 15 سم وبعمق 30 سم وبواقع 21.32 كغم تربة للعمق 25 سم وبواقع 21.32 كغم تربة للعمق 30 سم وبواقع 22.32 كغم تربة للعمق 30 سم وبواقع 42.63 كغم تربة للعمق 30 سم.

وزرعت بمحصول الحنطة صنف اباء 95 (Triticum aestivum L.) بتاريخ 2008/11/29 وبمقدار وبمقدار $^{1-}$ كغم بذور هكتار $^{1-}$ تمت اضافة السماد النتروجيني بواقع 200 كغم $^{1-}$ على شكل يوريا بدفعتين الاولى عند الزراعة والثانية بعد 40 يوما ن عملية الانبات، والسماد الفوسفاتي بواقع 120 كغم $^{1-}$ على شكل سوبر فوسفات ثلاثي $^{1-}$ و دفعة واحدة قبل الزراعة والسماد البوتاسي 80 كغم $^{1-}$ على شكل كبريتات البوتاسيوم $^{1-}$ $^{1-}$ بدفعتين الاولى عند الزراعة والثانية بعد 60 يوما من الزراعة (1)، اذ اعتمدت مساحة السندانة في تقدير حسابات البذور والتسميد ، نفذت تجربة عاملية ضمن التصميم التام التعشية (Complete Design) وبواقع ثلاثة مكررات للمعاملة الواحدة وشملت التجربة دراسة ثلاثة عوامل ، هى:

(p) soill contant of gypsum العامل الأول : محتوى التربة من الجبس

- (p1) تربة قليلة المحتوى من الجبس 98 غم. كغم $^{-1}$ تربة -1
- (p) تربة متوسطة المحتوى من الجبس 195 غم. كغم -2

(D) Soil depth الثاني : عمق التربة

- تربة بعمق 15 سم (d1)
- تربة بعمق 30 سم (d2)

(W) Conenteration of saline water العامل الثالث: تراكيز ملوحة ماء الري

- $\left(W1\right)^{1-}$ میاه ذات ملوحة 1.13 دیسي سیمینزم -1
- $(W1)^{1-}$ میاه ذات ملوحة 2.65 دیسی سیمینزم -2
- $(W3^{-1})^{-1}$ میاه ذات ملوحة 3.8 دیسي سیمینزم -3

وجدول (2) يبين بعض الصفات الكيميائية لمياه الري.

مجلة الزراعة العراقية البحثية (عدد خاص) مجلد19 عدد6 2014 جدول 1: يبين بعض الصفات الكيميائية والفيزيائية لترتى الدراسة قبل الزراعة

القيمة S2 تربة الفلاحات	القيمة S1 تربة البوبكر	الصفة
3.85	2.4	Ec دیسي سیمینزم ⁻¹
7.3	7.1	PH
7.9	9.8	المادة العضوية غم. كغم ⁻¹ تربة
19.5	9.8	الجبس غم. كغم $^{-1}$ تربة
260	103	الكلس غم. كغم ⁻¹ تربة
	ص 1:1	الايونات الموجبة والسالبة الذائبة (مليمول لتر ⁻¹) في مستخل
13.3	8.4	الكالسيوم
8.17	5.87	المغنسيوم
12.41	8.4	الصوديوم
10.31	4.77	الكبريتات
22.8	10.27	الكلوريدات
4.5	2.1	البيكاربونات
0.21	N.O	الكاربونات
		مفصولات التربة ب غم. كغم $^{-1}$ تربة
502	286	الرمل
278	337	الغوين
217	374	الطين
15.4	18.7	النتروجين الجاهز ملغم. كغم ⁻¹ تربة
8.2	9.7	الفسفور الجاهز ملغم. كغم ⁻¹ تربة
118	132	الفسفور الجاهز ملغم. كغم ً تربة البوتاسيوم الجاهز ملغم. كغم ً تربة الكثافة الظاهرية ميكا غم. م ³
1.34	1.32	الكثافة الظاهرية ميكا غم. م³
29.05	33.21	الرطوبة عند السعة الحقلية %
17.43	20.75	الرطوبة عند نقطة الذبول الدائم%

ورويت التجربة بالمياه حسب مستوياتها الملحية 1.13 و 2.65 و 3080 ديسي سيمينزم $^{-1}$ واضيفت المياه في الرية الأولى حسب الفرق بين محتوى التربة من الرطوبة ومحتوى التربة من السعة الحقلية، ولكن في الرية الأولى اضيفت زيادة مقدارها 15% لانها رية انبات وفي الريات اللاحقة حسب مقدار الماء الجاهز عن طريق رسم منحنى الشد الرطوبي من الفرق بين مقدار الرطوبة عند 33 كيلو باسكال و 1500 كيلو باسكال وبعد استنزاف 50%من الماء الجاهز يعاد الري مرة اخرى. اما متى نروي؟ ،فقد حدد حسب معرفة كمية المياه المتبخرة يوميا من حوض التبخر حصدت النباتات بتاريخ 2009/5/15 واخذت عينات التربة من كل وحدة تجريبية لاجراء بعض التحاليل وتقدير بعض الصفات الكيميائية.

جدول 2: يبين التحليل الكيميائي لمياه الري المستخدمة

الوحدة	ملوحة مياه الري					
J 9	W1	W2	W3			
يمينزم -1)	1.13	2.65	3.80			
PH	8.1	7.9	7.7			
الكالسيوم	2.61	2.84	3.97			
المغنسيوم	1.52	2.53	4.37			
الصوديوم	4.61	14.42	24.11			
لذائبة البوتاسيوم لتر ⁻¹ الكاربونات	0.14	0.3	0.4			
لتر -1 الكاربونات	0.13	0	0			
البيكاربونات	2.41	4.67	7.42			
الكبريتات	1.27	1.29	1.67			
الكلوريدات	8.21	18.11	26.93			
1/2(¹⁻ را الص	2.27	6.24	8.37			
التر ¹⁻ N-NO3	3.4	4.2	5.1			

النتائج والمناقشة

تاثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في تركيز النتروجين الجاهز في التربة

يبين الجدولان (8 و4) تحليل التباين لتاثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في التركيز النتروحجيني الجاهز في التربة، فقد اظهرت نتائج التحليل الاحصائي ان لزيادة محتوى التربة من الجبس تاثيرا معنويا في المعاملة P2 التي اعطت اقل معدلا بلغ 74.9 (ملغم N كغم⁻¹ تربة) وبنسبة انخفاض بلغت 5.85 % وهذا يتفق مع ما حصل عليه الخزاعي 2005 (5)، وبؤجع سبب ذلك الى ان جاهزية العناصر الغذائية تنخفض مع زيادة محتوى التربة من الحبس في التربة وبالاخص النتروجين بسبب انخفاض محتوى التربة من المادة العضوية والسعة التبادلية الكاتيونية.

اما تاثير ملوحة مياه الري المضافة في جاهزية عنصر النتروجين في التربة فقد اظهرت نتائج التحليل الاحصائي ان زيادة ملوحة مياه الري من W1 ماء نهر الى W2 المياه المخلوطة ثم الى W3 ممياه البزل ادى الى زيادة معنوية في جاهزية النتروجين، اذ بلغت قيم تراكيز النتروجين في التربة 70.8, 70.8 و81.1 (ملغم N كغم $^{-1}$ تربة) على التوالي. ويعزى السبب في زيادة النتروجين الجاهز في التربة باستعمال مياه البزل قارنة مع المياه المخلوطة ومياه نهر الفرات الى زيادة محتوى النترات في مياه البزل التي تساهم في تجهيز التربة بالنتروجين الجاهز، وهذا يتفق مع ماحصل عليه سليم (8).

فيما يخص تاثير عمق التربة في تركيز النتروجين الجاهز وتاثير التداخل بين محتوى التربة من الجبس وعمق التربة وتاثير التداخل بين محتوى التربة من الجبس وملوحة مياه الري وتاثير التداخل بين ملوحة مياه الري المضافة وعمق التربةوتاثير التداخل الثلاثي بين محتوى التربة من الجبس وعمق التربة ومحتوى التربة منم الجبس وملوحة مياه الري المضافة ، فقد اظهرت نتائج التحليل الاحصائي انه لا توجد فروق معنوية في جدول تحليل التباين الى حد مستوى عنوية (0.05).

جدول 3: تاثير محتوى التربة من الجبس وعمق التربة وملوحة مياه اري في تركيز لنتروجين الجاهز في التربة (ملغم/كغمم تربة)

P*D*	معدل W ⁻	P*W	معدل	D*V	معدل V	P*D	معدل	مياه الري	ملوحة	عمق التربة		ى التربة لجبس	محتوء من اأ							
74.3	P1d1w1	73.3	P1w1	71.8	D1w1	70.0	P1	70.0	****											
80.6	P1d1w2	81.0	P1W2	80.0	D1W2	79.8	D1	70.8	W1											
											عمق		محتوى							
84.6	P1D1w3	92.6	D111/2	02.0	DIWI		P1			77.9	التربة	79.3	محتوى الجبس							
72.3	P1D2w1	83.6	P1W3	PIW3	PIW3	PIW3	PIW3	PIWS	PIWS	PIWS	82.0	D1W3	78.7	D1	79.5	W2		D1		P1
69.3	P2D1w1	68.3	P2W1	69.3	D2W1															
79.3	P2D1w2	78.0	P2W2	79.0	D2W2	76.0	P1													
79.3	P2D1w3					70.0	D1	01.0	****	5 63	عمق	7 40	محتوى							
67.3	P2D2w1	78.5	P2W3	80.1	D2W3	73.8	P1 D1	81.0	W3	76.3	التربة	74.9	الجبس							
76.6 77.6	P2D2w2 P2D2w3					73.0	P1D				انتربه D2		P2							
77.13	-	77.13		77.13		77.13		77.13		77.13		77.13	المعدل							
N.S	-	N.S		N.S		N.S		3.903		N.S		3.187	LSD							

جدول 4: تحليل التباين لبيانات تجربة تاثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في جاهزية النتروجين في التربة (ملغم/كغم تربة)

S.O.V	d.f.	S.S.	M.S.	F.CAL	F. Table (0.05)	F.Pr
P	1	173.36	173.36	8.46	4.26	0.008
D	1	23.36	23.36	1.14	4.26	0.296
\mathbf{W}	2	730.72	365.36	17.82	3.40	< 0.001
P×D	1	2.25	2.25	0.11	4.26	0.810
P×W	2	8.72	4.36	0.21	3.40	0.959
D×W	2	1.72	0.86	0.04	3.40	0.861
P×D×W	2	6.17	3.08	0.15	3.40	-
Error	24	492.00	20.5	-	-	-
Total	35	1438.31	_	-	-	-

وقد تم تقدير العلاقة رياضياً، اذ اخذت معادلة الانحدار الخطي المتعدد Multi liner regression بين تركيز النتروجين الجاهز والعوامل التي اثبتت معنويتها في التاثير فيه من اجل تحديد تاثير لكل من تلك العوامل المثبتة في ادناه التي استوفت الاختبارات الاحصائية الخاصة بمعنوية الدالة من خلال قيمة \mathbf{F} التي بلغت $\mathbf{23.189}$ ، وتشير الى التاثير المعنوي لتلك العوامل في تركيز النتروجين الجاهز، وكذلك من خلال قيم \mathbf{t} المحسوبة كل معلمه مرافقة لتلك العوامل.

$$Y = 73.822 - 0.452P + 3.936w$$

(26.461)^t - (3.093)^t + (6.067)^t

وتشير قيمة ال ${\bf R}^2$ للانموذج المذكور انفا التي بلغت ${\bf 0.584}$ بان تقريبا ${\bf 90.00}$ من التغييرات الحاصلة في تركيز النتروجين الجاهز تعود الى التغييرات في العوامل التوضيحية التي تضمنها الانموذج وإن التغيير في محتوى التربة من الجبس مقداره وحدة واحدة (غم. كغم $^{-1}$ تربة) يتبعه تغيير في تركيز النتروجين الجاهز بمقدار ${\bf 0.584}$ ، وإن التغيير في ملوحة المياه المضافة مقداره وحدة واحدة (ديسي سيمينز. $^{-1}$) يتبعه زيادة في تركيز النتروجين الجاهز مقدارها ${\bf 0.584}$.

تأثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في تركيز الفسفور الجاهز في التربة

يبين الجدولان (5 و6) تحليل التباين لتأثير محتوى التربة من الجبس وعمق التربةوملوحة مياه الري المضافة في تركيز الفسفور الجاهز في التربة، فقد أظهرت نتائج التحليل الإحصائي بأن زيادة محتوى التربة من الجبس أدى إلى خفض معنوي في تركيز الفسفور الجاهز، إذ أعطت المعاملة p1 أعلى معدلاً، إذ بلغ 47.0 (ملغم p2 كغم $^{-1}$ تربة) وبنسبة انخفاض بلغت p3 التي أعطت معدلاً بلغ p4 (ملغم p2 كغم p5 ويرجع سبب ذلك إلى زيادة تركيز الكالسيوم المتأتية من زيادة محتوى التربة من الجبس وهذا يعمل على ترسيب الفسفور وانخفاض جاهزيته بالتربة والنبات.

أما تأثير ملوحة مياه الري في تركيز الفسفور الجاهز في التربة فقد أظهرت نتائج التحليل الإحصائي بأن زيادة ملوحة ماء الري أدى إلى خفض معنوي في تركيز الفسفور الجاهز في التربة المروية بمياه البزل \mathbf{W} قياساً مع التربة المروية بالمياه المخلوطة \mathbf{W} ومياه النهر \mathbf{W} 1 إذ بلغت قيم تراكيز الفسفور في التربة 35.5 ، 35.5 ، 66.3 (ملغم \mathbf{P} 2 كغم \mathbf{P} 3 تربة) على التوالي، ويعزى سبب نقصان جاهزية الفسفور بزيادة ملوحة مياه الري إلى زيادة وجود ايونات الكالسيوم التي ترتبط مع الفوسفات، ثم ترسيبه وتحويله إلى صورة غير جاهزة، وهذا يتفق مع ما حصل عليه سليم (8).

المؤتمر العلمى التاسع للبحوث الزراعية

جدول 5: تأثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في تركيز الفسفور الجاهز في التربة (ملغم / كغم تربة).

	معدل D*W*	P*V	معدل V	D*V	معدل ۷	P*D	معدل	، میاه پي	ملوحة الر	عمق التربة		نوبة من س	محتوى الا الجب
57.8 345.	P1D1w1 P1D1w2	58.9	P1W1	57.1	D1w1	46.1	P1d1	56.3	W1				
345. 59.9	P1D1w3 P1D2w1	44.6	P1W2	42.0	D1w2					44.3	عمق التربة	47.0	محتوى الجبس
44.0 39.5	P1D2w2 P1D2w3	37.4	P1W3	33.9	D1w3	47.7	P1d1	42.5	W2		D1		P1
56.3 38.8	P2D1w1 P2D1w2	53.7	P2W1	55.5	D2w1	42.4	P1d1						_
332. 51.1	P2D1w3 P2D2w1	40.3	P2W2	42.9	D2w2			35.5	W3	45.2	عمق التربة	42.6	محتوى الجبس
41.8 35.1	P2D2w2 P2D2w3	33.7	P2W3	37.3	D2w3	42.6	P1d1				D2		P2
44.8		44.8		44.8		44.8		44.8		44.8		44.8	المعدل
N.S		N.S		N.S		N.S		2.57		N.S		2.09	LSD

أما تأثير عمق التربة وتأثير التداخل بين محتوى التربة من الجبس وعمق التربة وتأثير التداخل بين محتوى التربة من الجبس وملوحة مياه الري وتأثير التداخل الثلاثي بين محتوى التربة من الجبس وملوحة مياه الري في تركيز الفسفور الجاهز، فقد أظهرت نتائج التحليل الإحصائي إنه لا توجد هنالك فروق معنوية في جدول تحليل التباين إلى حد مستوى معنوية (0.05).

وقد تم تقدير العلاقة رياضياً، إذ أخذت معادلة الإنحدار الخطي المتعدد Multi liner regression بين تركيز الفسفور والعوامل التي أثبتت معنويتها في التأثير فيه من أجل تحديد تأثير لكل تلك العوامل المثبتة في أدناه التي استوفت الاختبارات الإحصائية الخاصة بمعنوية الدالة من خلال قيمة \mathbf{F} التي بلغت $\mathbf{116.118}$ ، وتشير إلى التأثير المعنوي لتلك العوامل في تركيز الفسفور الجاهز، وكذلك من خلال قيم \mathbf{t} المحسوبة كل معلمة مرافقه لتلك العوامل.

$$Y = 71.227 - 0.454p - 7.838W$$

(31.193)t - (3.793)t - (14.760)^t

وتشير قيمة ${\bf R}^2$ للأنموذج المذكور آنفا التي بلغت ${\bf 0,876}$ بأن ما يقارب ${\bf 88}$ من التغييرات الحاصلة في تركيز الفسفور الجاهز تعود إلى التغييرات في العوامل التوضيحية التي تضمنها الأنموذج.

وأن التغير في محتوى التربة من الجبس مقداره وحدة واحدة(غم. كغم $^{-1}$. تربة) يتبعه نقصان في تركيز الفسفور مقداره -0.454 وأن التغيير في ملوحة المياه المضافة مقداره وحدة (ديسي سيمينز. $^{-1}$) يتبعه نقصان في تركيز الفسفور الجاهز مقداره -7.838.

جدول 6: تحليل التباين لبيانات تجربة تاثير حتوى التربة من الجبس وعمق التربة وملوحة ياه الري جاهزية الفسفور في التربة (ملغم/كغ تربة)

S.O.V	d.f.	S.S.	M.S.	F.CAL	F. Table (0.05)	F.Pr
P	1	147.68	174.68	15.75	4.26	< 0.001
D	1	7.38	7.38	0.67	4.26	0.423
W	2	2676.75	1338.38	120.64	3.40	< 0.001
P×D	1	4.48	4.48	0.40	4.26	0.531
P×W	2	2.76	1.38	0.12	3.40	0.884
D×W	2	37.76	18.88	1.70	3.40	0.204
P×D×W	2	49.62	24.81	2.24	3.40	0.129
Error	24	266.25	11.09	_	_	-
Total	35	3219.68	_	_	_	-

تأثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في تركيز البوتاسيوم الجاهز في التربة

يبين الجدولان (7 و8) تحليل التباين لتاثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري المضافة في تركيز البوتاسيوم الجاهز في التربة، فقد اظهرت نتائج التحليل الاحصائي ان زيادة محتوى التربة من الجبس من 159.7 الى 129 ادى الى انخفاض معنوي في تركيز البوتاسيوم الجاهز، اذ انخفض تركيز البوتاسيوم الجاهز من 751.1 (ملغم K كغم⁻¹ تربة) على التوالي، ويرجع السبب الى وجود ايون الكالسيوم بنسبة اعلى من بقية الايونات الاخرى وترجع اليه عائدية هذه الزيادة بسبب زيادة حتوى التربة من الجبس وهذا يتفق مع ماحصل عليه سليم (8)، كركوتلى (10).

جدول 7: تاثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في تركيز البوتاسيوم الجاهز في التربة (ملغم/ كغم تربة)

	معدل D*W	P*W	معدل آ	D*W	معدل	P*D	معدل	عة مياه <i>لوي</i>	-	عمق التربة		لتربة من بس	محتوى ا الج
133.3 166.7	P1D1w1 P1D1w2	136.7	P1W1	132.8	D1w1	158.8	P1d1	137.6	W1				
176.3 140.0	P1D1w3 P1D2w1	162.7	P1W2	159.8	D1w2					154.8	عمق التربة	159.7	محتوى الجبس
158.7 183.0	P1D2w2 P1D2w3	179.7	P1W3	172.3	D1w3	160.6	P1d1	161.0	W2		D1		P1
131.3 153.0	P2D1w1 P2D1w2	138.5	P2W1	142.8	D2w1								
168.3	P2D1w3	130.3	12001	142.0	DZWI	150.9	P1d1				عمق		محتوى
145.7 145.7	P2D2w1 P2D2w2	159.3	P2W2	162.8	D2w2			168.1	W3	156.8	التربة	151.4	الجبس
144.7	P2D2w2	156.5	P2W3	163.8	d2w3	152.0	P1d1				D2		P2
155.5		155.5	7	155.5		155.5		155.5		155.5		155.5	المعدل
18.2		12.8		N.S		N.S		9.11		N.S		7.44	LSD

جدول 8: تحليل التباين لتأثير محتوى التربة من الجبس وعمق التربة وملوحة مياه الري في جاهزية البوتاسيوم في التربة (ملغم/كغم تربة)

					` • 1	1 /
S.O.V	d.f.	S.S.	M.S.	F.CAL	F. Table (0.05)	F.Pr
P	1	608.4	608.4	5.20	4.26	0.032
D	1	18.8	18.8	0.16	4.26	0.692
\mathbf{W}	2	6115.1	3057.5	26.13	3.40	<0.001
P×D	1	1.00	1.00	0.01	4.26	0.927
P×W	2	1045.1	322.5	4.47	3.40	0.022
D×W	2	545.1	373.5	2.33	3.40	0.119
P×D×W	2	1053.5	526.8	4.50	3.40	0.022
Error	24	2808.0	117.0	-	_	-
Total	35	12194.9	-	-	-	-

اما تاثير ملوحة مياه الري في تركيز البوتاسيوم الجاهز في التربة ، فقد اظهرت نتائج التحليل الاحصائي ان زيادة ملوحة ماء الري ادى الى زيادة معنوية في تركيز البوتاسيوم الجاهز في التربة فقد بلغ تركيز البوتاسيوم في التربة المروية بمياه النهر والتربة المروية بالمياه المخلوطة والتربة المروية بمياه البزل 168.1، 161.0، 137.6 (ملغم $^{-1}$ تربة) على التوالي، ويرجع السبب الى زيادة املاح الصوديوم التي تزداد مع ملوحة مياه الري، وتزيد من انطلاق البوتاسيوم في معادن الطين وهذا يتفق ما حصل عليه كل من الجوذري (2)، الهيتي (7)، الهيتي (4L-Zubaidi وجماعته (12) الذين اشاروا الى زيادة البوتاسيوم الجاهز في التربة بزيادة ملوحة الري المستخدمة.

المؤتمر العلمى التاسع للبحوث الزراعية

اما تاثير التداخل بين محتوى التربة من الجبس وملوحة مياه الري في تركيز البوتاسيوم الجاهز فقد اظهرت النتائج التحليل الاحصائي الى وجود تاثير معنوي في هذا التداخل في تركيز البوتاسيوم الجاهز وسجلت اعلى قيمة عند المعاملة P1w3، اذ بلغت P1v3 (ملغم K كغم K تربة) وهي تختلف معنوياً عن المعاملات الاخرى، اذ بلغ اقل معدلاً عند المعاملة E1w3 فبلغت E1w3 (ملغم E1w3 كغم K كغم K تربة) ويعود سبب الزيادة عند المعاملة E1w3 الى انخفاض محتوى التربة من الجبس وزيادة ملوحة مياه الري المستخدمة في عملية الارواء.

اما تاثير التداخل بين ملوحة مياه الري ومحتوى ألتربة من الجبس وعمق التربة في تركيز البوتاسيوم الجاهز فقد اظهرت نتائج التحليل الاحصائي الى وجود فروق معنوية لهذا التداخل في تركيز البوتاسيوم الجاهز في التربة وسجلت اعلى قيمة لهذا التداخل عند المعاملة P1D2w3 ، اذ بلغت (ملغم K كغم $^{-1}$ تربة) P2D1w1 اقل قيمة عند المعاملة P2D1w1 اذ بلغت P2D1w1 (ملغم M كغم M تربة) .

فيما يخص تاثير عمق التربة في تركيز البوتاسيوم الجاهز وتاثير التداخل بين محتوى التربة من الجبس وعمق التربة وتاثير التداخل بين ملوحة مياه الري وعمق التربة في تركيز البوتاسيوم الجاهز فقد اظهرت نتائج التحليل الاحصائي انه لا توجد هنالك فروق معنوية في جدول تحليل التباين الى حد مستوى معنوية (0.05).

وقد تم تقدير العلاقة رياضياً، اذ اخذت معادلة الانحدار الخطي المتعدد Multi liner regression بين تركيز البوتاسيوم الجاهز والعوامل التي اثبتت معنويتها في التثير فيه من اجل تحديد تأثير لكل من تلك العوامل المثبتة في ادناه التي استوفت الاختبارات الاحصائية الخاصة بمعنوية الدالة من خلال قيمة \mathbf{F} البالغة $\mathbf{9.610}$ ، وتشير الى التأثير المعنوي لتلك العوامل في تركيز البوتاسيوم الجاهز ، وكذلك من خلال قيم \mathbf{T} المحسوبة كل معلمة مرافقة لتلك العوامل.

وتشير قيمة ال ${f R}^2$ للانموذج المذكور انفاً التي بلغت ${f 0.554}$ بان تقريباً 55% منم التغييرات الحاصلة في تركيز البوتاسيوم الجاهز تعود الى التغييرات في العوامل التوضيحية التي تضمنها الانموذج.

وان التغيير في محتوى التربة من الجبس مقداره وحدة واحدة (غم . كغم $^{-1}$ تربة) يتبعه تغيير في كمية تركيز البوتاسيوم الجاهز بمقدار -0.317 وان التغيير في ملوحة المياه المضافة مقدار وحدة واحدة (ديسي سيمينز .م $^{-1}$) يتبعه زيادة في تركيز البوتاسيوم الجاهز مقدارها 14.713، وتغيير التداخل بين محتوى التربة من الجبس وملوحة مياه الري يتبعه نقصان في تركيز البوتاسيوم الجاهز بمقدار -0.024 وتغيير التداخل الثلاثي بين محتوى التربة من الجبس وعمق التربة وملوحة مياه الري يتبعه نقصان في تركيز البوتاسيوم الجاهز البوتاسيوم الجاهز .

Y=130.889-0.317p+14.713w-0.024pw-0.008pdw $(11.911)^t - (0.475)^t + (4.191)^t - (0.110)^t - (1.199)^t$

المصادر

- 1- ابو العيس، رجاء محي الدين (2005). تكنولوجيا زراعة الحنطة، الهيئة العامة للارشاد والتعاون الزراعي. نشرة ارشادية (9).
- 2- الجوذري، حياوي ويوه عطية (2006). تأثير نوعية مياه الري ومغنطتها ومستويات السماد البوتاسي في بعض صفات التربة الكيميائية ونمو وحاصل الذرة الصفراء. كلية الزراعة-جامعة بغداد، العراق.
- 3- الجيلاني، عبد الرحمن غيبة وفاضل قدوري (1997). الري المتناوب بين المالحة وشبه المالحة والمياه العذبة على انتاجية القمح صنف اكساد 67 للموسم الزراعي 1996-1995 في اللبيزومترية في محطة المركز العربي بدير الزور، الدورة التدريبية حول استعمال المياه المالحة وشبه المالحة في الزراعة للمهندسين الزراعيين العراقيين العراقيين 1997/26-2-1997/26. بغداد جمهورية العراق.

- 4- الحديثي، جابر اسماعيل خلف (1998). تأثير عمق التربة ومحتوى التربة من الجبس والكثافة الظاهرية في بعض الصفات الفيزيائية للتربة ونمو الذرة الصفراء. أطروحة دكتوراه-كلية الزراعة-جامعة بغداد- العراق.
- 5- الخزاعي، كهرمان حسين حبيب (2005). تأثير ملوحة ومستويات مختلفة من الملوحة في ذوبانية الجبس في بعض الترب الجبسية. رسالة ماجستير كلية الزراعة جامعة بغداد، العراق.
- 6- الفلاحي، منير ناجي احمد (2009). تأثير اضافة الجبس الفوسفاتي في بعض صفات التربة ونمو وحاصل الحنطة (Triricumaestivum L). رسالة ماجستير كلية الزراعة- جامعة الانبار، العراق.
- 7- الهيتي، شيماء محي داود سليم (2009). التلوث البيئي الناتج من المياه المالحة ومخلفات الاغنام وتأثيرها على نمو وانتاجية الشعير. رسالة ماجستير كلية التربية للبنات جامعة الانبار، العراق.
- 8- سليم، قاسم احمد (2001). تأثير ملوحة مياه الري وطريقة اضافته في صفات التربة الجبسية لمنطقة الدور.
 أطروحة دكتوراه-كلية الزراعة-جامعة بغداد، العراق.
- 9- فهد، علي عبد (2001). الموارد المائية في الوطن العربي والخيارات المطروحة لتجاوز العجز المائي. المؤتمر التكنولوجي العراقي السابع، الجامعة التكنولوجية- بغداد، العراق.
- -10 كركوتلي، رامز (1990). الترب الجبسية وطرق استثمارها. الشركة العامة للدراسات المائية-حمص. مداولات الدورة التدريبية في استصلاح وادارة الاراضي الجبسية. المركز العربي لدراسات المناطق الجافة والاراضي القاحلة اكساد، سوريا.
- 11- مردود، طارق (1990). استصلاح الاراضي الجبسية. مداولات الدورة التدريبية في استصلاح وادارة الاراضي الجبسية. المركز العربي لدراسات المناطق الجافة والاراضي القاحلة اكساد، سوريا.
- 12- Al-Zubaidi, A. H. and K.H. Al-Semak (1995). Effect of salinity on potassium quilibria as related to cropping Mesopotamia J. Agri., 27:99-106.
- 13- Jafarzadeh, A.A.; and J.A. Zinck (2004). Warldwide distribution and sustasinable management of soil with gypsum. University of Tabriz, faculty of Agriculture, soil Science Department, Tabriz, I.R. Iran.

THE EFFECT OF INTERACTION AMONG SOIL CONTENT OF GYPSUM, SOIL DEPTH AND IRRIGATION WATER SALINITY IN CONTENT OF AVAILABLE NUTRIENTS N, P, K SOIL

H. R. Salah S. I. Ibrahim

ABSTRACT

Pots experiment was conducted to study the effect of interaction among soil content of gypsum, soil depth and irrigation water salinity in content of available nutrients N, P and K in soil. The experiment was conducted at Khaldiyah city-Ghazwan during the season 2008L2009 in plastic pots (90cm high, 42 cm diameter) by using the complete randomized design.

Experiment content three factors. First was soil content of gypsum with two levels 98 and 194 gm.kg⁻¹ soil. The second soil depths which were 15 and 30 cm. The third were irrigation water salinity with three levels 1.13, 2.65 and 3.80ds.m⁻¹. The treatments were irrigated after losing 50% of available water, so that taken soil samples for estimate content of available nutrients elements N, P and K in soil.

Results showed that soil content of gypsum (p), soil depth (D), irrigation water salinity (w) and the interaction among these factors had significant effect on soil properties according to following mathematical relationships:

Available of N in soil:

Y = 73.822 - 0.452p + 3.963w

Available of P in soil:

Y = 71.227 - 0.454p - 7.838w

Available of K in soil:

Y = 130.889 - 0.31p + 14.713w - 0.024pw - 0.008pdw