GENOME-WIDE ASSOCIATION MAPPING REVEALS A RICH GENETIC ARCHITECTURE OF DROUGHT RESISTANCE TRAITS IN RICE (Oryza sativa L.)

Z. K. Al-Shugeairy* A. H Price** D. Robinson**

ABSTRACT

Improving the drought resistance of high yielding rice (*Oryza sativa* L.) varieties for areas prone to drought is a goal of rice breeders. Identify the location of genes that impart to drought avoidance in a quantitative manner should capable the using of these genes in plant breeding and speed up this goal. A total of 328 cultivars of the Diversity Panel Rice have been assessed for drought avoidance. Quantitative trait loci (QTLs) for the visual scores of leaf rolling were identified by using efficient mixed model analysis (EMMA). QTLs were considered reportable if they had *P* values (below 0.0001).

The most significant SNP associations (EMMA4.2, EMMA6.2 and EMMA7.1 respectively) were in each of the rice chromosomes 4, 6 and 7. All genes positioned 200 kb around associations were selected. The candidacies of the most promising were Zinc finger proteins (Os04g53700), organic cation transporter protein (Os04g53930) and bZIP transcription factor (Os06g41770) which has been expressed in leaf tissue and need to be investigated further.

INTRODUCTION

Drought is the most crucial factor limiting plant production. The deficiency of water worldwide and uneven distribution of rainfall makes the improvement of drought tolerance particularly important (19). Price and Courtois (1999) reported that within a physiological linguistic context, the mechanisms of drought resistance can be classified into four: drought escape, drought avoidance, drought tolerance and drought recovery. Plants have several defense mechanisms against unfavorable environmental circumstances such as increasing root depth (26), stomatal closure (32) and leaf rolling (12, 24).

Leaf rolling is the first visual symptom of drought seen in rice (3). It plays an important role in drought resistance in numerous species in the Gramineae. During stress it decreases the leaf surface area exposed to sun light and decreases transpiration so that gaseous exchange is decreased and photosynthesis is reduced. The main hindrance in drought resistance breeding is the poor understanding of the genetics and inheritance of drought tolerance traits. Efficient screening techniques are a pre-requisite for success in selecting desirable genotypes through any breeding programme (21). Different breeding approaches for drought resistance have emerged. However, most breeding attempts remain centred on enhancing productivity under favourable environments where genetic variance, heritability and therefore breeding progress for grain yield are greatest (28). Experiments under field drought conditions are often the only systematic method exploited to raise yield stability of new crop varieties in drought prone environments (29).

There are a number of studies on the variability of various components of rice physiology that contribute to drought resistance. A study by Abd Allah (1) using F_2 and F_3 lines derived from crossing made between three drought

Part of PhD dissertation for the first author

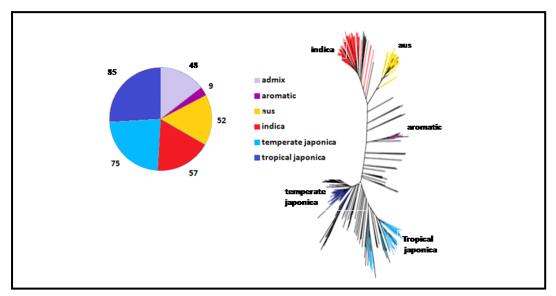
^{*} College of Agric., Baghdad Univ.-Baghdad, Iraq,

^{**} Institute of Biological and Environmental Sci.- Univ. of Aberdeen- Aberdeen AB24 3UU- U.K.

resistant (IET 1444, Moroberekan and Gaori) and two susceptible (Sakha 101 and Sakha 102) parents, reported that plants which showed more leaf rolling appeared to be less drought resistant. The mapping of genes that contribute to drought avoidance in a quantitative way should provide a strong basis for the exploitation of these genes in breeding through marker-assisted selection, and may result in uncovering gene identity and function (25). Several studies on QTL mapping of drought avoidance traits have been conducted in rice. Champoux et al. (4) conducted a field experiment in the Philippines on the CO39 \times Moroberekan mapping population and revealed 18 regions contributing to leaf rolling. The Azucena x IR64 population has been evaluated for leaf rolling, leaf drying, relative water content of leaves and relative growth rate under water stress revealing 11, 10, 11 and 10 QTLs respectively for the traits (6). Gomez et al. (4) detected QTLs for leaf rolling on chromosomes 6 and 11 and two QTLs on chromosome 2 near markers RM6836, L14-475 and RM263 and RM240 respectively by using a total of 250 recombinant inbred lines of F₈ plants generated from crosses between two *Indica* rice lines IR20 and Nootripathu.

The Bala x Azucena population has also been extensively studied. QTLs associated with leaf rolling in excised leaves have been identified in rice (26). The same population has been tested for drought avoidance in two different places in the Philippines and West Africa with two dry seasons, revealing 17 QTLs for leaf rolling, leaf drying and relative water content (25). Cairns *et al.* (2009) reported that a mapping population of 114 lines from Bala and Azucena was grown under drought stress at two field sites with contrasting soil physical properties, drought was applied between 35 and 65 days after sowing and leaf rolling and drying were assessed. The population has also been assessed in field drought conditions in Tamil Nadu (10) and in the Philippines tested a six progenies of cross between Bala and Azucena and they found that mapping populations can provide relationships between yield components and secondary traits (16). A meta-analysis of the drought-related QTLs in the Bala x Azucena population was provided by Khowaja *et al.* (14).

A study by Zhou *et al.* (42) suggested that the exploration of new genes controlling rice leaf rolling is an important basis for rice functional genomics and plant architecture improvement. They identified a rolling leaf mutant from the *Indica* variety Yuefeng B, named rl11(t), and fine mapped the mutation between markers RM6089 and RM124 on chromosome 4. The locus seemed to reduce plant height, leaf rolling and leaf width.


In the present study, a rice diversity panel was exposed to drought and leaf rolling was scored to identify QTLs and candidate genes related to drought resistance. There are no reports of QTL mapping using GWAS in rice and it is anticipated that this study will provide both a high number of QTLs given that many alleles are present in the population, and that the accuracy of identifying QTL location will greatly aid the identification of candidate genes.

MATERIALS AND METHODS

Plant material and set up of the experiment

A total of 371 cultivars of the Rice Diversity Panel (http://www.ricediversity.org/) were received from the Susan McCouch, Cornell University, USA and multiplied in Aberdeen University in the summer of 2008. A subset of 328 accessions was used for this experiment. Appendix 1 presents the population and the subspecies to which they belong. Of those tested, 277 belonged to the rice subpopulations aromatic (9), aus (53), indica (57), temperate japonica (75) or

tropical japonica (85). The remaining 48 were classed as admixtures between subpopulations (Figure 1). The layout of this experiment was a randomized complete block design with four replications. The design of blocks was arranged linearly along the length of the box in the North-South orientation that was employed. One soil-filled box with 450 cm length, 90 cm width and 40 cm in depth was prepared. A total of 328 rice diversity panel accessions were sown on 26th August 2011. Supplementary light of 150 µmol m⁻² s⁻¹ PAR was supplied for 12 hours a day within temperature range from 28 - 30°C. At 56 days after sowing the water was withheld for 25 days. Leaf rolling score was recorded. Theta probes reading were taken regularly.

O. sativa samples used in this experiment. The size of the pie chart is proportional to the sample size and colours within each pie chart are demonstrative of the proportion of samples in each subpopulation. The right phylogenetic tree and the branch tips of the tree are coloured according to the subpopulation which are indica, aus, aromatic, tropical japonica and temperate japonica (Source: Zhao et al., 2010).

Association mapping in rice

The rice diversity panel have been genotyped at Cornell University, New York on an Affymetrix genotyping array which comprises of 44,100 SNPs distributed over the rice genome (380 Mb) (41). Tung et al. (34) reported that with ~1 SNP/10 kb coverage was estimated for this SNP chip. All the analysis for association mapping was performed by Dr. Alexander Douglas Statistician and Bioinformatician (University of Aberdeen) by using statistical package R. An efficient mixed model analysis (EMMA) taking population structure into account was done on all the genotypes following the methodology reported by Kang et al. (13), which was modified from Yu et al. (39) who developed a novel mixed-model approach to simultaneously account for multiple levels of relatedness detected by random genetic markers. Based on data from a maize association mapping project, this approach has excellent type I and type II error rates. In addition, this technique should be readily applicable to a wide range of species and populations, as it estimates population structure based on increasingly available molecular marker data.

Separate analysis without population structure was conducted on each of the four most numerous subpopulations separately. This analysis with EMMA plus separate sub-populations is identical to the statistical approach adopted by Zhao et al. (41) in the first publication mapping traits using this SNP data on this population. For the result, Dr Douglas provided several files including four pdf files (Histogram, Manhattan mixed, Manhattan naïve and QQ plot). In the present study the mixed models file (text file) that resulted from EMMA was first examined which included a P value, SNP identification, bp position (on the rice genome in base pairs) and chromosomes name for each SNP. Also we used the statistic for the minor allele frequency value which was obtained from previous analysis of other data, and relates to the allele of the SNP that is of lowest frequency within the genotypes. If this proportion was less than 5%, it will mean that SNP is potentially not reliable. For the analysis of the separate subspecies, the aromatic and admixtures were removed from the data set prior to association mapping analyses as there were inadequate numbers of individuals within these groups. The four groups of association populations were analysed for association mapping. Zhao et al., (41) suggested that there was no uniform threshold P value that can be considered in genome wide association mapping. Here, OTLs were considered reportable if they had multiple close (within 200 kb) SNPs with low P values (below 0.0001) and where at least some of these SNPs did not have minor allele frequencies below 5%.

Candidate gene compilation

Based on the approach of Zhao et al. (41), genes situated approximately 200 kb around associations (excluding transposons) were considered positional candidates (assuming LD of 200 kb). Therefore, lists of genes within this region were collected using the rice Pseudomolecule version 6 from the Rice Genome Annotation Project. In order to gather more information about candidate genes, the expression pattern of each was assessed bioinformatically using the rice expression profile database (RiceXPro) http://ricexpro.dna.affrc.go.jp/ after converting Rice Genome Annotation Project (RGAP) names to International Rice Genome Sequencing Project (IRGSP) names at http://rapdb.dna.affrc.go.jp/tools/converter/run. In addition, the candidate genes with clear expression in roots were investigated further in the literature to determine whether they are related to cell expansion or leaf tissue in other studies which would make them particulary good candidate genes.

Leaf rolling score

A leaf rolling score was taken at 25 days of water stress. The visual score of the degree of leaf rolling or folding was made on the plants using a scale from 1 to 5 (O'Toole and Cruz, 1980), where score 1 indicates no symptoms, 2 was the first evidence of rolling, 3 was half leaf rolled, 4 was the whole leaf was folded (e.g., the two sides come together) and 5 being a tightly closed cylinder (Figure 2).

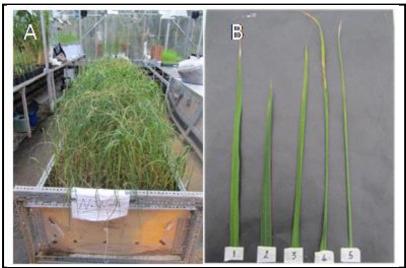


Figure 2: A; Growing the plants in the greenhouse; B; Score indix of leaf rolling from 1 to 5 where score 1 was no symptoms, 2 the first evidence of rolling, 3 when half the leaf rolled, 4 was the whole leaf folded and 5 being a closed cylinder.

Statistical and bioinformatic analysis

Minitab version 15 was use to analyse the data. Two-way ANOVA with factors genotype and block was utilized. The data were corrected for the block effect and also for normality by using base \log_{10} . The significance of differences between the cultivars in the leaf rolling score was tested using one way ANOVA. The association mapping analysis was done using a mixed model analysis (EMMA). Trait-marker associations were considered reliable with P values below 0.0001. The significant SNPs were tested for minor allele frequencies, with values above 5% considered to be dependable. Candidate genes were selected as positional candidates when they were located with 200 kb of the QTL identified.All the candidate genes have been tested for full-length cDNA (fl cDNA) and expressed sequence tag (EST) (2).

RESULTS AND DISCUSSION

Score of leaf rolling

The score of leaf rolling was recorded at 25 days after water stress. One way ANOVA showed the differences in leaf rolling between the cultivars to be highly significant (P = 0.001, F = 2.24, $R^2 = 25.29$). The rice cultivars Tsipala421, Maratelli, Tamaotsao, CS-M3, Bombon, Wells, Guineandao, Victoria F.A and Azucena had the highest score for leaf rolling while Bala, Irga 409, Saraya, WC 4443, Zhe 733, Zhenshan 2 and Kotobuki mochi the lowest Alshugeairy, 2013). Figure 3 demonstrated the frequency of score for leaf rolling, cultivars explained 25.3% of the variation within the population. Figure 4 showed that there was significant variation between rice subpopulations in leaf rolling score (p<0.001, F = 17.22, $R^2 = 24.5\%$). The graph revealed that *admix* and *tropical japonica* (TRJ) groups had the highest means (2.27 and 2.10 respectively) while the *aus* and *indica* had the lowest mean (1.59 and 1.51 respectively) and the mean score of leaf rolling for *aromatic* and *temperate japonica* (TEJ) were 2.08 and 2.00 respectively.

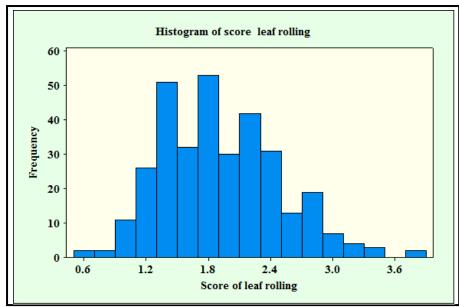


Figure 3: Histogram of leaf rolling score of different rice cultivars at 25 days after water stress.

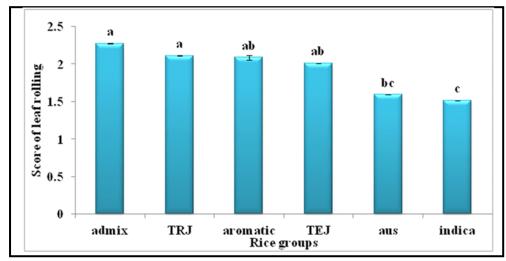


Figure 4: Mean score of leaf rolling for rice subpopulations [aromatic (n= 9), aus (n = 53), indica (n = 57), temperate japonica (TEJ) (n = 75), tropical japonica (TRJ) (n = 85) and admix (n=48)] with standard error bars. The bars that do not share a letter are significantly different as assessed using Tukey's test.

Associations of leaf rolling

Cumulative distributions of P values in a genome-wide scan for leaf rolling score at 25 days of water stress are shown in Figure 5 which shows that the EMMA analysis is efficient in removing large numbers of false positive tests observed in the naive analysis. Figure 6 shows the results of the GWAS analysis of the rice diversity panel using EMMA. A total of three SNPs were detected with a P value of < 0.0001 (- $\log_{10} P = 4$) which look like QTLs (there are multiple SNPs arising and going down in graphs) (Figure 7, Table 1). The three most significant SNP associations (EMMA4.2, EMMA6.2 and EMMA7.1 with minor allele frequnct 0.29, 0.27 and 0.21 respectively) were in each of the rice chromosomes 4, 6 and 7. For each of these locations the genes within 200 kbp are listed (2). A total of 27, 31, 23 and 19 respectively, significant SNPs associated with score of leaf rolling were detected from data of association analysis for

individual subpopulations *indica*, *aus*, *temperate japonica* and *tropical japonica* (Figure 6). In current study only those SNPs detected in the mixed model have been taken forward for listing candidate genes.

It is noteworthy that Khowaja *et al.* (14) detected QTLs related to drought avoidance on chromosomes 4, 6 and 7 near markers RM349, RZ682 and RM234, respectively with physical positions 32499412 - 32499619, 26707816 - 26707970 and 25472688 - 25472820 respectively. These are close to the physical position of EMMA 4.2 at 31746611 bp, EMMA 6.2 at 24934849 bp and EMMA 7.1 at 24597638 bp and may therefore represent the same QTLs.

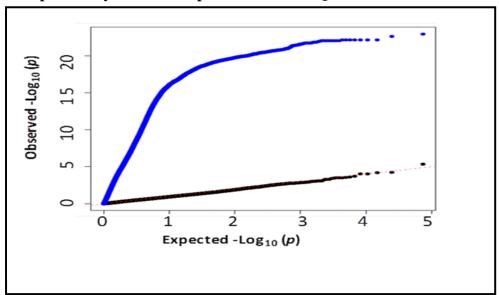


Figure 5: Cumulative distributions of P-values in a genome-wide scan for leaf rolling score at 25 days of water stress. Blue dotted line is the naïve data plot, Black dotted line is the data corrected for population structure using efficient mixed-model association (EMMA). The red dotted line is a v = x plot.

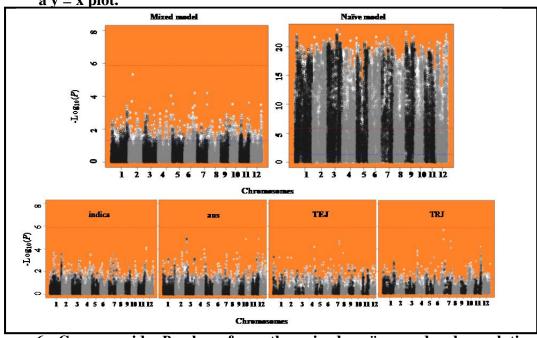


Figure 6: Genome-wide P-values from the mixed, naïve, and subpopulation methods. The x axis shows the SNPs along each chromosome; y axis is the -Log₁₀ (P-value) for the association.

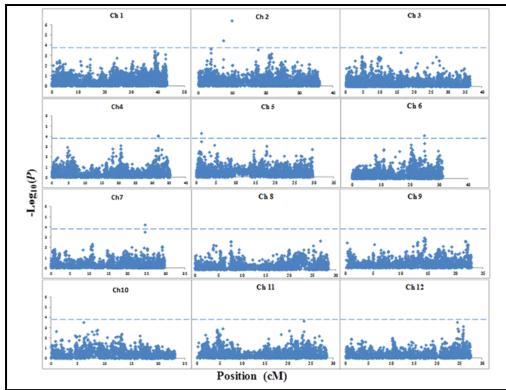


Figure 7: Genome-wide associations of leaf rolling score. Data corrected for population structure by efficient mixed-model association. Dashed line shows threshold at $-\log_{10}(P\text{-value}) = 4$.

Table 1: The highly significant SNPs with genome-wide associations' for leaf rolling score.

log	P value	Position (bp)	SNP id	Chrom osomes	Association name
4.04	9.1E-05	31746611	id4010930	4	EMMA4.2
4.19	6.5E-05	24934849	id6013323	6	EMMA6.2
4.20	6.3E-05	24597638	id7004524	7	EMMA7.1

By assessing leaf rolling in 328 accessions it was possible to show that there was significant variation in the population. The differences observed in leaf rolling between the rice varieties reflects either difference in leaf water content or in responsiveness to water loss. Dingkuhn *et al.* (7) reported differences in score of leaf rolling between semidwarf (IR20) and Azucena cultivars of rice. Singh and Mackill (33) reported that delayed leaf rolling (rolling at low soil water potential) was positively related to drought resistance. They reported that leaf rolling was positively related to soil water potential in the top 30 cm of soil, not to leaf water potential.

The results indicate noticeable subpopulation differences in leaf rolling structure in these accessions of rice (Figure 4). The *indica* subpopulation has significantly lower leaf rolling score compared to other rice groups except *aus*. This may be due to the higher stomatal density and greater resistance to high temperature in *Indica* compared to *Japonica* rice subspecies as reported by Maruyama and Tajima (20). Many rice cultivars belonging to *Japonica* subspecies have been tested by Lin (17) for leaf water potential and leaf rolling who found that under drought conditions, *Indica* cultivars exhibit lower leaf water potential and a lower degree of leaf rolling than those of *Japonica*. He

suggested that the sensitivity of leaf rolling to drought stress in *Japonicas* is more than *Indicas* and the ability to recover from stress is higher in *Indicas* than that in *Japonicas* which matches the results obtained here.

The candidate gene lists for the three SNPs associations revealed using the mixed model analysis approach (2). All genes positioned 200 kb around associations were selected. A total of 20 genes from the candidate gene lists are annotated as 'hypothetical proteins', and 3 as 'conserved hypothetical proteins'. The RiceXPro database shows that many candidate genes are expressed in leaf tissue (Alshugeairy, 2013). Of these, a total of 95 candidate genes were expressed in leaf tissue and other plant tissue, 49 did not show any expression and 11 are expressed in other plant tissue, but not in leaves. Those that are expressed in leaf tissue are particularly good candidates and these were investigated further in the literature. Zinc finger proteins (Os04g53700) are considered as one the major families of transcription factor regulatory proteins, responsible for the regulation of several elementary processes of plant growth (5). The database RiceXPro showed that this gene had expression intensity in leaf tissue reaching roughly 300 Cy3. Investigations on the IFL1 (Interfascicular Fiberless 1, also called Revoluta) genes of Arabidopsis or rolled leaf (RLD1 and RLD2) genes in maize have shown that the regulatory role in vascular differentiation has been proven to be played by members of the small class III homeodomain leucinezipper (HD-ZIP) proteins that belong to the zinc-finger family (43).

Another candidate gene from the EMMA analysis is organic cation transporter protein (Os04g53930). RiceXPro suggested this gene had expression intensity in leaf tissue that reach of about 10,000 Cy3. In *Arabidopsis* there are a total of six genes in the gene family of organic cation transporters (OCTs) (15). However in plants little is known about this gene family in respect of function, localisation and regulation. Only one *OCT* has been characterized as a carnitine transporter at the plasma membrane, this was shown to have a role in stress adaptation, as its expression is up-regulated after drought stress. Controlled transport processes via membranes of different compartments and among organs are essential for plant nutrient and ion distribution. For such transport process several substrate specific membrane proteins have been detected at the tonoplast. These are instances for transporters for water and organic solutes, like urea, sugars and sugar alcohols (15). Sugars and particularly glucose are the preferred organic solutes for osmotic adjustment in cells, allowing the plant to continue water uptake under drought stress (21).

bZIP transcription factor (Os06g41770), is a member of the basic leucine zipper (bZIP) transcription factor family. A total of 74, 89 and 88 bZIP genes were identified in *Arabidopsis*, rice and poplar respectively by Ji *et al.* (11). In addition, a total of 26 rice bZIP transcription factor genes, including OsbZIP16, have been revealed to be up-regulated at least 2-fold under drought stress (22). Expression of OsbZIP23 is strongly regulated by a wide spectrum of stresses, including drought, salt, ABA, and polyethylene glycol treatments, whilst other stress-responsive genes in the bZIP family are somewhat induced only by one or two of the stresses (36). RiceXPro showed that this gene had experssion intensity in leaf tissue of roughly 2000 Cy3.

Several studies have identified QTLs associated with leaf rolling in rice. Xu *et al.* (37) detected QTLs for leaf rolling on chromosomes 1, 3, 4, 5, 6, and 7 in the Lemont x Teqin population cultivars. Courtois *et al.* (2000) detected 11 QTLs for leaf rolling in rice, two of these on chromosome 4 and 7, by testing of 135

doubled haploid lines derived from crossing between IR64 and Azucena cultivars. There are another two rolling leaf genes, rl7 and rl8, on chromosome 5 (31). Moreover, fine mapping of a further leaf rolling gene, namely $rl_{(t)}$ on the long arm of chromosome 2 was reported by Shao et al. (30). Yan et al. (38) identified a rolling leaf mutant rl9 (t) from Zhonghua 11 on chromosome 9. Luo et al. (19) defined a rolled leaf gene Rl10 (t) on chromosome 9. Yu et al. (40) identified a unilateral rolled leaf mutant urllt and mapped the target gene on chromosome 1. A study done by Wang et al. (35) showed that a recessive gene nal3 (t) responsible for narrow and rolling leaves was on chromosome 12. Zhou et al. (41) reported six recessive genes rl1-rl6 that govern the "rolling leaf" trait which are identifiable via the Gramene web site (http://www.gramene. org/) situated on rice chromosomes 1, 4, 12, 1, 3 and 7. In addition they identified a rolling leaf mutant from *indica* variety Yuefeng B, named rl11 (t), which shown reduced plant height, rolling and narrow leaves. A physical map encompassing the rl_{11} (t) locus was constructed between SSR markers RM6089 and RM124 on chromosome 4 with physical position 29405123 to 34739636 and the target gene was finally defined to a 31.6 kb window between STS4-25 and STS4-26 on BAC AL606645. The beginning and end sequence of this BAC was used in a Blast search on the Rice Genome Annotation Project which reveals its position to be between 31629191 and 31817625 bp which covers 32 annotated genes. It is highly noteworthy that the physical position of EMMA4.2 in current study was 31746611 bp which is located between these two markers. These results revealed a particularly good agreement between these two studies. Thus it seems very likely that this QTL is the result of segregation of alleles of the $Rl_{II(t)}$ locus.

In this study differences in leaf rolling among rice cultivars has been revealed and QTLs identified. These data indicate areas of the rice genome containing genes of potential value in breeding drought resistant rice. Lists of positional and potential functional candidate genes are presented. These candidates included proteins which resemble those already described as having a role in drought resistance. These candidate genes are worth further investigation.

REFERENCES

- 1- Abd Allah, A. (2009). Genetic studies on leaf rolling and some root traits under drought conditions in rice (*Oryza sativa* L.). African Journal of Biotechnology, 8 (22): 6241-6248.
- 2- Alshugeairy, Z. (2013). Genetic, Phenomic and Molecular Analysis of Drought Avoidance and Recovery Traits in Rice for the Improvement of Plant Breeding. PhD thesis. Department of Plant and Soil Science. University of Aberdeen, UK.
- 3- Blum, A. (1988). Plant Breeding for Stress Environments. CRC. Inc. Florida. USA. Cairns, J; Audebert, A; Mullins, C and Price, AH (2009). Mapping quantitative trait loci associated with root growth in upland rice (*Oryza sativa* L.). Field crops research, 114 (1):108-118.
- 4- Champoux, M.C.; G. Wang; S. Sarkarung; D.J. Mackill; J.C. OToole; N. Huang and S.R. McCouch (1995). Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 90: 969 981.
- 5- Courtial, A.; C. Jourda; S. Arribat; S. Balzergue; S. Huguet; M. Reymond; J. Grima-Pettenati and Y Barrière (2012). Comparative expression of cell wall related genes in four maize RILs and one parental line of variable lignin content and cell wall degradability. Maydica, 57(1): 56-74.

- 6- Courtois, B; G. McLaren; P.K. Sinha; K. Prasad; R. Yadav and L. Shen (2000). Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding, 6: 55-66.
- 7- Dingkuhn, M.; R. Cruz; J. O'Toole and K. Dorffling (1989). Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Crop and Pasture Sci., 40: 1171 1181.
- 8- Galme's, J.; J. Flexas; R. Save and H. Medrano (2007b). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant and Soil, 290: 139 155.
- 9- Gomez, S.M.; N.M. Boopathi; S.S. Kumar; T. Ramasubramanian; Z. Chengsong; P. Jeyaprakash; A. Senthil, and R.C. Babu (2010). Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant, 32:355-364.
- 10- Gomez, M.S.; S.S. Kumar; P. Jeyaprakash; R.Suresh; K.R. Biji; N.M. Boopathi; A.H. Price and R.C. Babu (2006). Mapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (*Oryza sativa* L.) in the target environment. American Journal of Biochemistry and Biotechnology, 2 (4): 161 169.
- 11- Ji, Q.; L.S. Zhang; Y.F. Wang and J. Wang (2009). Genome-wide analysis of basic leucine zipper transcription factor families in *Arabidopsis thaliana*, *Oryza sativa* and *Populus trichocarpa*. Journal of Shanghai University, 13(2):174-182.
- 12- Kadioglu, A. and K.Terzi (2007). A dehydration avoidance mechanism: leaf rolling. The Botanical Review, 74, 290 302.
- 13- Kang, H.M.; N.A. Zaitlen; C.M. Wade; A. Kirby; D. Heckerman; M.J. Daly and E. Eskin (2008). Efficient control of population structure in model organism association mapping. Genetics, 178(3): 1709 1723.
- 14- Khowaja, F.; G.J. Norton; B. Courtois and A.H. Price (2009). Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics, 10:276.
- 15- Kufner, I. and W. Koch (2008). Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane. BMC Res Notes, 1: 43.
- 16- Lafitte, H.R.; Price, A.H. and B. Courtois (2004). Yield responses to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 109:1237-1246.
- 17- Lin, M.H. (2003). Genetic Study on Drought Tolerance in Rice (*Oryza sativa* L.). Ph.D. Thesis. National Chung-Hsing University, Taichung 40227, Taiwan ROC.
- 18- Luo, L. and Q. Zhang (2001). The status and strategy on drought resistance of rice (*Oryza sativa* L.). Chinese J Rice Sci, 15: 209 214.
- 19- Luo, Z.; Z. Yang; B. Zhong; Y. Li.; R. Xie; F. Zhao; Ling, Y and He, G (2007). Genetic analysis and fine mapping of a dynamic rolled leaf gene, *RL10* (t), in rice (*Oryza sativa* L.). Genome, 50: 811 817.
- 20- Maruyama, S. and K. Tajima (1990). Leaf conductance in japonica and indica rice varieties. I. Size, frequency and aperture of stomata. *Japan J Crop Sci*, 59: 801-808.
- 21- Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current science, 80 (6): 758 -763.
- 22- Nijhawan; M. Jain; A.K. Tyagi and J.P. Khurana (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice, Plant Physiology, 146: 333 350.
- 23- O'Toole, J.C. and R.T.Cruz (1980). Response of leaf water potential, stomatal resistance and leaf rolling to water stress. Plant Physiology, 65: 428-432.

- 24- Price, A.H. and B. Courtois (1999). Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul, 29:123 133.
- 25- Price, A.H.; J. Townend; M.P. Jones; A. Audebert and B. Courtois (2002). Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol, 48: 683 695.
- 26- Price, A.H.; E.M. Young and A.D. Tomos (1997). Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (*Oryza sativa*). New Phytologist, 137 (1): 83 91.
- 27- Saglam, A.; R. Terzi; H. Nar; N. Saruhan; F. Ayaz, and A. Kadioglu (2010). Inorganic and organic solutes in apoplastic and symplastic spaces contribute to osmotic adjustment during leaf rolling in Ctenanthe setosa. Acta Biologica Cracoviensia Series Botanica, 52(1): 37-44.
- 28- Setimela, P.; D. Hudson and B. Vivek (2004). Breeding for improved drought tolerance in maize adapted to southern Africa. 4th International Crop Science Congress.
- 29- Shakhatreh, Y.; O. Kafawin; S. Ceccarelli and H. Saoub (2001). Selection of barley lines for drought tolerance in low rainfall areas. Journal of Agronomy and Crop Sci., 186:119 127.
- 30- Shao, Y; Pan, C.; Z. Chen; S. Zuo; Y. Zhang and X. Pan (2005 b). Fine mapping of an incomplete recessive gene for leaf rolling in rice (*Oryza sativa* L.). Chinese Sci. Bull, 50: 2466 2472.
- 31- Shao, YJ; Chen, X.Z.; Y.F. Zhang; E.H. Chen; D.C. Qi; J. Miao and X.B. Pan (2005a). One major QTL mapping and physical map construction for rolled leaf in rice. Acta Genet Sin, 32: 501 506.
- 32- Shashidhar, V.; S. Ankegowda; M. Kulkarni; M. Srinivas; T. Prasad; U. Nagalakshmi and R. Devendra (2000). Should plants keep their (canopy) 'cool' or allow themselves to grow 'warm' under stress:It is a Hobson's choice and plants survive by doing a balancing act. Cur Sci., 78: 786 789.
- 33- Singh, B. and D. Mackill (1991). Genetics of leaf rolling under drought stress. In: Rice Genetics II, IRRI, Manila, 159 166.
- 34- Tung, C.W.; M. Wright; K. Zhao; A. Reynolds; J. Montgomery; G. Tanimoto; R. Barkovich; A. Pirani; G. Eizenga; A. McClung; Bustamante C. and S. McCouch (2009). Design and performance of 44,100 SNP genotyping array for rice. Poster presented as part of the Plant and Animal Genomes XVIII Conference, San Diego, California, 9-13 January 2010. Abstract published at "http://www.intl-pag.org/.
- 35- Wang, D.; H. Liu; K. Li; S. Li and Y. Tao (2009). Genetic analysis and gene mapping of a narrow leaf mutant in rice (*Oryza sativa* L.). Chinese Sci. Bull, 54: 752 758.
- 36- Xiang, Y.; N. Tang; H. Du; H. Ye and L. Xiong (2008). Characterization of OsbZIP23 as a key player of the basic Leucine Zipper Transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 148: 1938 1952.
- 37- Xu, J.L.; D.B. Zhong; S.B. Yu; L.J. Luo and Z.K. Li (1999). QTLs affecting leaf rolling and folding in rice. Rice Genetics Newsletter, 16: 51-53.
- 38- Yan, C.; S. Yan; Z. Zhang; G. Liang; J. Lu and M. Gu (2006). Genetic analysis and gene fine mapping for a rice novel mutant (*rl9* (*t*)) with rolling leaf character. Chinese Sci Bull, 50: 63 69.
- 39- Yu, J. and E.S. Buckler (2006). Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 17:155 160.
- 40- Yu, D.; H. Wu; W. Yang (2008). Genetic analysis and mapping of the unilateral rolled leaf trait of rice mutant B157 (in Chinese). *Mol Plant Breeding*, 6:220-226.

- 41- Zhao, K.; C.W. Tung; G.C. Eizenga; M.H. Wright; M.L. Ali; A.H. Price; G.J. Norton; M.R. Islam; A. Reynolds; J. Mezey; A. McClung; C. Bustamante and S.R. McCouch (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature communications, 2: 467.
- 42- Zhao, K.; M. Wright; J. Kimball; G. Eizenga; A. McClung; M. Kovach; Tyagi, W.; M.L. Ali; C.W. Tung; A. Reynolds; C. Bustamante and S. McCouch (2010). Genomic diversity and introgression in *O. sativa* reveal the impact of domestication and breeding on the rice genome. PLOS One 5, e10780.
- 43- Zhong, R. and Z. Ye (1999). *IFL1*, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell, 11: 2139 -2152.
- protein. Plant Cell, 11: 2139 -2152.

 44- Zhou, Y.; Y. Fang; J.Y. Zhu; S.Q. Li; F. Gu; M. Gu, and G. Liang (2010).

 Genetic analysis and gene fine mapping of a rolling leaf mutant (rl11(t)) in rice (Oryza sativa L.). Chinese Sci Bull, 55: 1763 1769.

رسم الخارطة الوراثية على مستوى الجينوم يكشف عن مواقع وراثية لصفات مقاومة الجفاف في محصول الرز (.Oryza sativa L.) وينب كريم الشجيري** ادم بريس*** ديفيد روبنسن** الملخص

أن هدف مربي محصول الرز هو تحسين مقاومة الجفاف في اصناف الرز ذات الحاصل العالي خصوصاً في المناطق المتأثرة من الجفاف، سيساعد تحديد مواقع الجينات التي تشارك في تجنب الجفاف على نحو كمي على المناطق المتأثرة من الجفاف، سيساعد تحديد مواقع الجينات التي تشارك في تجنب الجفاف على نحو كمي على استخدام هذه الجينات في تربية النبات والاسراع في الوصول الى هذا الهدف.اهتمت الدراسة الحالية بتقويم efficient mixed model (EMMA) المناف الأوراق، وقد استعملت طريقة (p<0.0001) analysis مع اقل فرق معنوي (p<0.0001) لتحليل البيانات على اساس الصفات الكمية. كشفت نتيجة التحليل عن ثلاثة مواقع معنويه للصفات الكمية هي EMMA4.2, EMMA6.2, EMMA7.1 على كل من الكروموسومات 4، 6 و7 على التوالي. وايضا تم الكشف عن الجينات المرشحة بصدد هذه المواقع بمسافة (p<0.0001) Os04g53930 (Os04g53700) لتى قد تكون لها أهميه كبيرة في الدراسات المستقبلية.

جزء من اطروحة دكتوراه للباحث الأول.

^{*} ك الزراعة، ج بغداد- بغداد، العراق.

^{**} معهد علوم البيئة وعلوم الحياة - ج ابردين، المملكة المتحدة.