Designing and Building a Pneumonia Diagnosis Model Based on Chest X-Rays Using Machine Learning

تصميم وبناء نموذج تشخيص الالتهاب الرئوي بناء على الأشعة السينية للصدر باستخدام التعلم الآلي

حيدر ظافر محمد العنبكي

Hayder DhaferMohammed Alanbagi Mustansiriyah University, Iraq

hiderrmemo@gmail.com

أ.م.د بلال عبد الحليم غزال

Dr. Bilal AbdelHalim Ghazal

Lebanese University, Faculty of Sciences, Lebanon

bilal.ghazal@ul.edu.lb

Abstract

This research presents the design and implementation of a robust pneumonia diagnosis model based on chest X-ray images utilizing Machine Learning techniques. The primary objective is to improve the accuracy and efficiency of pneumonia detection through automated processing of medical imaging data. The study involves the construction of advanced Machine Learning algorithms to classify chest X-rays into two categories: pneumonia and normal. Model performance was evaluated using key metrics, demonstrating strong diagnostic capability. The precision values for pneumonia and normal cases were 391 and ·, ·, respectively, indicating a high reliability in positive predictions. Recall values of ., 90 for pneumonia and ., 40 for normal cases highlight the model's effectiveness in identifying relevant instances within each class. The F\-scores, which provide a balanced assessment for precision and recall, reached ., 97 for pneumonia and ., AV for normal, confirming the overall robustness of the approach. This research contributes to the advancement of smart medical diagnosis systems, providing valuable healthcare professionals with an efficient and accurate tool for identifying pneumonia through non-invasive chest X-ray image analysis.

Keywords: Pneumonia, Chest X-Ray, Machine Learning, ResNet, CNN, VGG \ \

المستخلص:

يقدم هذا البحث تصميم وتنفيذ نموذج تشخيصي متين للالتهاب الرنوي، قائم على صور الأشعة السينية للصدر باستخدام تقنيات التعلم الآلي. يهدف البحث بشكل أساسي إلى تحسين دقة وكفاءة الكشف عن الالتهاب الرنوي من خلال المعالجة الآلية لبيانات التصوير الطبي. تتضمن الدراسة بناء خوارزميات تعلم آلي متقدمة لتصنيف صور الأشعة السينية للصدر إلى فنتين: التهاب رنوي وطبيعي. تم تقييم أداء النموذج باستخدام مقاييس رئيسية، مما يظهر قدرة تشخيصية قوية. بلغت قيم الدقة لحالات الالتهاب الرئوي والحالات الطبيعية ١٩,٠ و ٩٠,٠ على التوالي، مما يشير إلى موثوقية عالية في التنبوات الإيجابية. تبرز قيم التذكر البالغة ٩٥,٠ للالتهاب الرئوي و ٨٠,٠ للحالات الطبيعية فعالية النموذج في تحديد الحالات في التذكر البالغة ٩٥,٠ للالتهاب الرئوي و ٢٩,٠ للحالات الطبيعية فعالية النموذج في تحديد الحالات الرئوي و ٢٨,٠ للحالات الطبيعية، مما يؤكد المتانة العامة لهذا النهج. يساهم هذا البحث في تطوير أنظمة التشخيص الطبي الذكية، مما يوفر لمتخصصي الرعاية الصحية أداة فعالة ودقيقة لتحديد الالتهاب الرئوي من خلال تحليل صور الأشعة السينية غير الجراحية للصدر.

\. Introduction

The lungs, with their complex anatomy and vital functionality, serve as the central organs of the human respiratory system and play a crucial role in sustaining life. They are responsible for the efficient exchange of oxygen (O₂) and carbon dioxide (CO₂), processes critical for cellular metabolism and energy production. During inhalation, air enters the respiratory tract and travels through a branched network of bronchial tubes, ultimately reaching the alveoli. The alveoli are microscopic air sacs that constitute the functional units of the lungs.

Within these alveoli, oxygen diffuses across the thin alveolar membranes into the surrounding capillaries, where it binds to hemoglobin molecules in red blood cells for systemic distribution. Simultaneously, carbon dioxide, a metabolic waste product, diffuses from the bloodstream into the alveolar spaces to be expelled during exhalation.

In the respiration process, the continuous and finely regulated exchange of oxygen and carbon dioxide gases maintains the body's acid-base balance and supports cellular homeostasis. Thus, the lungs not only facilitate oxygen delivery

and carbon dioxide removal but also exemplify the intricate coordination required for sustaining human life.

Y. Significance of Lung Health

The lungs' functional significance extends beyond their primary role in gas exchange. They serve as crucial respiratory defence organs, filtering airborne particulates, pathogens, and other impurities, while conditioning the inhaled air through humidification and temperature regulation. The close physiological integration between the pulmonary and circulatory systems highlights their multifaceted contribution to sustaining life. Far from being passive anatomical structures, the lungs represent a complex physiological interface that sustains the body's internal equilibrium and supports overall metabolic efficiency. As the central mediators of respiration, they exemplify the sophistication of human physiological design and the remarkable adaptability of the respiratory system in preserving life.

Y, Oxygen Exchange

The primary function of the lungs is to mediate the exchange of oxygen (O₂) and carbon dioxide (CO₂) between the body and the external environment. During inhalation, oxygen-rich air enters the lungs and diffuses across the thin walls of the alveoli into the bloodstream. Bound to hemoglobin in red blood cells, oxygen is then transported to tissues throughout the body, supplying cells with the essential substrate required for energy production and metabolic processes.

۲, ۲ Carbon Dioxide Removal

As cells metabolize oxygen, carbon dioxide (CO₂) is generated as a metabolic waste byproduct. The lungs facilitate the elimination of CO₂ by allowing it to diffuse from the bloodstream into the alveoli, from where it is expelled during exhalation. During the respiration process, the regulated gas exchange prevents the accumulation of CO₂ and ensures proper cellular function.

۲,۳ pH Regulation

The lungs play a crucial role in maintaining the body's acid—base balance and regulating blood pH levels. By controlling the concentration of carbon dioxide (CO₂) in the bloodstream, the respiratory system ensures the equilibrium between carbonic acid and bicarbonate ions, thereby regulating systemic acidity. This precise regulation is essential for the optimal functionality of enzymes and the stability of numerous biochemical processes critical to cellular function and metabolic homeostasis.

۲٫٤ Immune Defense

The respiratory system, particularly the lungs, includes multiple defense mechanisms that protect the body from harmful pathogens and airborne particulates. The coordinated action of mucus, cilia (microscopic hair-like structures), and immune cells within the respiratory epithelium forms an effective barrier against foreign agents. Mucus traps inhaled contaminants, while ciliary movement propels them toward the upper airways for expulsion. In parallel, immune cells such as macrophages and lymphocytes identify and neutralize infectious organisms, thereby minimizing the risk of respiratory infections and maintaining pulmonary health.

~. Common Respiratory Diseases

Many pulmonary disorders encompass numerous conditions that significantly affect the structure and function of the respiratory system. These disorders arise from diverse causes, including environmental exposures and infectious agents, each presenting a distinct symptom profile that leads to a complicated diagnosis and treatment. Respiratory diseases are generally classified as either acute or chronic. Acute conditions develop rapidly and demand immediate medical intervention, while chronic conditions progress gradually and necessitate long-term management.

Acute respiratory illnesses such as pneumonia, bronchitis, and pulmonary edema are often triggered by infections, exposure to irritants, or abrupt changes in environmental conditions. They commonly show symptoms including cough,

dyspnea, and chest discomfort, which, without medical intervention, may lead to severe complications. In contrast, chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung disease, are characterized by persistent inflammation or progressive loss of pulmonary function. These conditions are frequently accompanied by recurrent coughing, wheezing, and a gradual decline in respiratory capacity, confirming the need for continuous clinical monitoring and therapeutic management.

۳٫۱ Asthma

Asthma is a chronic inflammatory disorder of the airways characterized by reversible airway obstruction, bronchial hyperresponsiveness, and mucosal inflammation. These pathophysiological changes lead to symptoms such as wheezing, shortness of breath, coughing, and chest tightness. Asthma exacerbations can be triggered by various factors, including allergens, respiratory infections, environmental pollutants, and physical exertion. Effective management typically involves the use of bronchodilators to relieve acute bronchoconstriction and anti-inflammatory agents, such as corticosteroids, to control underlying airway inflammation and prevent recurrence.

T, T Chronic Obstructive Pulmonary Disease (COPD)

COPD is an umbrella term that includes chronic bronchitis and emphysema. It's often caused by long-term exposure to irritants like cigarette smoke. People with COPD have difficulty breathing due to damage to the air sacs and narrowing of the airways. Symptoms include chronic cough, shortness of breath, and increased production of mucus.

۳,۳ Lung Cancer

Lung cancer is a malignant growth in the lung tissue, and it's often linked to smoking. Symptoms can include a persistent cough, chest pain, coughing up blood, and unexplained weight loss. Treatment options include surgery, chemotherapy, radiation therapy, and targeted therapies.

4. Understanding Pneumonia: A Critical Respiratory Infection

When the lungs become infected with bacteria, viruses, or fungi, it is called pneumonia, and it leads to inflammation of the air sacs and pleural effusion. It's the leading cause of death in children less than five. Overpopulation, polluted and unsanitary environments, and lack of medical resources all contribute to higher rates of pneumonia in developing and impoverished nations. Consequently, preventing the disease from progressing to a deadly stage requires prompt diagnosis and treatment. The pulmonary alveoli, the little balloon-shaped sacs at the end of the bronchioles, are particularly vulnerable to infection.

•. Medical Imaging for Pneumonia Diagnosis

Early diagnosis is essential for effective treatment of pneumonia. Early detection allows for inexpensive treatment. Breathlessness, chest discomfort, and cough are all classic signs of pneumonia. The diagnosis of pneumonia often involves a combination of clinical evaluation, patient history, and imaging studies to confirm the presence of lung inflammation and infection. Imaging plays a crucial role in this process, offering valuable insights into the extent and nature of lung involvement. Several imaging modalities are commonly utilized in pneumonia diagnosis, each contributing unique information to aid healthcare professionals in their assessment.

o,\ Chest X-rays

Chest X-rays are frequently the initial imaging modality employed in pneumonia diagnosis. They provide a rapid and cost-effective means of visualizing the lungs. Pneumonia on a chest X-ray appears as an area of opacity, which can indicate inflammation, consolidation, and fluid accumulation in the affected lung tissues. The location, pattern, and extent of these opacities assist in identifying the specific type and severity of pneumonia.

o, Y Ultrasound

While less commonly used than X-rays and CT scans, ultrasound can be employed to assess lung conditions, including pneumonia. It is often used in specific situations, such as when radiation exposure needs to be minimized or when assessing pneumonia in pediatric patients.

o, Computed Tomography (CT) Scan

In cases where a more detailed and precise evaluation is required, a chest CT scan may be recommended. CT imaging offers a more comprehensive view of the lungs, providing high-resolution images that can help identify subtle abnormalities and complications. It is particularly useful for assessing the extent of lung involvement, detecting abscesses, and distinguishing between different types of pneumonia.

o, & Magnetic Resonance Imaging (MRI)

MRI is not a routine choice for pneumonia diagnosis due to its limited availability and higher cost compared to other imaging modalities. However, it may be utilized in certain cases, especially when evaluating pneumonia in specific patient populations or when a more detailed soft-tissue assessment is necessary.

°,° X-ray Imaging Technology and Applications

X-ray imaging, a foundational medical diagnostic tool, allows healthcare professionals to peer inside the human body to assess and diagnose various conditions. This technique relies on the principles of electromagnetic radiation, where X-ray beams are directed through the body, and the resulting pattern of rays that pass through tissues is captured to create images. Dense structures like

bones absorb more X-rays, appearing as white areas on the X-ray film or digital image, while less dense tissues like organs and muscles allow more X-rays to pass through, resulting in darker or gray areas. This stark contrast in X-ray absorption enables the visualization of internal structures and abnormalities.

Applications of X-ray imaging are extensive and diverse. In emergency rooms, X-rays are indispensable for diagnosing fractures and injuries, allowing healthcare providers to make prompt treatment decisions. In the realm of dentistry, dental X-rays help dentists identify oral health issues and plan necessary procedures. For chest X-rays, the technique assists in the detection of lung infections, tumors, and other respiratory conditions. In addition, mammography, a specialized form of X-ray imaging, plays a pivotal role in early breast cancer detection for women during routine screenings.

Safety in X-ray imaging is a paramount concern. Healthcare professionals follow stringent protocols to minimize radiation exposure to patients and themselves. The development of digital X-ray technology has further improved safety and image quality by reducing radiation doses and enabling precise image manipulation and storage. Overall, X-ray imaging remains an invaluable tool in the medical field, contributing significantly to accurate diagnoses and timely interventions, ultimately enhancing patient care and outcomes.

7. Literature Review

Many lives have been lost and huge crises have been triggered by epidemics and chronic diseases throughout history. "Epidemic" and "outbreak" are two terms used to describe a disease that spreads through a population over time. Indeed, we can define an epidemic as the incidence of more occurrences of illness, injury, or other health conditions than predicted in a certain location or among a specific group of persons within a given period. Most cases falsely attribute their similarities to a single factor. The outbreak is not as widespread as an epidemic; therefore, the public should not worry as much.

The pulmonary system, a vital component of the human respiratory system, orchestrates the intricate dance of breathing that sustains life. Comprising the lungs, airways, and supporting structures, the pulmonary system functions as a sophisticated network designed for the exchange of gases essential for cellular life processes. Its primary organ, the lungs, serves as the epicenter for this respiratory symphony. Through the rhythmic process of inhalation and exhalation, the pulmonary system facilitates the intake of oxygen from the air, transporting it into the bloodstream, while concurrently expelling carbon dioxide, a metabolic byproduct, back into the atmosphere. This exchange occurs within the intricate alveoli, microscopic air sacs nestled deep within the lungs. The airways, including the trachea, bronchi, and bronchioles, act as conduits, guiding air to and from these alveoli. The pulmonary system is not only a critical lifesupport mechanism; it also plays a crucial role in maintaining the body's acidbase balance and filtering out impurities from the inhaled air. Its seamless integration with the circulatory system underscores its indispensable role in preserving the delicate equilibrium required for human existence.

7, Normal vs. Pneumonia Cases

Lung imaging techniques like Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and plain old X-rays are routinely employed in diagnostic practice. X-ray imaging is a low-cost, non-invasive method of assessing lung health. Pneumatic X-rays are distinguished from normal ones by the presence of white patches, called infiltrates (shown with red arrows). However, there is room for interpretational error in chest X-rays used to diagnose pneumonia. Therefore, it is necessary to have a machine to identify pneumonia.

In this research, we created a CAD system that correctly classifies chest X-rays using an ensemble of deep transfer learning models.

Pneumonia X-ray: X-ray plates that display a pneumonic lung show white infiltrates, a

distinguishing feature of pneumonia, indicating areas of infection and inflammation.

Normal Lung X-ray: X-ray plates that display a healthy lung show clear airways and normal lung tissue without any signs of infection or inflammation

7,7 Pneumonia Detection Using Machine Learning

A significant obstacle for doctors in their efforts to alleviate their patients' suffering is making accurate diagnoses and identifying the causes of their conditions as quickly as possible. The analysis and manipulation of biomedical pictures using image processing and Deep Learning algorithms have indeed yielded excellent results. In this section, we take a quick look back at some key works in the background literature.

The categorization of pneumonia using chest X-ray data is an area that has seen a lot of prior development. Chest X-ray pictures were employed by Khatri et al. to detect pneumonia-infected lungs using earth mover distance. To identify fourteen distinct diseases, including pneumonia, Rajpurkar et al.developed a deep

Convolutional Neural Network (CNN) named CheXNeXt. Two studies have employed CNN models for identifying pneumonia: one by Rahib et al. and another by Okeke et al. For their work, Cohen et al. And Rajaraman et al. Used reported promising outcomes. Two studies have employed Deep Learning-based approaches for diagnosing pneumonia: Saraiva et al. and Ayan et al. Using deep transfer learning on the DenseNet⁷ architecture, Rahman et al. were able to classify cases of pneumonia with a success rate 91%. A transfer-learning-based method, suggested by Vikash et al., majority votes to ensembles several pretrained networks. A weighted classifier-based strategy was developed by Hashmi et al. to integrate the prediction of five top-tier pre-trained CNN models with ensemble learning. Many classifiers' verdicts are combined to form a single prediction for a test sample. It is done to improve prediction accuracy by integrating the discriminative information from many-base classifiers. Ensemble methods such as the average probability, the weighted average probability, and the majority voting were widely used in previous research. Each base learner receives an equal weighting in the average probability-based ensemble. However, some base classifiers may be better able to capture information than others for a given situation.

V. Machine Learning and Deep Learning

Machine Learning is a subfield of AI that includes any technique that attempts to simulate human behavior. Statistical methods and algorithms developed within the field of Machine Learning (ML) enable computers to learn new tasks and improve their performance with little human intervention. In common parlance, "Machine Learning algorithms" are just a set of rules that computers may follow to figure out how to do certain tasks. Machine Learning techniques allow computers to learn from data input and then, using statistical analysis, offer figures within a specific range. Consequently, data-driven decision-making is facilitated by ML as computers can construct models from data samples. Disease

diagnosis is one of the most crucial areas where Machine Learning has been applied in medicine. Algorithms that employ Machine Learning to analyze large amounts of medical datasets, such as patient symptoms, laboratory test results, and medical imaging, can aid healthcare providers in making more accurate diagnoses. The algorithms developed through Machine Learning have been utilized to aid in the identification of Pneumonia through the analysis of X-rays, and the field of Machine Learning has made significant contributions to the fight against Pneumonia by giving insights, diagnoses, and solutions to help restrict the spread of the virus. ML is always developing and improving. Machine Learning techniques and the evaluation of Machine Learning systems' impacts are thus subject to many considerations. Common supervised Machine Learning algorithms, such as the CNN method used in Deep Neural Networks.

Learning the most basic connections between input variables and labeled outputs is the primary focus of conventional Machine Learning, which is often called shallow learning. The most popular approaches are RandomForests (RF), DecisionTrees (DT), and Linear Regression (LR). No matter how flexible these algorithms are, they still can't capture the complexities of input-output relationships. An expert in the field is required to prioritize evaluation elements for shallow learning. Selecting the most relevant characteristics is the first step for a Machine Learning professional when training a model. Feature selection techniques abound, with Principal Components Analysis (PCA) being just one of them. Shoddylearning is shown by neural networks and support vector machines (SVM). A branch of Machine Learning known as "Deep Learning" focuses on creating neural networks with many layers of processing power. Because their purpose is to automatically collect and extract information from enormous datasets, these networks might include several layers. Picture categorization, voice recognition, and processing natural languages are just a few of the many areas where Deep Learning has shown exceptional effectiveness. If there are

enough computer resources and training data, Deep Learning can solve complex, non-linear problems better than shallow learning.

A. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are the third kind of neural networks; they are very effective in classifying binary images. Even better, there are many distinct CNN designs available, providing a solid foundation upon which to build customized networks. The foundation of a CNN was its convolutional and pooling layers. By comparing their areas, they work together to find out whether two sets of numbers are in the same category. By analyzing sections of an array instead of individual cells, microarrays with more densely packed cells get better findings than those with more dispersed cells. In comparison to its predecessors, CNN's key strength is its ability to autonomously and without human intervention differentiate crucial components. Computer vision, emotion processing, face recognition, and many more disciplines have also found success using CNNs. Goodfellow et al. found that CNNs have three main advantages, which are common parameters, sparse interactions, and comparable depictions. By utilizing networks, shared weights, and local connections, CNN makes extensive use of two-dimensional input data structures, like picture signals, in contrast to traditional FC systems. Using just a few parameters, this process streamlines and simplifies network training. Across the input, they operate as local filters, sifting out the available local connections based on geography.

۸, Convolutional Layer

To a large extent, the convolution layers are the most important component of a convolutional neural network (CNN). The CNN's convolutional layers extract basic picture features like edges, corners, and lines. Learnable kernels are the backbone of convolution layers. Kernels may increase in size in tandem with the total input, even if they have a limited spatial dimension. Each filter is convolved over the input when it is sent via a convolutional layer. The next step is to generate

a two-dimensional stimulation map. Each kernel's activation maps are saved independently and then layered with the depth.

۸,۲ Pooling Layer

After the convolution layer processes the data, it is sent to the pooling layer. Minimizing computational complexity, dimensionality, and parameter count is the primary objective of the pooling layer. After going over each feature map in the initial data set, the pooling layer applies the provided dimensionality reduction function to the whole network.

۸,۳ ReLU Activation

The CNN uses a RectifiedLinearUnit(ReLU) to nonlinearly change the input to detect the features inside each hidden layer. The non-linear change function in the neural network model is the sigmoid or hyperbolic tangent. Nevertheless, increasing data sparsity may improve image processing outcomes. It is common practice to use nonlinear transformations that are based on corrected linear units. Because the rectified linear unit uses $y=max(x,\cdot)$, the input and output are of the same size.

۸,٤ Fully Connected Layer

The last layer of a convolutional neural network is the fully connected layer; before it, the data travels via the pooling, non-linear, and convolution layers. Every neuron in a fully linked layer has a direct connection to every neuron in the layer above and below it.

۸,0 Pre-trained CNN Models: VGG Architecture

۸,۰,۱ VGG۱۹ Architecture

۸,۵,۲ VGG۱٦ Architecture

VGG'\cap gets its name from its '\cap weighted layers. There are '\cap \text{million} million parameters that make up this relatively large network. We employ this architecture because its construction is straightforward its architecture is remarkably consistent. An additional pooling layer is used to diminish the volume's height and width. When we add up the total number of filters used, we notice that we start with '\(\frac{1}{2}\), then increase to '\(\cap \Lambda\), then '\(\cap \Cap \Lambda\), and eventually \(\cap \Lambda \Cap \Lambda\). The number of filters employed in the network's design is increased with each successive step or convolutional layer stack. RGB images with defined dimensions of '\(\cap \Lambda \cap \Cap \Lambda \cap \Lambda \Cap \Lambda \cap \Lambda\) are applied on the input for the cov' layer.

depends on the specific requirements of a given task and the available computational resources.

4. ResNet Architecture: Residual Networks

He et al. developed a network architecture called ResNet (Residual Network), which went on to win the Y· Yo ILSVRC (ImageNet Large Scale Visual Recognition Challenge). The team's objective was to develop a very deep network that overcomes the issue of vanishing gradients. Different kinds of ResNet, with layer counts ranging from YE to YY·Y, have been constructed. A single FC layer was included in ResNetov's En convolutional layers. In Y·Yo, Highway Nets used the by route concept shown in Figure YYE to train a deeper network, and this idea was the inspiration for ResNet's creative use of the concept. The ability to link layers inside ResNet was made feasible by its parameter-free and data-independent shortcut connections. When a secured shortcut is closed, the layers show the non-residual functioning of the highway network. ResNet, on the other hand, keeps its unique shortcuts closed while continuously transmitting leftover data. Because shortcut connections hasten the convergence of deep networks, ResNet may also be able to avoid gradient-diminishing issues.

9,1 ResNeto.

A Convolutional Neural Network of \circ layers. Training ResNet- \circ with the conventional $\forall x \forall \gamma$, $\forall \xi$ stride $\forall \gamma$, and $\forall x \forall \gamma$ maximum pooling layers was necessary for viral load prediction in pneumonia patients. The training has also been enhanced by making sure the number of test pictures is regularly.

9,7 ResNet107

In Yello, Kaiming He and Xiangyu Zhang introduced the ResNet (Residual Network) architecture, which marked a significant advancement in Deep Learning. The key innovation of ResNet was the introduction of residual blocks, which included shortcut connections allowing for the direct flow of information between layers. This design addressed the vanishing gradient problem, enabling the training of very deep neural networks

۹,۳ ResNet۱۰۱

A Convolutional Neural Network of '' layers. The bulk of this model's convolutional layers have "" filters. To preserve the time complexity of each layer, ResNet uses the same number of filters regardless of the output feature map size, and twice as many filters if the output feature map size is decreased. By convolution with two strides, it does direct down-sampling.

\`. Advanced CNN Architectures

To degrade the grid's resolution by a factor of \(^\gamma\), an Inception network would sometimes add max-pooling layers with a stride of \(^\gamma\) to the stack of modules from the aforementioned categories. From a purely technical perspective (training memory efficiency), it seems to be a good idea to use Inception modules for higher-level layers while maintaining the conventional convolutional structure for lower-level layers.

\,\,\ Xception Model

A network design based on convolutional neurons was proposed by Chollet (Y· V). They asserted that the feature maps used by convolutional neural networks may have their cross-channel correlations and spatial connections completely separated. Researchers have given this new design the moniker of "Extreme Inception" (Xception) as it is based on a stronger theory than the one that underpins the Inception architecture. The Xception module builds on the Inception module to produce completely decoupled cross-channel and spatial correlations within CNN feature maps.

York Inception Model (GoogleNet)

C. Szegedy and W. Liu et al. Dubbed the variation of the Inception architecture they used for their ILSVRC $\Upsilon \cdot \Upsilon \xi$ entry, "GoogleNet."All convolutions use inverse linear activation, including the Inception modules. In the zero-mean RGB color space, each receptive field in this network measures $\Upsilon \Upsilon \xi$ by $\Upsilon \Upsilon \xi$. You can see how many $\Upsilon X \Upsilon$ filters were used in the reduction layer before the $\Upsilon X \Upsilon$ and $\Upsilon X \Upsilon \xi$ convolutions by looking at the numbers "# $\Upsilon X \Upsilon$ " reduce" and "# $\Upsilon X \Upsilon$ " reduce"

respectively. When max-pooling is enabled by default, the number of 'x' filters used by the projection layer may be seen in the pool projection column.

The contrast between Module Xception and Module Inception is seen in Figure Υ . Both the graphical representation and an Inception v^{τ} comparison module for independent '-to-' convolution and average pooling are shown in (a). The Xception module uses a single '' convolution to produce three Υ^{τ} convolutions, without using average pooling.

11. Transfer Learning and System Design

It's a form of Deep Learning that uses the knowledge gained from completing a single job to inform the development of subsequent ones. Learning by tweaking an existing network is faster and more effective than starting from scratch. Recognition, target identification, and speech recognition are only some of the many uses of image processing algorithms. There is a lot of transfer learning because:

- Well-learned models are very helpful when training a model on a limited number of unnamed datasets.
- It is feasible to avoid having to retrain the model every time by only training on a small subset of the data for a shorter amount of time.
- Transfer learning can be explicitly defined using two abstract networks, A
 and B. The following is a generalized explanation of the transfer learning
 approach:

Make use of a network "A" that has already been pre-trained on "DA" and "TA."

- A. Cut back on the number of external layers. As a result, the trimmed-down network A^Y that is produced can be used to extract functions.
- B. Join a brand new, trainable network B to the end of the one that has already been trained, A⁷.
- C. Keep A's weights the same and retrain Block B using a different Dataset (DB) and/or Task (TB).

Beginning with a flowchart illustrating the different steps, we can go over the research study's chosen models' training and testing procedures, the results of the training, the accuracy value of each model, and the results of all operations. After creating a dataset with chest X-ray images and making it accessible for Machine Learning, we wrote the code to handle the images and facilitate training, testing, and passing procedures throughout the entire project. We used a specific model from the CNN algorithm, which is available in the Keras library, for this study.

17. Evaluation Metrics and Confusion Matrix

Models in Machine Learning are trained using training datasets that should be evaluated to assess their generalization ability by checking how the model behaves with the new dataset and to investigate if we are dealing with a regression or a classification problem. Therefore, we employ the evaluation metrics to evaluate the model's efficacy.

The confusion matrix has replaced other important metrics in assessing predictive studies due to its accessibility and versatility in calculating other critical metrics, such as accuracy, recall, precision, etc. Applying a model to a dataset results in an N×N matrix describing the model's overall performance, where N is the total number of class labels in the classification task. A $^{7}x^{7}$ confusion matrix used for binary classification is shown in Figure 7 9.

A set of statistics, including True Positive(TP), True Negative (TN), False Positive (FP), and False Negative (FN) values, generated from actual and predicted values, make up the confusion matrix. With a true Positive (TP), we have positive values for both the observed and predicted variables. The expected value is positive in a false positive (FP) situation, while the actual value is negative. When the predicted and observed values are both negative, we say that there is a True Negative (TN). A false negative (FN) occurs when the expected value (Pneumonia) is negative while the actual value (Normal) is positive.

17,1 Precision

The proportion of detected instances that were really "true positives" is what we call "precision." The percentage of accurate diagnoses as a percentage of all diagnoses, correct and wrong.

17,7 Recall

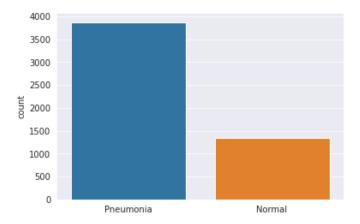
An indicator of diagnostic sensitivity is recall, which is defined as the ratio of true positives to false positives. The simplest form of recall is the fraction of properly recognized positive situations.

۱۲,۳ F1-Score

F'-Score is the sum of recall and accuracy scores, calculated mathematically. The F'-Score formula value may be either · or '. The worst-case scenario is ·, and the best-case scenario is '.

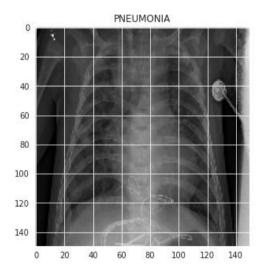
17. Dataset Description and Data Augmentation

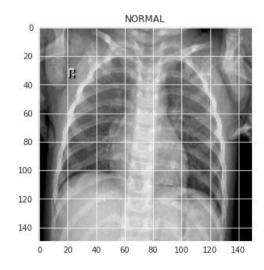
The dataset is organized into "folders (train, test, and validation) and contains subfolders for each image category: Pneumonia and Normal. There are o, ATT X-Ray images in JPEG format distributed over the Pneumonia and Normal categories as presented in Figure ". From retrospective cohorts of pediatric patients at Guangzhou Women and Children's Medical Centre, Guangzhou, we chose chest X-ray pictures (anterior-posterior) ranging from one to five years old. The use of chest X-ray imaging was always a standard component of the clinical treatment that patients received. Before analyzing chest X-ray pictures, all chest radiographs were first inspected for quality control by eliminating any scans that were of poor quality or were illegible. Before being approved for training in the AI system, the picture diagnoses were rated by two expert doctors. A third expert reviewed the assessment set to make sure there were no grading mistakes.



Data distribution

Since the dataset is imbalanced, the data augmentation mechanism is applied to increase the number of training examples. Figure "\" intricately illustrates the distinct X-ray images portraying both normal lung conditions and pneumonia manifestations as presented within our carefully curated dataset. The visual representation in the figure serves as a visual aid to elucidate the contrasting features between X-ray scans indicative of normal respiratory health and those revealing telltale signs of pneumonia. This comparative analysis is pivotal in fostering a nuanced understanding of the diagnostic capabilities of our dataset and lays the foundation for the subsequent discussions on the efficacy of our model in discerning these crucial medical distinctions.





X-ray images for normal and pneumonia

To avoid the overfitting problem, the existing dataset is expanded to make it larger. The idea is to alter the training data with small transformations to

reproduce the variations. Data augmentation techniques alter the training data in ways that change the array representation while keeping the label the same. Some popular augmentation approaches include grayscales, horizontal flips, vertical flips, random crops, colorjitters, translations, and rotations. By applying these transformations to our training data, we can easily double or triple the number of training examples and create a very robust model.

- For the data augmentation, we choose to:
- Randomly rotate some training images by "• degrees
- Randomly zoom by Y. / some training images
- Randomly shift images horizontally by \.\'\'.\' of the width
- Randomly shift images vertically by \.'.' of the height
- Randomly flip images horizontally.
- Once our model is ready, we fit the training.

14. Model Training and Implementation Results

The code implements a Convolutional Neural Network (CNN) using the Keras toolkit with a TensorFlow backend. The model follows a sequential structure, utilizing many convolutional layers to extract hierarchical characteristics from input X-ray pictures. After each convolutional layer, the rectified linear unit (ReLU) activation improves the network's ability to handle nonlinear relationships. Batch normalization is strategically employed to enhance the stability of training by normalizing the activations of each layer. Max pooling layers decrease spatial dimensions, aiding in the extraction of crucial information. Dropout layers are implemented to alleviate overfitting by randomly deactivating a portion of neurons throughout the training process.

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 150, 150, 32)	320
batch_normalization_1 (Batch	(None, 150, 150, 32)	128
max_pooling2d_1 (MaxPooling2	(None, 75, 75, 32)	0
conv2d_2 (Conv2D)	(None, 75, 75, 64)	18496
dropout_1 (Dropout)	(None, 75, 75, 64)	0
batch_normalization_2 (Batch	(None, 75, 75, 64)	256
max_pooling2d_2 (MaxPooling2	(None, 38, 38, 64)	0
conv2d_3 (Conv2D)	(None, 38, 38, 64)	36928
batch_normalization_3 (Batch	(None, 38, 38, 64)	256
max_pooling2d_3 (MaxPooling2	(None, 19, 19, 64)	0
conv2d_4 (Conv2D)	(None, 19, 19, 128)	73856
dropout_2 (Dropout)	(None, 19, 19, 128)	0
batch_normalization_4 (Batch	(None, 19, 19, 128)	512
max_pooling2d_4 (MaxPooling2	(None, 10, 10, 128)	0
conv2d_5 (Conv2D)	(None, 10, 10, 256)	295168
dropout_3 (Dropout)	(None, 10, 10, 256)	0
batch_normalization_5 (Batch	(None, 10, 10, 256)	1024
max_pooling2d_5 (MaxPooling2	(None, 5, 5, 256)	0
flatten_1 (Flatten)	(None, 6400)	0
dense_1 (Dense)	(None, 128)	819328
dropout_4 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 1)	129
Total params: 1,246,401 Trainable params: 1,245,313 Non-trainable params: 1,088		=

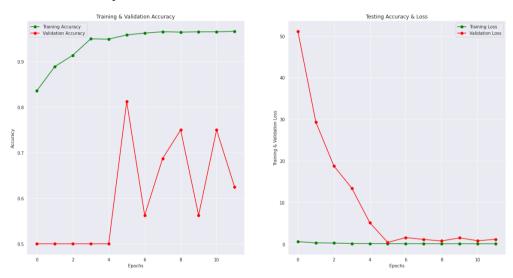
Results for the training model

The final portion of the code includes fully linked layers for categorization. The high-dimensional data from the convolutional layers is flattened, and feature aggregation is achieved by the utilization of dense layers with ReLU activation. The last layer of the model consists of a dense layer with a single unit and sigmoid activation. This layer is specifically built for binary classification, which means it is used to discriminate between normal and pneumonia situations in X-ray pictures. The model is constructed with the RMS prop optimizer and binary crossentropy loss, with accuracy serving as the evaluation metric. The summary function offers a thorough analysis of the model's structure, including specific

information on the parameter count in each layer and the overall parameter count. This code establishes a complex Convolutional Neural Network (CNN) structure designed specifically for binary image classification. It demonstrates the meticulous incorporation of convolutional, pooling, normalization, and dropout layers to improve the model's ability to identify intricate patterns in X-ray images associated with normal and pneumonia conditions.

10. Results

This section presents the results of our model in terms of the confusion matrix and accuracy. Figure TT shows the accuracy and loss for the training and testing models. The accuracy is •,٩١.



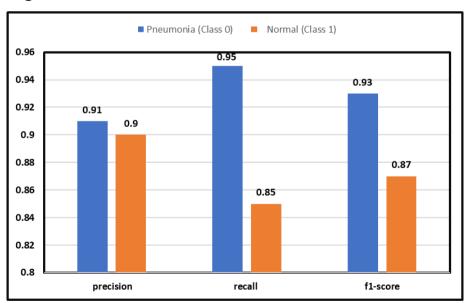
10,1 Comparative Analysis of Different CNN Models

The provided confusion matrix encapsulates the evaluation metrics for a binary classification model discerning between pneumonia (class ·) and normal cases (class ·). The precision values, representing the proportion of true positive predictions among all instances predicted as positive, are noteworthy. For pneumonia (class ·), the precision stands at ·, ٩ \, indicating that ٩ \% of the instances classified as pneumonia were indeed accurate. Similarly, for normal cases (class \), the precision is ·, 9 \, denoting a 9 \% correctness in the model's predictions for normalcy. These precision scores suggest that the model exhibits

a commendable ability to minimize false positives, thereby making accurate positive predictions.

Moving on to recall, which signifies the proportion of true positive predictions among all actual positive instances, the results are also favorable. The recall for pneumonia (class •) is reported at •, ٩0, implying that the model successfully identified 90% of all actual pneumonia cases. However, for normal cases (class 1), the recall is slightly lower at •, ٨0, indicating an \$\frac{1}{2}\$% correct identification rate for actual normal instances. These recall values signify the model's effectiveness in capturing the relevant instances within each class.

The F' score, a metric that balances precision and recall by computing their harmonic mean, further corroborates the model's overall performance. The F' score for pneumonia (class ') is ', 97, showcasing a well-rounded trade-off between precision and recall. Similarly, the F' score for normal cases (class ') is ', AV, reflecting a balanced performance in terms of minimizing false positives and false negatives.

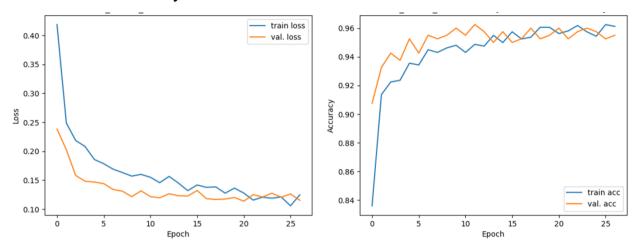


Confusion matrix parameters for the two classes

In the next session, we present the results using different classifiers:

a. VGG'\ Model

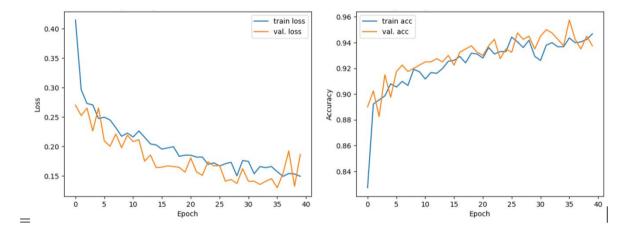
In Figure $\[70 \]$, we illustrate the results for VGG $\[77 \]$ for testing and training. We found that the accuracy for this model is $\[97 \]$.



Plot Graph loss and accuracy of VGG-17

b. VGG-19

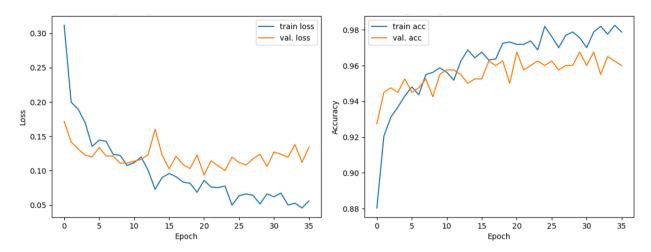
For VGG-19, the results for training and testing are presented in Figure 77; the accuracy for this model is 95%.



Plot Graph loss and accuracy of VGG-19

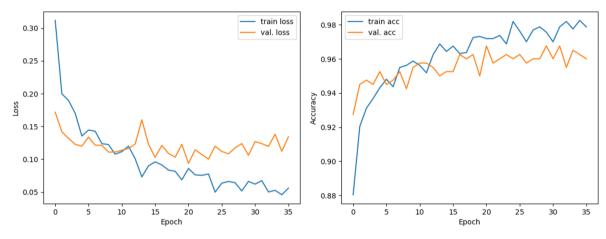
c. ResNeto · VY

Figure TV illustrates the results for Resnetov; the accuracy for this model is 91%.



Plot Graph loss and accuracy of ResNeto. VY

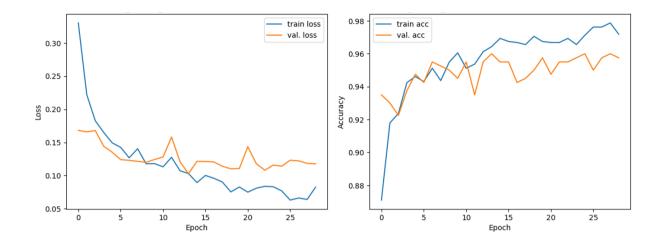
d. ResNet1.1V7



Plot Graph loss and accuracy of ResNet1.1V7

e. ResNet107V7

Figure $^{\text{q}}$ illustrates the results for ResNet $^{\text{q}}$ VY; the accuracy for this model is $^{\text{q}}$ 5%.



Plot the graph loss and accuracy of ResNet \.\\Y

10,7 Accuracy Comparison Between All Models.

Accuracy results have been collected in one table so that we can see the difference between the models. Figure ξ presents the results for all models in terms of accuracy.

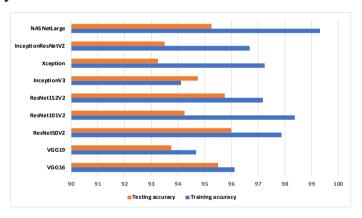


Figure 1: Accuracy comparison between all models

17. Conclusion and Future Work

The generated model, resulting from our extensive efforts to revolutionize pneumonia diagnosis using machine Learning, serves as a clear demonstration of the transformative power of Artificial intelligence in the field of medicine. We have effectively showcased the capability of our advanced Convolutional Neural Network (CNN) by training it on chest X-ray pictures. The model has proved its ability to accurately differentiate between normal and pneumonia-affected situations. The combination of convolutional layers, batch normalization, and intentional dropout mechanisms has given the model the ability to detect subtle

patterns and important traits that are crucial for precise diagnosis. This research demonstrates a significant advancement in medical imaging technology and highlights the practical influence of Machine Learning in enhancing the diagnostic skills of healthcare personnel.

Our research constitutes the basis for continuous investigation and improvement. Subsequent versions of the model might be improved by using a larger and more varied dataset, including a wider range of pneumonia subtypes and demographic information of patients. Optimizing the model architecture and parameters through fine-tuning is crucial to achieving the maximum levels of accuracy and generalizability. Furthermore, the process of moving from the regulated setting of research to practical healthcare situations will be essential in confirming the model's effectiveness in clinical practice. It is important to prioritize the pursuit of explainability and interpretability in the model's decision-making process, as this will help build confidence and encourage collaboration with medical professionals. Looking ahead, the combination of transfer learning and ongoing collaboration with healthcare professionals has the potential to not only improve our model but also completely transform the field of pneumonia diagnosis. This will bring about a new era of accuracy and effectiveness in medical imaging and diagnostics.

The ongoing refinement of the model demands a meticulous exploration of architectural improvements and parameter fine-tuning. Investigating different convolutional architectures, experimenting with hyperparameters, and employing techniques such as neural architecture search could further optimize the model's performance, making it more adept at discerning subtle nuances in chest X-ray images.

Transitioning from controlled research environments to real-world healthcare settings is pivotal. Collaborating closely with medical professionals, integrating the model into existing healthcare systems, and conducting comprehensive validation studies will validate its efficacy, ensuring it aligns with the practical intricacies and complexities of clinical scenarios.

References

- [1] J. G. Bartlett, R. F. Breiman, L. A. Mandell, and T. M. File Jr, "Community-acquired pneumonia in adults: guidelines for management," Clin. Infect. Dis., vol. 77, no. 4, pp. 11-170, 1990.
- [7] M. P. Girard, T. Cherian, Y. Pervikov, and M. P. Kieny, "A review of vaccine research and development: human acute respiratory infections," Vaccine, vol. 77, no. 64, pp. 64. A 6475, 74.6.
- [4] L. L. G. Oliveira, S. A. e Silva, L. H. V. Ribeiro, R. M. de Oliveira, C. J. Coelho, and A. L. S. S. Andrade, "Computer-aided diagnosis in chest radiography for detection of childhood pneumonia," Int. J. Med. Inform., vol. VV, no. A, pp. 000-074, Y. A.
- [°] M. Lavine, "The early clinical X-ray in the United States: patient experiences and public perceptions," J. Hist. Med. Allied Sci., vol. 77, no. 4, pp. oay-770, 7.17.
- [7] C. Orbanna, L. Sattenspiel, E. Miller, and J. Dimka, Defining epidemics in computer simulation models: How do definitions influence conclusions? Epidemics, Vol. 19, pp. 72-77, 7.17.
- [^] WHO Pneumonia. World Health Organization. (^{* · · •}), https://www.who.int/news-room/fact-sheets/detail/pneumonia
- [4] R. Liu, H. Hana, F. Liu, Z. Lv, K. Wu, Y. Liu, Y. Feng, and C. Zhu, Positive rate of RT-PCR detection of SARS-CoV-7 infection in £hh. cases from one hospital in Wuhan, China, from Jan to Feb 7.7., ClinicaChimica Acta, Vol. 6.6, pp. 147-146, June 7.7.
- [''] Y. Tian, Y. Wu, H. Liu, Y. Si, Y. Wu, X. Wang, M. Wang, J. Wu, L. Chen, C. Wei, T. Wu, P. Gao and Y. Hu, The impact of ambient ozone pollution on pneumonia: A nationwide time-series analysis, Environment International, Vol. 177, March 7.7.
- [11] T. Welte, A. Torres, and D. Nathwani, Clinical and economic burden of community-acquired pneumonia among adults in Europe, Thorax, Vol. 77, pp. 71-79, 7117.

- [17] K. Kondo, K. Suzuk, M. Washio, S. Ohfuji, W. Fukushima, A. Maeda, and Y. Hirota, Effectiveness of YT-valent pneumococcal polysaccharide vaccine and seasonal influenza vaccine for pneumonia among the elderly Selection of controls in a case-control study, Vaccine, Vol. Yo, No. TT, pp. \$4.7-\$41., Y& August Y. YV.
- [17] V.P. Hespanhol and C. Bárbara, Pneumonia mortality, comorbidities matter? Pulmonology, 79 November 7.19.
- [1°] Williams G., Macaskill P., Kerr M., Fitzgerald D., Isaacs D., Codarini M., et al. Variability and accuracy in interpretation of consolidation on chest radiography for diagnosing pneumonia in children under ° years of age. Pediatric Pulmonology. [£]^, 119°-17.. (7.1°) https://doi.org/1...\7/ppul.77^.7 PMID: 7799V.£.
- [17] A. Khatri, R. Jain, H. Vashista, N. Mittal, P. Ranjan, and R. Janardhanan, "Pneumonia Identification in Chest X-Ray Images Using EMD," in Trends in Communication, Cloud, and Big Data, Springer, 7.7., pp. $^{\Lambda V}$ – $^{\Lambda \Lambda}$.
- [14] R. H. Abiyev and M. K. S. Ma'aitah, "Deep convolutional neural networks for chest diseases detection," J. Healthc. Eng., vol. 7.14, 7.14.
- [19] O. Stephen, M. Sain, U. J. Maduh, and D.-U. Jeong, "An efficient Deep Learning approach to pneumonia classification in healthcare," J. Healthc. Eng., vol. 7.19, 7.19.
- [7.] J. P. Cohen, P. Bertin, and V. Frappier, "Chester: A Web-Delivered Locally Computed Chest X-Ray Disease Prediction System," arXivPrepr. arXiv19.1171., 7.19.
- [YV] S. Rajaraman, S. Candemir, I. Kim, G. Thoma, and S. Antani, "Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs," Appl. Sci., vol., A, no. 14, p. 1910, YVIA.

- [74] T. Rahman et al., "Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray," Appl. Sci., vol. 11, no. 9, p. 7777, 7.71.
- [* o] V. Chouhan et al., "A novel transfer learning based approach for pneumonia detection in chest X-ray images," Appl. Sci., vol. 1., no. 7, p. oo 9, 7.7.
- [77] C. Drosten, S. Günther, W. Preiser, S. Van der Werf, H.R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R.A.M. Fouchier, A. Berger, A.M. Burguière, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J.C. Manuguerra, S. Müller, V. Rickerts, M. Stürmer, S. Vieth, H.D. Klenk, AD.M.E. Osterhaus, H. Schmitz, and H.W. Doerr, Identification of a novel coronavirus in patients with severe acute respiratory syndrome, New England Journal of Medicine, Vol. 724, No. 74, pp. 1977.
- [YV] T.G. Ksiazek, D. Erdman, C.S. Goldsmith, S.R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J.A. Comer, W. Lim, P.E. Rollin, S.F. Dowell, A.E. Ling, C.D. Humphrey, W.J. Shieh, J. Guarner, C.D. Paddock, P. Rota, B. Fields, J. DeRisi, J.Y, Yang, N. Cox, J.M. Hughes, J.W. LeDuc, W.J. Bellini, L.J. Anderson, and SARS Working Group, A novel coronavirus associated with severe acute respiratory syndrome, New England Journal of Medicine, Vol. 74A, No. 74, pp. 1407-1477, 10 May, 7447.
- [TA] A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, and D. Veesler, Structure, Function, and Antigenicity of the SARS-CoV-T Spike Glycoprotein, Cell, A March T.T.
- [* 9] Y. Roussel, A.G. Gatineau, M.T. Jimeno, J.M. Rolain, C.Zandotti, and D. Raoult, SARS-CoV-Y: fear versus data, International Journal of Antimicrobial Agents, Y 9 March Y 1 7 1 .
- Y. Yanga, F. Peng, R. Wang, K. Guana, T. Jiang, G. Xu, J. Suna, and C. Chang, The deadly coronaviruses: The Y·· SARS pandemic and the Y· Y· novel coronavirus epidemic in China, Journal of Autoimmunity, Warch Y· Y·.
- [*·] C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, M. Zheng, L. Chen and H. Li, Analysis of therapeutic targets for SARS-CoV-† and discovery of potential drugs by computational methods, Acta Pharmaceutica Sinica B, † February † † .

- [7] B. Hu, L.P. Zeng, X.L. Yang, X.Y. Ge, We, Zhang, B. Li, J.Z. Xie, X.R. Shen, Y.Z. Zhang, N. Wang, D.S. Luo, X.S. Zheng, M.N. Wang, P. Daszak, L.F. Wang, J. Cui, and Z.L. Shi, Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus, Plos Pathogens, Vol. 17, No. 11, November 7.17.
- [TT] S. Van Boheemen, M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, and R.A. Fouchier, Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans, MBio, Vol. T. T. T.
- [74] A.M. Zaki, S. Van Boheemen, T.M. Bestebroer, A.D. Osterhaus and R.A. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, New England Journal of Medicine, Vol. 777, No. 19, pp. 1414-1477, 7017.
- [ro] B. Hijawi, M. Abdallat, A. Sayaydeh, S. Alqasrawi, A. Haddadin, N. Jaarour, S. Alsheikh, and T. Alsanouri, Novel coronavirus infections in Jordan: epidemiological findings from a retrospective investigation, Eastern Mediterranean health journal, Vol. 19, pp. S17-S1A, 7.17.
- [7] H.Z. Farooq, E. Davies, S. Ahmad, N. Machin, L. Hesketh, M. Guiver and A.J. Turner, Middle East respiratory syndrome coronavirus (MERS-CoV) Surveillance and testing in North England from 7.17 to 7.19, International Journal of Infectious Diseases, Vol. 47, pp. 777-722, 7.71.
- [*V] World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV), Retrieved from https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), Y. 19.
- [TA] H.A. Mohd, J.A. Al-Tawfiq and Z.A. Memish, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir, Virology Journal, Vol. 17, No. AV, 7.17.
- [7] E.I. Azhar, S.A. El-Kafrawy, S.A. Farraj, A.M. Hassan, M.S. Al-Saeed, A.M. Hashem, and T.A. Madani, Evidence for camel-to-human transmission of MERS coronavirus, New England Journal of Medicine, Vol. 77, pp. 7599-7000, 7015.
- [40] M. Ki, You MERS outbreak in Korea: hospital-to-hospital transmission, Epidemiol Health, Vol. TV, You o.

- [1] I.K. Oboho, S.M. Tomczyk, A.M. Al-Asmari, A.A. Banjar, H. Al-Mugti, M.S. Aloraini, K.Z. Alkhaldi, E.L. Almohammadi, B.M. Alraddadi, S.I. Gerber, L. David, M.D. Swerdlow, T. John, M.D. Watson, and T.A. Madani, Y. Y. MERS-CoV outbreak in Jeddah a link to health care facilities, New England Journal of Medicine, Vol. TYT, pp. Att-Aot, Y. Yo.
- [27] R. Aguanno, A. El Idrissi, A.A. Elkholy, P. Ben Embarek, E. Gardner, R. Grant, H. Mahrous, M.R. Malik, G. Pavade, S. VonDobschuetz, L. Wiersma, and M. D. Van Kerkhove, MERS: Progress on the global response, remaining challenges and the way forward, Antiviral Research, Vol. 109, pp. 70-22, November 7.14.
- [57] S. Baharoon and Z.A. Memish, MERS-CoV as an emerging respiratory illness: A review of prevention methods, Travel Medicine and Infectious Disease, Vol. 77, November–December, 7.19.
- [22] G. Lippi, M. Plebani and B.M. Henry, Thrombocytopenia is associated with severe coronavirus disease (COVID-19) infections: A meta-analysis, ClinicaChimica Acta, 17 March (YYY).
- [40] E.G. Favalli, F. Ingegnoli, O. De Lucia, G. Cincinelli, R. Cimaz, and R. Caporali, COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmunity Reviews, Y. March Y.Y.
- [57] N. Kandel, S. Chungong, A. Omaar and J. Xing, Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 147 countries, The Lancet, 14 March 7.7. [In Press]
- [\$\forall C. Lu, X. Liu, and Z. Jia, \forall \forall -nCoV transmission through the ocular surface must not be ignored, The Lancet, Vol. \forall 90, \forall 7 February \forall \forall 7.
- [49] R. Simcock, T. V. Thomas, C.E. Mercy, A.R. Filippi, M.A. Katz, I.J. Pereira, and H. Saeed, COVID-19: Global Radiation Oncology's Targeted Response for Pandemic Preparedness, Clinical and Translational Radiation Oncology, 75 March 7070.
- [°·] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, R. Ji, H. Wang, Y. Wang, and Y. Zhou, Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-14) infection: a systematic review and meta-analysis, International Journal of Infectious Diseases, 17 March 7.7.

- [°¹] A. Bhandary, G.A. Prabhu, V. Rajinikanth, K.P. Thanaraj, S.C. Satapathy, D.E. Robbins, C. Shasky, Y.D. Zhang, J.M.R.S. Tavares and N.S.M. Raja, Deep-learning framework to detect lung abnormality A study with chest X-Ray and lung CT scan images, Pattern Recognition Letters, Vol. ۱۲۹, pp. ۲۷۱-۲۷۸, January ۲۰۲۰.
- [° †] M. Toğaçar, B. Ergen, Z. Cömert, and F. Özyurtd, A Deep Feature Learning Model for Pneumonia Detection Applying a Combination of mRMR Feature Selection and Machine Learning Models, IRBM, [†] November [†] · [†] · [†].
- [°] G. Liang and L. Zeng, A transfer learning method with deep residual network for pediatric pneumonia diagnosis, Computer Methods and Programs in Biomedicine, Vol. NAV, April Y.Y.
- [°4] A.K. Jaiswal, P. Tiwari, S. Kumar, D. Gupta, A. Khanna, and J.J.P.C Rodrigues, Identifying pneumonia in chest X-rays: A Deep Learning approach, Measurement, Vol. 140, pp. °11-°14, October, 7.19.
- [°°] Y. Ge, Q. Wang, L. Wang, H. Wu, C. Peng, J. Wang, Y. Xu, G. Xiong, Y. Zhang, and Y. Yi, Predicting post-stroke pneumonia using deep neural network approaches, International Journal of Medical Informatics, Vol. 177, December 7.19.
- [°] I. Sirazitdinov, M. Kholiavchenko, T. Mustafaev, Y. Yixuan, R. Kuleev and B. Ibragimov, Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database, Computers & Electrical Engineering, Vol. VA, pp. TAA-T99, September Y. 19.
- [°] H. Behzadi-khormouji, H. Rostami, S. Salehi, T. Derakhshande-Rishehri, M. Masoumi, S. Salemi, A. Keshavarz, A. Gholamrezanezhad, M. Assadi, and A. Batouli, Computer Methods and Programs in Biomedicine, Vol. 140, March 7.7.
- [°^] Chandra T. & Verma K. Pneumonia detection on chest X-Ray using Machine Learning paradigm. Proceedings Of the "rd International Conference On Computer Vision And Image Processing. pp. ^1-\"\" (\'.\')
- [7.] Yue H., Yu Q., Liu C., Huang Y., Jiang Z., Shao C., et al., & Others Machine Learning-based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS-CoV-7 infection: a multicenter study. Annals Of

- [71] Meraj T., Hassan A., Zahoor S., Rauf H., Lali M., Ali L., et al. Lung nodules detection using semantic segmentation and classification with optimal features. Preprints. (7.19)
- [77] Rajinikanth V., Kadry S., Damas evičius R., Taniar D. & Rauf H. Machine-Learning-Scheme to Detect Choroidal Neovascularization in Retinal OCT Image. 7.77 Seventh International Conference on OnBioSignals, Images, And Instrumentation (ICBSII). pp. 1-0 (7.71)
- [77] Kadry S., Nam Y., Rauf H., Rajinikanth V., & Lawal I. Automated Detection of Brain Abnormality using Deep-Learning-Scheme: A Study. 7.71 Seventh International Conference on Bio Signals, Images, and Instrumentation (ICBSII). pp. 1-0 (7.71)
- [74] Rajinikanth V., Kadry S., Taniar D., Damas evičius, R. & Rauf H. Breast-Cancer Detection using Thermal Images with Marine-Predators-Algorithm Selected Features.

 7.71 Seventh International Conference On Bio Signals, Images, And Instrumentation (ICBSII). pp. 1-7 (7.71)
- ['o] Sharma H., Jain J., Bansal P., & Gupta S. Feature extraction and classification of chest x-ray images using CNN to detect pneumonia. '' ' ' ' th International Conference On Cloud Computing, Data Science & Engineering (Confluence). pp. '' ' ' ' ' (' ' ' ')
- [77] Stephen O., Sain M., Maduh U., & Jeong D. An efficient Deep Learning approach to pneumonia classification in healthcare. Journal Of Healthcare Engineering. 7.19 (7.19) https://doi.org/1.1100/7.19/£14.9£9 PMID: 71.£9143
- [YV] Rajpurkar P., Irvin J., Zhu K., Yang B., Mehta H., Duan T., et al., & Others. Chexnet: Radiologist-level pneumonia detection on chest x-rays with Deep Learning. ArXiv Preprint ArXiv: YYYY, . OYYO. (YYYY)
- [7] Janizek J., Erion G., DeGrave A., & Lee S. An adversarial approach for the robust classification of pneumonia from chest radiographs. Proceedings Of The ACM Conference On Health, Inference, And Learning. pp. 79-79 (7.7.)
- [^{\4}] Zhang J., Xie Y., Pang G., Liao Z., Verjans J., Li W., et al., & Others Viral Pneumonia Screening on Chest X-rays Using Confidence-Aware Anomaly Detection. IEEE Transactions On Medical Imaging. (^{\4} · ^{\4} ·)
- [$^{\vee}$ ·] Tuncer T., Ozyurt F., Dogan S. & Subasi A. A novel COVID- $^{\vee}$ and pneumonia classification method based on the F-transform. Chemometrics And Intelligent

- Laboratory Systems. 71. pp. 1.2707 (7.71)
 https://doi.org/1.17/j.chemolab.7.71,1.2707 PMID: TTOTIVTY
- [YN] Rahman T., Chowdhury M., Khandakar A., Islam K., Islam K., Mahbub Z., et al. Transfer learning with a deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Applied Sciences. No. TYTT (YNT) https://doi.org/10.7774/app10.47777
- [YT] Ibrahim A., Ozsoz M., Serte S., Al-Turjman F., & Yakoi P. Pneumonia classification using Deep Learning from chest X-ray images during COVID-14. Cognitive Computation. pp. 1-1T (Y.Y1) https://doi.org/1...1...//s17009-..Y.-.9YAV-0 PMID: TT & YO. & &
- [Vi] Zubair S.An Efficient Method to Predict Pneumonia from Chest X-Rays Using a Deep Learning Approach. The Importance Of Health Informatics In Public Health During A Pandemic. TVT pp. iov (T.T.)
- [Vo] Rajpurkar P., Irvin J., Zhu K., Yang B., Mehta H., Duan T., et al., & Others. Chexnet: Radiologist-level pneumonia detection on chest x-rays with Deep Learning. ArXiv Preprint ArXiv: (YVV), OTYO. (YVV)
- [YT] Kundu R., Basak H., Singh P., Ahmadian A., Ferrara M., & Sarkar R. Fuzzy rank-based fusion of CNN models using Gompertz function for screening COVID-14 CT-scans. Scientific Reports. 11, 14177 (Y.Y1,V), https://doi.org/1.,1.77/s4104-Y1-4770A-V PMID: 74774444
- [YY] Jaiswal A., Tiwari P., Kumar S., Gupta D., Khanna A. & Rodrigues J. Identifying pneumonia in chest X-rays: A Deep Learning approach. Measurement. Year pp. 611-614 (Y.19) https://doi.org/1.11/j. Measurement. Y.19, 6, 47
- [YA] Gabruseva T., Poplavskiy D. & Kalinin A. Deep Learning for automatic pneumonia detection. Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition Workshops. pp. ***- ****(**, *****)
- [Y] Pan I., Cadrin-Chênevert A. & Cheng P. Tackling the radiological society of North America pneumonia detection challenge. American Journal Of Roentgenology. YIT, old-ove (Y-19) https://doi.org/1..YY12/AJR.19,71017 PMID: T11Y-V9T

- [^\] J. David, "Setting the standards for Machine Learning in biology." Y. 19.
- [^\forall M. K. AL-Malali and F. M. Ramo, "Behavioral Sense Classification using Machine Learning Algorithms," Doctoral dissertation, Mosul University. \(\cdot \cdot \cdot \cdot \).
- [1] T. J. Cleophas and A. H. Zwinderman, "Machine Learning in Medicine a Complete Overview." To be doi: 10,100/97/4-7-719-10190-7.
- [^o] L. Alzubaidi et al., "Review of Deep Learning: concepts, CNN architectures, challenges, applications, future directions," J. Big Data, vol. ^, no. ^, Dec. Y.Y., doi:
- [^\] O. Castillo, P. Melin, and J. Kacprzyk, Intuitionistic and type-\ fuzzy logic enhancements in neural and optimization algorithms: Theory and applications, vol. ^\\\.
 Springer Nature, \ \.\\\.
- [AV] H. Liu and B. Lang, "Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey." 7.19.
- [^4] J. E. Henderson, "Convolutional Neural Network for COVID-14 Detection in Chest X-Rays," Y.YY.
- [9.] P. Rodriguez, J. Wiles, and J. L. Elman, "A recurrent neural network that learns to count," Connection Science, vol. 11, no. 1, pp. 0-2., 1999. doi: 1.,1.4./.902..99911772.
- [97] W. Fang, P. E. D. Love, H. Luo, and L. Ding, "Computer vision for behaviour-based safety in construction: A review and future directions," Adv. Eng. Informatics, vol. 47, no. February 7.19, p. 1.194., 7.71, doi: 1.17/j.aei.7.19.11.94.

- [97] D. Palaz, M. Magimai-Doss, and R. Collobert, "End-to-end acoustic modeling using convolutional neural networks for HMM-based automatic speech recognition," Speech Commun., vol. 1.4, pp. 10-77, 7.19, doi: 1.17/j.specom.7.19,.11.2.
- [44] H. C. Li, Z. Y. Deng, and H. H. Chiang, "Lightweight and resource-constrained learning network for face recognition with performance optimization," Sensors (Switzerland), vol. 7., no. 71, pp. 1-7., 7.7., doi: 1.,779./s7.717114.
- [90] I. Goodfellow, Y. B., and A. Courville, Deep Learning. The MIT Press, Cambridge, Massachusetts, London, England, 7.17.
- [97] Z. Alyasseri, M. Al-Betar, and I. Doush, "Review on COVID-19 diagnosis models based on Machine Learning and Deep Learning approaches." 7.71.
- [97] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep Learning, vol. ev. 7.19. doi: 1.,1.../940-941-17-7794-7.
- [٩٨] S. Almabdy and L. Elrefaei, "Deep convolutional neural network-based approaches for face recognition," Appl. Sci., vol. ٩, no. ٢٠, ٢٠١٩, doi: ١٠,٣٣٩٠/app٩٢٠٤٣٩٧.
- [99] S. Tammina, "Transfer learning using VGG-17 with Deep Convolutional Neural Network for Classifying Images," Int. J. Sci. Res. Publ., vol. 9, no. 10, p. p9470, 7019, doi: 10,79777/ijsrp.. 9,10,7019.p9470.
- ['''] D. Yang, C. Martinez, L. Visuña, H. Khandhar, C. Bhatt, and J. Carretero, "Detection and analysis of COVID-19 in medical images using Deep Learning techniques," Scientific Reports, vol. 11, no. 1. 7.71. doi: 1.,1.74/s£1094-.71-99.10-7.
- ['''] M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, "Transfer learning for image classification using VGG': Caltech-'' image data set." '''.
- ['''] M. Y. Kamil, "A Deep Learning framework to detect Covid-'4 disease via chest X-ray and CT scan images," International Journal of Electrical and Computer Engineering, vol. '1, no. '1, pp. ^ 1/ 1, doi: '1, 1091/ijece.v'' i'.pp^ 1/ 1, pp. '1/ 1, pp.
- [1.4] U. Mojumder, T. T. Sarker, G. M. Monika, and N. A. Ratul, "Vehicle Model Identification using Neural Network Approaches." 7.17.
- [' · °] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition Kaiming."
- [1.7] H. Tahir, A. Iftikhar, and M. Mumraiz, "Forecasting COVID-19 via Registration Slips of Patients using ResNet-1.1 and Performance Analysis and Comparison of Prediction for COVID-19 using Faster R-CNN, Mask R-CNN, and ResNet-0..." Y.Y.

- ['''] P. Ghosal, L. Nandanwar, and S. Kanchan, "Brain Tumor Classification Using ResNet-'' Based Squeeze and Excitation Deep Neural Network." 7.19.
- [1.4] C. Szegedy et al., "Going deeper with convolutions," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 'Y-17-June, pp. 1-4, Y-10, doi: 1.11.4/CVPR.Y-10, VY4A044.
- [1.4] F. Chollet, "Xception: Deep Learning with depthwise separable convolutions," Proc. "•th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR *•14, vol. *•14-Janua, pp. 14--14-4, *•14, doi: 1-,11-4/CVPR.*•14,140.
- ['''] N. Jinsakul, C. F. Tsai, C. E. Tsai, and P. Wu, "Enhancement of Deep Learning in image classification performance using Xception with the swish activation function for colorectal polyp preliminary screening," Mathematics, vol. 7, no. 17, 7.19, doi: 1.,779./MATHY17117.
- ['''] M. Alruwaili, A. Shehab, and S. Abd El-Ghany, "COVID-' Diagnosis Using an Enhanced Inception-ResNetV Deep Learning Model in CXR Images," J. Healthc. Eng., vol. 7.71, no. Dl, 7.71, doi: 1.,1100/7.71/7704.04.

- [114] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning Transferable Architectures for Scalable Image Recognition," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. ^79V-^VI, 7.14, doi: 1.,11.9/CVPR.7.14,..9.V.
- [''o] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning," oth Int. Conf. Learn. Represent. ICLR ''. 'Y Conf. Track Proc., pp. '-', ''. 'Y.