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This study presents the development and numerical implementation of a mathematical
model for analyzing heat transfer in parabolic trough collectors (PTCs), a widely
adopted technology in solar thermal energy conversion. The model integrates
conduction, convection, and radiation mechanisms, formulating an energy balance
along the absorber tube through which a heat transfer fluid (HTF) circulates. Governing
equations for the fluid domain were coupled with boundary conditions for absorber
wall interactions, including radiative and convective losses to the environment. The
model was discretized and solved in Python, employing a one-dimensional approach to
capture axial temperature variations under steady-state conditions. Simulations were
conducted for a 100 m collector length using pressurized water as the HTF, with an
inlet temperature of 250 °C and a mass flow rate of 0.5 kg/s under a direct normal
irradiance (DNI) of 850 W/m2 Results indicate a fluid temperature rise of
approximately 110 °C, yielding an outlet temperature of 360 °C. The overall thermal
efficiency was calculated as 54.5%, which, while slightly lower than experimental
benchmarks such as the DISS project (65-75%), reflects the expected physical trends
and validates the simplified modeling approach. The study highlights the significance
of optical and external thermal losses in limiting efficiency and underscores the
importance of effective heat transfer between the absorber wall and the HTF. The
findings provide a computationally efficient framework for evaluating PTC
performance and establish a foundation for future model refinements incorporating
temperature-dependent properties, transient behavior, and experimental validation to
enhance predictive accuracy and applicability in system design and optimization.

1. Introduction

Energy conversion systems — including
solar thermal collectors, thermoelectric
generators, fuel cells, batteries, and thermal
power plants — are pivotal in meeting the
world’s growing energy demands while
seeking lower carbon emissions and greater
efficiency. An essential aspect in the design,
optimization, and operation of these systems is
heat transfer: how heat is generated, moved,
dissipated, and stored. Mathematical models of
heat transfer provide the tools necessary to

predict thermal behaviour, guide engineering
design, estimate performance under varying
conditions, and identify bottlenecks. Heat
transfer in energy conversion systems often
involves multiple modes — conduction,
convection, radiation — plus phase changes
and sometimes chemical reactions. Capturing
these phenomena in models requires balancing
complexity (for accuracy) and simplicity (for
computational tractability and insight). The
development of robust mathematical models
for heat transfer is therefore central to
improving the thermal efficiency and reliability
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of energy conversion systems. Recent years
have witnessed significant advances in both
modeling  techniques and  applications.
Multiphyics modeling, coupling fluid flow,
heat transfer, and electrochemical processes,
has become prominent, for example in thermo-
electrochemical cells converting waste heat to
electricity [1]. In such systems, the interplay
among heat and mass transfer, ion transport,
and reaction kinetics leads to complex behavior
that simple, decoupled models cannot capture
[1]. There is also growing interest in novel heat
transfer  fluids and media, such as
microencapsulated phase change slurries
(MEPCS), which offer enhanced heat storage
and transport capabilities but pose modeling
challenges due to multiscale interactions
between the fluid and embedded phase-change
particles [2].

In thermal converters and heat pipelines in
industrial applications, mathematical modeling
plays a role in monitoring and control. For
example, Karimov et al. formulated models of
thermal converters with cylindrical heat
pipelines and lumped/distributed heat sources
to monitor moisture content of flowing liquids,
combining  radiative,  convective  and
conductive heat transfer considerations [2]. In
energy storage and conversion devices (such as
batteries and thermoelectric modules), thermal
load management is increasingly important:
localized heating can degrade performance and
reduce lifetime [3]. Thermoelectric modules
used in cooling of energy conversion and
storage systems are reviewed recently for how
temperature gradients, heat removal, and
system configuration affect performance [4].

Another application domain is high-
temperature  concentrating  solar  power.
Systems using parabolic trough collectors with
oil or molten salt as heat transfer and storage
media require precise modeling of dynamic
thermal responses under variable solar
radiation, flow rates, and inlet temperatures. A
dynamic model for a solar parabolic trough
system using thermal oil has been validated
with operational data, showing sensitivity of
system output to incident radiation, flow
parameters, and collector geometry [5].

Similarly, in oil-immersed transformers and
other electrical energy equipment, conjugate
heat transfer models (combining conduction in
solids and convection in cooling fluids) have
been developed for performance prediction and
risk assessment, especially under loads and
environmental variations [5].

In addition to classical continuum models
(Navier—Stokes,  Fourier’s law, energy
conservation), recent literature has explored
non-Fourier effects in nanoscale systems. At
small scales, standard diffusive assumptions
may fail; ballistic transport, size effects, and
boundary scattering can lead to anomalous heat
transfer behavior, with implications for thermal
management in nanoelectronics, advanced
materials, and possibly for high-efficiency
conversion devices that exploit nanoscale
features [6].

Model validation remains essential. Many
studies combine model predictions with
experimental data or real-world operational
data in order to ensure that assumptions (e.g.,
constant properties, steady vs transient,
boundary conditions) are reasonable. For
example, the solar parabolic trough model
mentioned above was validated using summer
and spring data [7]. In converters and pipelines,
comparative analysis between lumped and
distributed source models showed differences
in predicted temperature and response,
emphasizing the necessity of  proper
representation of source terms [8].

Despite these advances, several gaps
remain. Most models assume uniform or
simplified geometries; real systems often have
complex  geometries, variable  material
properties, and unsteady operation (due, e.g., to
fluctuating inlet temperatures, varying load,
changing ambient conditions). Phase change,
radiation, and turbulence are often sources of
high non-linearity, yet are sometimes treated
with  simplifying assumptions that limit
accuracy. Also, computational cost remains a
concern when high fidelity (e.g., 3D CFD +
radiation + conjugate heat transfer) models are
used. Emerging approaches like machine
learning metamodels and physics-informed
neural networks are being explored to reduce
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computational demands  while
predictive accuracy [9, 10].

The purpose of this study is to build a
mathematical model of heat transfer in a
selected energy conversion system (to be
specified), integrating conduction, convection,
and radiation as appropriate; to analyze the
effects of key parameters (e.g. geometry, flow
rates, material properties, boundary
conditions); to validate the model against
experimental or published data; and to evaluate
trade-offs between accuracy and computational
efficiency. The aim is to contribute both to
theoretical understanding and to practical
guidelines for design and optimization of
energy conversion systems.

2. Literature Review

retaining

Mathematical modeling of heat transfer
plays a central role in analyzing and optimizing
energy conversion systems such as solar
collectors, thermoelectric generators, and fuel
cells. Early research was grounded in classical
formulations of conduction, convection, and
radiation, expressed through the governing heat
equation and conservation of energy. Canonical
works such as Carslaw and Jaeger’s
Conduction of Heat in Solids [11] and
Incropera and DeWitt’s Fundamentals of Heat
and Mass Transfer [12] provided analytical
solutions and  dimensionless  analysis
techniques that remain foundational. These
texts systematically introduced separation of
variables, integral transforms, and similarity
methods, allowing researchers to solve
transient and steady-state conduction problems
in canonical geometries. Dimensionless
numbers such as Biot, Fourier, Reynolds, and
Nusselt remain essential in scaling laws,
enabling experimental results to be generalized
and serving as validation baselines for more
advanced computational and experimental
approaches. Even today, classical analytical
models form the benchmark against which the
accuracy of emerging techniques is judged,
highlighting their continuing relevance despite
increasing computational capabilities.

As system geometries and boundary
conditions grew more complex, numerical
methods became dominant. Finite difference,

finite volume, and finite element schemes were
increasingly applied, supported by
computational platforms such as ANSYS
Fluent and COMSOL Multi-physics. These
methods enabled the resolution of three-
dimensional geometries, complex boundary
conditions, and nonlinearities that are
intractable analytically. For example, conjugate
heat transfer simulations can capture
simultaneous conduction through solids and
convection in fluids, offering insight into
localized hot spots or inefficiencies. A recent
review highlights the role of high-fidelity
computational fluid dynamics (CFD) combined
with reduced-order modeling for accurate yet
efficient simulations [13]. Such hybrid
approaches allow hierarchical modeling,
ranging from lumped-parameter representations
suitable for system-level optimization to three-
dimensional CFD for component-level insight.
Advances in adaptive meshing, parallel
computing, and turbulence modeling further
enhance accuracy, making numerical modeling
indispensable in  modern thermal system
design.

Solar thermal systems have been
extensively modeled, with particular focus on
receiver heat losses, thermal storage coupling,
and dynamic system performance. Analytical
receiver models often provide quick estimates
of conduction and radiation losses under
varying solar flux conditions, while CFD
simulations capture non-uniform heating,
turbulence in air flows, and transient
performance under fluctuating insolation.
Studies have shown that including time-
dependent modeling is critical to predict start-
up behavior, thermal inertia, and fluctuating
efficiency [14]. Coupled models of solar
collectors and storage subsystems also
highlight the need for accurate representation
of thermal stratification and charging-
discharging cycles. Moreover, novel receiver
designs, including  porous  volumetric
absorbable, demand advanced simulations that
capture coupled radiation and convection,
emphasizing the importance of multiphysics
modeling in solar energy applications.
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Similarly, thermoelectric generators
(TEGs) require coupled thermal—electrical
models, since device performance is highly
dependent on temperature gradients and
interfacial heat transfer. Classical one-
dimensional models capture the Seebeck,
Peltier, and Thomson effects, but cannot
account for geometric complexity or transient
phenomena. Reviews by Jaziri et al. [15] and
Champier [16] emphasize the need for
multiphysics ~ simulations  that integrate
conduction through thermoelectric legs, Joule
heating from electrical resistance, and
convective cooling at boundaries. High-fidelity
TEG models now incorporate material
inhomogeneity, contact resistances, and non-
idealities, enabling more realistic performance
prediction. Optimization studies also show that
system-level integration of TEGs with heat
exchangers or waste heat recovery units
requires simultaneous thermal and electrical
modeling, further highlighting the complexity
of accurate design.

Fuel cells, especially proton exchange
membrane (PEM) and solid oxide fuel cells
(SOFCs), present additional challenges due to
coupled heat generation, water transport, and
electrochemical reactions. The local heat
balance is strongly influenced by ohmic
heating, reaction enthalpy, and mass transport
of reactants and products. Wu et al. [17] and Li
et al. [18] describe how multidimensional
thermal models are integrated with species
transport and electrochemistry to understand
stack temperature distributions and enable
effective cooling strategies. For PEM fuel cells,
water management is critical because
membrane hydration affects both ionic
conductivity and heat transfer. In SOFCs, high
operating temperatures necessitate accurate
transient thermal modeling to avoid thermal
shock and to design robust start-up and
shutdown procedures. These multiphysics
models are indispensable for predicting system
durability and guiding thermal management
strategies in practical fuel cell stacks.

Beyond device-level modeling, heat pipes,
heat exchangers, and thermal storage systems

have also been the subject of detailed
mathematical models. Heat pipes, which rely
on phase-change and capillary action, require
simultaneous modeling of wick structure
performance, vapor flow, and conduction
through solid walls. Recent reviews on heat
pipe modeling examine wick structure
representation and conjugate heat transfer
solutions, revealing that simplified models
often fail to capture dry-out limits or transient
responses [19]. Similarly, heat exchanger
modeling has advanced from e-NTU analytical
methods to detailed CFD-based conjugate
simulations, enabling the design of compact
geometries with enhanced turbulence. In
thermal energy storage systems, distributed-
parameter and CFD-based approaches are used
to capture charging and discharging processes
in packed beds and phase change systems [20].
Such models must incorporate non-equilibrium
thermal gradients, natural convection in molten
phases, and phase-change kinetics, making
them essential for designing large-scale thermal
storage solutions in renewable energy grids.

More recently, hybrid approaches that
combine CFD with machine learning have
emerged to accelerate prediction and design
optimization. Data-driven models can be
trained on high-fidelity simulations or
experimental data, enabling reduced-order
surrogate  models that drastically lower
computational ~ cost  without  sacrificing
accuracy. Hu et al. [21] demonstrated how
surrogate modeling based on simulation data
enables near real-time evaluation of thermal
systems, bridging the gap between high fidelity
and computational cost. These approaches are
particularly valuable for design optimization,
where thousands of iterations would be
computationally prohibitive with full CFD.
Moreover, machine learning can assist in
uncertainty quantification, parameter
estimation, and anomaly detection, pointing
toward a new generation of intelligent thermal
system modeling.

[22] This study proposes a hybrid approach
integrating computational fluid dynamics
(CFD) and machine learning methodologies to
predict heat transfer during the cokemaking
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process. The objective is to improve the
accuracy of thermal behavior predictions,
thereby facilitating real-time monitoring and
enabling the optimization of industrial thermal
systems. The proposed model leverages the
strengths of CFD in capturing complex
physical phenomena and the predictive
capabilities of machine learning to provide
efficient and reliable assessments of heat
transfer dynamics.

[23] This  research  presents the
development of an Artificial Neural Network
(ANN) integrated with computational fluid
dynamics (CFD) simulations to optimize
thermal efficiency in impinging jet flame
systems. The proposed approach demonstrates
enhanced prediction accuracy while reducing
computational costs, highlighting its potential
for effective design and performance
optimization of complex thermal systems. In
[24] integrates computational fluid dynamics
(CFD) simulations with machine learning
algorithms to optimize the performance of solar
air heaters. The approach emphasizes
improving energy absorption while minimizing
thermal losses, providing a framework for more
efficient design and operation of solar thermal
systems.

In [25] presents a hybrid modeling
approach that integrates Machine Learning
(ML) with Computational Fluid Dynamics
(CFD) to predict heat transfer during the
cokemaking process. The proposed
methodology seeks to improve the accuracy
and efficiency of thermal predictions, thereby
enabling enhanced real-time monitoring and
optimization of industrial thermal systems.

Overall, the literature highlights significant
progress in both classical and numerical
modeling approaches. Analytical foundations
remain crucial for understanding governing
mechanisms, while numerical and hybrid
methods extend modeling capabilities to
complex geometries and coupled physics.
However, research gaps remain in transient
multi-scale coupling, standardized benchmark
datasets, and uncertainty quantification, which
are critical for advancing predictive accuracy in
next-generation energy conversion systems.

Addressing these gaps will require integration
of  physics-based  models, data-driven
techniques, and systematic validation across
scales, ensuring robust and predictive tools for
the design of sustainable energy technologies

3. Mathematical Modeling

3.1 Physical
Assumptions

. The energy conversion system under
consideration  consists of both  solid
components, such as walls, fins, and heat
exchangers, and fluid domains, such as coolant
passages, working fluid channels, or external
flow environments. To enable a tractable yet
realistic representation, several assumptions are
made. First, the computational domain is
decomposed into solid and fluid sub-domains,
each  assigned  distinct  thermophysical
properties. Material parameters such as thermal
conductivity, density, viscosity, and specific
heat may be functions of temperature and
pressure; however, they are often treated as
constant within limited ranges to simplify
analysis while retaining acceptable accuracy.

Flow regimes are determined by the
Reynolds number, with laminar and turbulent
possibilities. For turbulent flow, closure is
achieved through turbulence models such as
the standard k— or k—® formulations, or large-
eddy simulation (LES) in high-fidelity cases.
Heat transfer is modeled through all three
primary modes: conduction within solids,
convection within fluids, and radiation between
surfaces and through media where appropriate.
Surface-to-surface radiation is included when
temperature differences are significant, while
volumetric radiation is considered if gases or
porous structures exhibit absorption and
scattering behavior.

Boundary  conditions  represent  the
interaction of the system with its environment.
These may include Dirichlet conditions
(specified surface temperatures), Neumann
conditions (prescribed heat flux), or Robin-type
convective boundaries based on Newton’s law
of cooling. For open systems exposed to
ambient surroundings, radiation boundary
conditions with emissivity and view factor

System and Modeling
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specifications may also be applied. By adopting
these assumptions, the mathematical model
achieves a balance between computational
feasibility and physical accuracy, ensuring that
the essential thermal and fluid mechanisms are
captured

3.2 Governing Equations

Solid Domain (Conduction)

In solid domains, energy conservation
reduces to the transient heat conduction
equation:

9T,
Ps Cps W =V. (ksVTs) + Qs

where ps is solid density, cp is specific
heat, Ts is temperature, ks is thermal
conductivity, and qgs represents internal heat
generation such as Joule heating or chemical
reaction. Under steady-state conditions, the
transient term vanishes, yielding a purely
elliptic equation. Analytical solutions are
available for simple geometries (e.g., slabs,
cylinders, spheres), whereas more complex
geometries require numerical discretization.

Fluid Domain (Convection and Advection)
For fluid regions, the governing energy
equation is written as:

9T,
f

Here, pf,cp,f,kf denote fluid density, heat
capacity, and conductivity, respectively;
ulmathbf{u}u is the velocity vector; gf is an
internal heat source term; and Sr represents
radiative contributions or source terms from
multiphysics coupling.

The velocity field u is obtained from the
Navier—Stokes equations with continuity:

V.u=20

p 19—u+u Vu)=-Vp+usV?u+F

where ps is solid density, cp is specific
heat, Ts is temperature, ks is thermal
conductivity, and qs represents internal heat
generation such as Joule heating or chemical

reaction. Under steady-state conditions, the
transient term vanishes, yielding a purely
elliptic equation. Analytical solutions are
available for simple geometries (e.g., slabs,
cylinders, spheres), whereas more complex
geometries require numerical discretization.

3.3 Radiation Modeling

Radiation modeling becomes important
when surfaces operate at elevated temperatures
or when thermal gradients are sufficiently
large. For non-participating media, classical
surface-to-surface radiation models are used.
These involve the radiosity method or view
factor formulations, which account for surface
emissivity,  reflectivity, and  geometry-
dependent radiation exchange. For systems
involving combustion gases, semitransparent
materials, or porous absorbers, the medium
itself participates in absorption, emission, and
scattering. In such cases, the radiative transfer
equation (RTE) governs transport:

S. VIA(T, S) = _(le + O—A)IA + K/llb,l

O : , , )
+ﬁ 4n1,1(r,s)d>)s,s)dﬂ

where IA is spectral intensity, &A 1is
absorption coefficient, oA is scattering
coefficient, and ® is the phase function. To
reduce computational expense, approximate
methods such as the P1 model or Rosseland
diffusion approximation are applied for
optically thick media. The selection of
radiation modeling approach depends strongly
on system temperature, optical properties, and
required accuracy.

3.4 Conjugate Heat Transfer and
Multiphysics Coupling

At the solid—fluid interface, conjugate heat
transfer enforces two continuity conditions:

9T, 9Ty
TS = Tf’ks% = kf_

These ensure both thermal equilibrium and
conservation of heat flux. In porous media,
where both conduction through solid matrices
and convection through pores coexist,
homogenized formulations are used. Such
models treat the porous region as a continuum
with effective thermal conductivity and
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permeability. Le et al. [8] developed multiscale
homogenization frameworks that integrate
conduction, convection, and radiation effects,
demonstrating that surface-to-surface radiation
within pores can significantly enhance the
apparent conductivity of porous ceramics.
Multiphysics coupling is essential in devices
like fuel cells, where electrochemical reactions,
water transport, and heat generation interact,
and in thermoelectric modules, where electrical
resistances influence local heating.

3.5 Dimensionless Numbers and Non-
Dimensionalization

Dimensionless analysis reduces governing
equations to forms that reveal dominant
physical mechanisms and scaling relationships.
Important non-dimensional numbers include:

Reynolds number (Re=pul/p) — ratio of
inertial to viscous forces, determining laminar
vs. turbulent flow regimes.

Prandtl number (Pr=cpwk) — ratio of
momentum diffusivity to thermal diffusivity,
indicating whether velocity or temperature
boundary layers dominate.

Grashof number (Gr=gB(Ts—Tw)L3/v2)
L"3\nu2Gr=gB(Ts—Two)L3/v2) — buoyancy to

viscous force ratio, relevant in natural
convection.

Nusselt number (Nu=hL/k) -
dimensionless  measure  of  convective

enhancement relative to conduction.

Rayleigh number (Ra=Gr-Pr) — governs
onset of natural convection instabilities.

By scaling variables and rewriting
equations in dimensionless form, the number of
governing parameters reduces, revealing
similarity solutions and simplifying parametric
studies. Such methods are foundational in
correlating experimental data and
benchmarking numerical models.

3.6 Solution Methods

The choice of solution strategy depends on
system complexity and physics involved.
Analytical solutions exist for canonical
problems such as one-dimensional conduction
in slabs, steady-state convection in parallel
plates, or radiation between infinite surfaces.
These are often used for validation.

For realistic systems, numerical methods
dominate. Finite Difference Method (FDM)
discretizes governing equations on structured
grids, while Finite Element Method (FEM)
provides flexibility for irregular geometries.
The Finite Volume Method (FVM), widely
used in CFD, ensures strict conservation of
fluxes across control volumes. Boukendil et al.
[1] demonstrated the effectiveness of the FVM
combined with the SIMPLE algorithm to

simulate  coupled  conduction,  natural
convection, and radiation in honeycomb wall
systems.

Multi-scale methods, including

homogenization and volume-averaging, are
increasingly applied to porous media and
composite structures, linking micro-scale
phenomena to macro scale predictions [8].
High-fidelity Computational Fluid Dynamics
(CFD) tools combine these numerical
frameworks with turbulence models, radiation
solvers, and multi-physics coupling, enabling
full conjugate analyses of complex geometries.

3.7 Boundary and Initial Conditions

Accurate specification of boundary and
initial conditions is essential for well-posed
simulations. For transient models, the initial
temperature distribution and, where relevant,
initial velocity fields are prescribed. On solid—
fluid interfaces, continuity of temperature and
flux is enforced. External boundaries may
represent convective heat exchange with the
environment, modeled as:

OT
—k—=h(T -Ty),
In

where h is convective heat transfer
coefficient. Radiation boundaries account for
surface emissivity and ambient radiative
temperature. Insulated surfaces adopt adiabatic
Neumann conditions (0T/on=0\partial T/\partial
n = 00T/on=0). Heat sources are modeled
either as volumetric generation terms or
imposed surface fluxes. Careful boundary
condition specification ensures numerical
stability and physical realism, and sensitivity
analyses are often performed to assess
boundary influence on predictions.

3.8 Model Validation and Verification
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The credibility of any mathematical model
depends on rigorous verification and
validation. Verification involves ensuring that
the equations are correctly implemented and
solved, typically through grid independence
studies, time step convergence checks, and
comparison against known analytical solutions.
Validation, by contrast, assesses the accuracy
of model predictions against experimental data
or published benchmarks.

For example, effective thermal conductivity
measurements in ceramic particle beds used in
solar thermal storage provide experimental
benchmarks for conduction, gas conduction,
and radiation contributions. Models such as the
ZBS framework are used as reference to assess
numerical and analytical predictions [28].
Validation also extends to comparing CFD
results with temperature profiles, velocity
distributions, and  heat fluxes from
experimental setups. A validated model not
only enhances confidence in predictions but
also guides optimization and design processes
for energy conversion systems.

4. Case Study: Parabolic Trough
Collector — Python Implementation
Parabolic  trough  collectors  (PTCs)

represent one of the most mature and widely
used technologies for concentrating solar
thermal energy. In this study, the focus is
placed on modeling the thermal performance of
a PTC with a single absorber tube, through
which a heat transfer fluid (HTF) circulates.
The collector concentrates incoming solar
radiation onto the absorber surface, resulting in
convective heat transfer from the wall to the
flowing fluid. The analysis presented here
assumes a one-dimensional energy balance
along the length of the tube, neglecting radial
temperature gradients within the fluid due to
the high Peclet number typically observed in
such systems.

The governing equation for the HTF
temperature along the axial coordinate X is
expressed as:

dT,
f
mcy, E = T[Dih(Tw - Tf)

where m is the mass flow rate of the HTF,
cp s its specific heat capacity, Tf denotes the
fluid bulk temperature along the tube, Tw is the
wall temperature, Di is the inner diameter of
the absorbable tube, and h represents the
convective heat transfer coefficient. This
formulation assumes steady-state conditions,
uniform fluid properties, and negligible axial
conduction within the fluid.

The absorbable wall temperature Tw is
influenced by both the absorbed solar radiation
and the combined effect of external thermal
losses. The incident solar energy gsol absorbed
by the tube is partly transferred to the HTF and
partly lost through convection and radiation to
the surroundings. This heat balance at the tube
wall can be expressed as:

dsot — ioss = TD;A(T, — Tf)

with the total thermal loss gloss including
contributions from convective heat transfer to
ambient air and radiative exchange with the
environment. Convective losses are typically
modeled using correlations for flow around
cylindrical bodies in crossflow, while radiative
losses are calculated based on the Stefan—
Boltzmann law, accounting for emissivity of
the tube surface and surrounding sky
temperature.

To implement this model computationally,
the governing ordinary differential equation
(ODE) for the fluid temperature can be
discretized along the tube length using
numerical  integration  methods.  Python
provides a flexible framework for such
simulations through packages such as numpy
and scipy.integrate. The mass flow rate,
specific heat, tube geometry, convective
coefficient, and wall temperature profile are
input parameters, allowing the prediction of the
fluid outlet temperature for a given inlet
condition. This approach enables parametric
studies, such as the effect of flow rate, HTF
properties, or solar irradiance on collector
performance, as well as validation against
experimental or literature data.

Additionally, the Python implementation
allows for iterative coupling between the wall
and fluid temperatures. Given that Tw itself
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depends on the local heat flux from the
concentrated solar radiation and the fluid heat
extraction, a stepwise procedure can be
employed where an initial guess for Tw is
refined through successive iterations until
energy balance convergence is achieved at each
axial node. This method ensures accurate
representation of the convective heat transfer
along the tube while capturing the impact of
external thermal losses on system efficiency.

Overall, the proposed model provides a
tractable and computationally  efficient
approach to simulate the thermal behavior of
parabolic trough collectors. It serves as a
foundation for further enhancements, such as
incorporating transient solar flux variations,
temperature-dependent  fluid properties, or
more detailed radiative loss models. The
framework also allows for integration with
optimization algorithms to maximize energy
extraction or minimize thermal losses,
providing a valuable tool for both research and
practical design of solar thermal systems.

5. Results and Discussion

The developed numerical model was
implemented in Python to simulate the thermal

performance of a parabolic trough collector
(PTC) under typical operating conditions. The
simulation considered a 100 m collector length,
an absorbable tube diameter of 66 mm, an
optical efficiency of 0.75, and a direct normal
irradiance (DNI) of 850 W/mz2. Water at high
pressure was selected as the heat transfer fluid
(HTF) with an inlet temperature of 250 °C and
a mass flow rate of 0.5 kg/s.

The results are presented in Figure 1,
which shows the variation of both fluid and
wall temperatures along the length of the
collector. The fluid enters at 250 °C and
progressively increases in temperature as it
absorbs heat from the solar radiation
concentrated on the absorbable tube. By the
end of the 100 m collector length, the outlet
temperature reaches approximately 360 °C,
representing a rise of 110 °C over the inlet
condition. The absorbable wall temperature
remains slightly higher than the fluid
temperature throughout the length, indicating
effective heat transfer from the wall to the
fluid.

Temperature Distribution Along Parabolic Trough Collector

380

HTF Temperature (*C)
=== Wall Temperature (*C)

360

340

3201

300

Temperature (°C)

280

260F

0 20 40

60 80 100

Collector Length (m)

Figure 1 .shows the variation of both fluid and wall temperatures

Figure 2 presents the overall energy
balance of the collector. The calculated thermal
efficiency of the system was 54.5%, which

implies that slightly more than half of the
incident solar energy was converted into useful
thermal energy, while the remainder was lost
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through convective and radiative heat transfer
to the surroundings. The efficiency value
obtained is within the expected range for
parabolic trough systems operating under
similar conditions, though somewhat lower
than experimental benchmarks such as the

Useful Energy (%) st

45.5%

DISS project at PSA, which typically reports
efficiencies between 65-75% under optimal
conditions. The discrepancy can be attributed
to simplifying assumptions in the model, such
as constant convective coefficients and an
approximate treatment of wall temperature.

Losses (%)

Figure 2. show the energy balance of the collector

Despite these simplifications, the results
demonstrate the correct physical trend: higher
heat input along the collector length increases
the fluid temperature, while thermal losses
limit the overall efficiency. It is also evident
that the wall temperature remains close to the
fluid temperature, confirming efficient internal
heat transfer and suggesting that system
performance is predominantly influenced by
optical and external thermal losses. These
results confirm that the developed Python
model can reproduce the essential thermal
behavior of a PTC and can be extended for
further parametric studies. In particular,
varying mass flow rate, absorber properties, or
DNI would provide insights into optimization
strategies for maximizing outlet temperature
and system efficiency.

The numerical simulation of the parabolic
trough  collector (PTC) provides a
comprehensive understanding of its thermal
performance under steady-state operating
conditions. The heat transfer fluid (HTF) enters
the collector at 250°C and exhibits a
progressive temperature rise along the collector
length, reaching approximately 360 °C at the
outlet (Figure 3). This increase demonstrates
effective convective heat transfer from the
absorber tube to the fluid, driven by the
temperature gradient between the wall and the
fluid. The near-linear profile indicates a
balance between absorbed solar radiation and
thermal losses, with the initial sections
displaying the largest AT and the highest local
heat transfer rates.
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Fluid Temperature Rise in PTC
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Figure 3. show the fluid temperature Rise in PTC

The absorber wall temperature remains
slightly higher than the fluid temperature
throughout the collector, with an approximate
differential of 30 K (Figure 4). This differential
serves as the driving force for convective heat
transfer, ensuring efficient energy delivery to
the fluid. The uniform wall temperature along

the collector indicates equilibrium between
absorbed solar energy and thermal dissipation
via convection and radiation. Maintaining this
temperature difference is critical for both heat
transfer efficiency and structural integrity, as
excessive wall temperatures may induce
thermal stresses.

Wall Temperature Along Collector
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Figure 4 .show the Wall Temperature along collector
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The spatial distribution of heat flux along
the collector highlights absorbed solar flux,
thermal losses, and net heat flux delivered to
the fluid (Figure 5). The absorbed flux remains
constant due to wuniform direct normal
irradiance and optical efficiency, while thermal
losses increase slightly with wall temperature.

The net heat flux represents the effective
energy contribution to the fluid, confirming
that a substantial portion of the incident solar
energy is converted into useful thermal energy.
This analysis emphasizes the importance of
minimizing external losses through design
optimizations such as selective coatings and
enhanced insulation.

Heat Flux Distribution Along Collector
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Figure 5. show the Heat flux Distribution Along Collector

The temperature difference between the
wall and the fluid (AT) remains nearly constant
along the collector (Figure 6), reflecting the
assumptions in the model. In practical systems,
AT may diminish toward the outlet as the fluid
temperature approaches that of the wall,

reducing the convective driving force. The
observed profile nevertheless provides insight
into heat transfer effectiveness and informs
optimization strategies, such as adjusting flow
rate or tube geometry to balance energy
transfer efficiency and thermal stress.
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Figure 6. show the Wall-Fluid Temperature Difference

Cumulative energy analysis along the
collector demonstrates that total absorbed
energy increases linearly with collector length,
whereas cumulative thermal losses also rise
due to greater surface exposure to the ambient
environment (Figure 7). The net cumulative
energy corresponds to the useful energy

delivered to the fluid, with an overall thermal
efficiency calculated at approximately 54.5%.
These results highlight the interplay between
absorbed energy, thermal losses, and effective
energy utilization, providing guidance for
improving collector design and maximizing
energy capture.

Cumulative Energy Along Collector
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Figure 7. show the Cumulative Energy Along Collector
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Overall, the combined analysis of fluid and
wall temperatures, heat fluxes, temperature
differentials, and cumulative energy confirms the
effective thermal performance of the PTC under
the specified operating conditions. The results
underscore the importance of accurate modeling
for predicting collector behavior, guiding design
optimization, and enhancing thermal efficiency
in solar thermal energy applications.

6. Conclusion

The present study developed and
implemented a numerical model in Python to
simulate the thermal behavior of a parabolic
trough collector. The model was based on an
energy balance along the absorbable tube,
accounting for solar radiation input, convective
heat transfer to the working fluid, and thermal
losses to the surroundings. The simulation
results demonstrated a clear temperature rise of
the heat transfer fluid from 250 °C at the
collector inlet to approximately 360 °C at the
outlet, highlighting the capacity of the system to
deliver high-temperature thermal energy suitable
for power generation and industrial processes.

The overall thermal efficiency of the
collector was found to be 54.5%. While this
value is somewhat lower than efficiencies
typically reported in large-scale demonstration
projects such as the DISS project in Spain, the
results are consistent with the expected
performance trends and confirm the validity of
the simplified modeling approach. The
efficiency gap is primarily attributed to the
assumptions of constant heat transfer
coefficients and the approximate treatment of
absorber wall temperature, which neglect some
secondary effects such as variable fluid
properties, solar flux distribution, and end losses.

Despite these simplifications, the developed
model successfully reproduces the essential
characteristics of parabolic trough systems and
provides a reliable framework for performance
evaluation. The results confirm the strong
influence of solar irradiance and external thermal
losses on collector efficiency, as well as the
importance of maintaining effective heat transfer
between the absorber wall and the working fluid.

Al-Rafidain Journal of Engineering Sciences Vol. 3, Issue 2, 2025: 474-488

Future work should focus on improving the
accuracy of the model by incorporating
temperature-dependent fluid properties, more
detailed loss mechanisms, and experimental
validation against field data. Such enhancements
would enable the model to be used as a
predictive tool for system optimization and
design, contributing to the broader objective of
improving the efficiency and competitiveness of
solar thermal energy conversion technologies
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