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ABSTRACT

Background: The bacteria were named Streptococcus sanguinis; these bacteria are
typically associated with a wholesome plaque biofilm. As a pioneering commensal
colonizer of human tooth surfaces, S. sanguinis prevents oral pathogens like
Streptococcus mutans and Porphyromonas gingivalis from colonizing dental
biofilms, promoting dental biofilm homeostasis. These two species have been shown
to possess several virulence factors crucial for the development of infective
endocarditis. Nevertheless, it remains unknown how commensal bacteria can
occasionally become harmful. The initial colonizer, S. sanguinis, is an oral
Streptococcus species frequently isolated in high abundance as a component of the
health-associated microbiome. S. sanguinis can bind to the hydroxyapatite in tooth
surfaces and start the production of biofilms in the oral cavity by attaching itself to
salivary components such as salivary a-amylase. It can utilize various glucose
sources for survival. Oral streptococci strains of S. sanguinis are less sensitive to C3b
deposition than strains of other species. While S. sanguinis strain differences in C3b
binding significantly affect PMN sensitivity to opsonophagocytic in human
peripheral blood. Autoimmune illnesses are a group of heterogeneous conditions
characterized by autoreactive immune responses that result in immune system-
mediated organ damage. Conclusion: Extending the duration of S. sanguinis's early
enamel biofilm production appears to enhance demineralization and alter the
properties of S. sanguinis biofilms during the timeframes investigated in this study
and when sucrose is present. When repeatedly exposed to sucrose, S. sanguinis,
developing as a monospecies biofilm, exhibits a cariogenic potential, albeit less so
than S. mutans. This potential is evident mainly in accelerated demineralization. In
addition to preventing microorganisms from entering the bloodstream and internal
tissues, the complement system is essential for preserving the homeostasis of the
human microbiome, which includes the microbial communities found in the oral
cavity. It has been observed that S. sanguinis isolated from individuals without caries
produces more H,0, than the same species isolated from individuals with multiple
carious lesions.
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INTRODUCTION
Characteristics of Streptococcus sanguinis:

The bacteria named S. sanguinis are typically associated with a wholesome plaque biofilm (1). It is a Gram-

positive facultative anaerobe that doesn't produce spores. Like other streptococci, S. sanguinis splits its cells along a
single axis to form chains or pairs of cocci. S. sanguinis has often been characterized as non-motile. Gurung et al.'s
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discovery that retractable type-1V pili in S. sanguinis strain 2908 facilitate surface-associated twitching motility has
raised doubts about this recently (2).

As a pioneering commensal colonizer of human tooth surfaces, S. sanguinis prevents oral pathogens like
Streptococcus mutans and Porphyromonas gingivalis from colonizing dental biofilms, promoting dental biofilm
homeostasis (3). Conversely, S. sanguinis frequently causes infective endocarditis (IE) in vulnerable hosts and,
ultimately, in young immunocompetent adults (4).

This species has a unique ability to cause cardiovascular infections, as evidenced by the frequent detection of
atheromatous plaques (5). Despite being oral commensals, they can elude their niche and result in the deadly
condition known as infective endocarditis.

Streptococcus sanguinis virulence factors:

S. sanguinis has been shown to possess several virulence factors crucial for developing infective endocarditis.
Nevertheless, it remains unknown how commensal bacteria can occasionally become harmful (6). The methods used
to identify the etiologic agents of oral streptococci throughout the past century have had a significant impact on our
knowledge of these bacteria. This led to the first disregard of the benefits of oral streptococcal colonization. A new
picture began to emerge in 2005 (7), with the conclusion of the first comprehensive study of the oral microbiota of
inhabitants. The development of high-throughput sequencing techniques and more sensitive analysis approaches has
allowed for the demonstration of a distinct microbiome associated with oral health (8).

The important microorganism that causes dental caries and periodontal disease was polymicrobial (9). S.
sanguinis is an oral Streptococcus species frequently isolated in high abundance as a component of the health-
associated microbiome (10). Given the strong association between S. sanguinis and oral health, this comparative
study can serve as a model for investigating the potential interactions between different species within the bacterial
community to affect the composition of a benign dental biofilm. In most cases, S. sanguinis is categorized as a
chain-forming, catalase-negative, non-spore-forming coccus. Although S. sanguinis is not beta-hemolytic, it can
induce alpha-hemolysis through hydrogen peroxide (H,O,), resulting in a green color on blood agar plates. (11).
(Figure 1)
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Figure (1): The model shows S. sanguinis bacteria identifying salivary pellicle receptors on tooth surfaces and establishing
connexons. They also identified various attachment receptor types, such as long-range and pH-sensitive receptors. ArgB
expression can be inhibited by CiaR, leading to increased gtfP expression. BrpT deletions can upregulate gtfP, causing biofilm
production. (1).

Sporadic cases of infection with S. sanguinis were recorded in post-ureteral surgeries. The bacteria cause urinary
tract infection (UTI) primarily and sepsis secondary (12). This bacterium is considered one of the most common
causes of infective endocarditis, particularly in those with immune-compromised patients or those suffering from
cardiac dysfunctions (13).
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S. sanguinis and dental caries' relationship:

Streptococcus mitis, S. sanguinis, and other members of the viridians group of streptococci are the most
common causes of infection after dental operations. While coagulase-negative organisms, such as Enterococci and
Staphylococcus aureus, were less common and caused infection after dentistry treatments (14).

S. sanguinis is less likely to cause endocarditis and other valvular diseases than other bacteria, such as Staph.
aureus, after dental surgery (15).

The development of an infectious S. sanguinis biofilm in endocarditis:

In a recent study by (16), it was found that S. sanguinis not only causes infective endocarditis and heart valve
or endocardial lining disease, but it is also a prominent colonizer in the oral cavity (17). It was found to be a resident
of the oral cavity; S. sanguinis was known to cause endocarditis and was referred to as "Streptococcus Subacute
Bacterial Endocarditis." for "subacute bacterial endocarditis" (18). Along with two other species of Gram-positive
cocci, staphylococci and enterococci, oral streptococci, including S. sanguinis, were found to be among the top three
causes of endocarditis.

Factors influencing S. sanguinis biofilm formation:

Many studies referred to the fact that adults and children who have a proportion of S. sanguinis in their saliva
and biofilms extracted were free of dental caries, in contrast to those with dental caries. This indicates an important
potential protective function for health (19). Clinical studies show that S. sanguinis colonizes toddlers' oral cavities
before S. mutans and before the eruption of their first teeth. Nonetheless, studies conducted in situ have
demonstrated that Streptococcus species during the initial 4-8 hours of biofilm formation (20). (Figure 2)
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Figure (2): The antagonistic mechanisms of S. sanguinis and S. mutans. S. sanguinis produces H,O,, preventing
growth, whereas S. mutans produces mutacins to stop S. sanguinis, S. mutans induces dental caries by producing acids
from fermentable carbohydrates, whereas S. sanguinis preserves pH homeostasis. L-arginine treatment reduces S.
mutans biomass (1).

S. sanguinis is a very significant species because it is one of the most common causes of infective endocarditis
(IE), about 18 to 30 % of cases were caused by S. sanguinis (21). Bacteria can enter the circulation through
dentistry and poor oral health routine, oral hygiene treatments, including brushing and mastication that may
promote a situation of sporadic, temporary bacteremia. Because of inflammation and more serious damage to the
oral epithelium, S. sanguinis adheres to circulating platelets and attaches to submucosal proteins, such as collagen,
after endothelial disruption at locations of injury. These are crucial early steps in the formation of IE (22).

Recognizing the virulence of S. sanguinis is lifelong, given the possibility of endocarditis and the inability to
treat chronic infections with long-term antibiotics. Currently, enhanced S. sanguinis virulence initiation elements
are being built toward the creation of treatments specifically designed to eliminate the causes of bacterial
endocarditis. (23).
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Streptococcus sanguinis and the immune system:
There is evidence that both innate and adaptive immune systems can tolerate S. sanguinis, in contrast to other

oral streptococci (24). Despite S. sanguinis's advantageous role in the oral cavity, it is frequently linked to
opportunistic cardiovascular infections in vulnerable hosts (25). Because this association is related to the tolerance
and suitability of this type in human blood, in addition to its resistance to Polymorphonuclear leukocytes (PMN)
death and cell invasion (26). On the other hand, nothing is known about the functional diversity of different strains
of S. sanguinis. Preliminary analyses of the 20-25 S. sanguinis genomes available in the public domain have shown
that the strains have genes that function to produce the nuclear apparatus and cause disease (27).

Pathogenesis of S. sanguinis in the oral cavity:

By binding to salivary components like salivary a-amylase, S. sanguinis can initiate the formation of biofilms
in the oral cavity by binding to the hydroxyapatite present on tooth surfaces. It can utilize various glucose sources
for survival (28). When S. sanguinis enters the bloodstream systemically, it can act as an opportunistic pathogen.
Moreover, if it manages to colonize a damaged heart valve, it could result in infectious endocarditis (29). S.
sanguinis is associated with bacteremia brought on by dental therapy, regular brushing, and persistent dental
lesions. It was first isolated from a patient suffering from subacute bacterial endocarditis (30).

Therefore, epidemiological information may be clinically significant in demonstrating the potential for S.
sanguinis to survive longer in blood (29). S. sanguinis is mainly made up of salivary glycoproteins and
microbiological components. It attaches to the film's pellicle molecules and becomes adsorbed on tooth surfaces.
The process of adhesion starts when S. sanguinis's surface clings to pellicle constituents through hydrophobic and
electrostatic interactions (31). Following this, receptors interact with pellicle ligands, including proline-rich
proteins and a-amylase/secretory IgA (SIgA) complexes (32).

Complement system with S. sanguinis:

Target bacteria use the three known pathways: lectin (LP), alternative (AP), and classical (CP) to activate the
complement system. These processes all result in the cleavage of C3-by-C3 convertases. This protein is widely
distributed in blood and host tissues, where it is converted into the effector parts C3b and C3a (anaphylatoxin),
despite differences in the early stages of microbial identification. Bacteria attaching to erythrocytes, platelets, and
other host cells expressing C3b receptors use the highly reactive molecule C3b as a ligand. It also forms covalent
bonds with surrounding target microorganisms. C3b is an important opsonin for phagocytes (33).

Functions that elude and undermine complement functions are commonly expressed by microbial pathogens
(34). Oral streptococci strains of S. sanguinis are less sensitive to C3b deposition than strains of other species (35).
While S. sanguinis strain differences in C3b binding significantly affect PMN sensitivity to opsonophagocytic in
human peripheral blood (36). The complement system is essential for preventing bacteria from entering the
bloodstream and internal tissues, and for maintaining the balance of the human microbiome, which comprises the
microbial populations in the mouth cavity. After entering the bloodstream through the mouth, S. sanguinis needs to
adjust to blood conditions and stay away from complement-mediated immunity, a sizable subset of innate
immunity linked to host tissue defense and blood clearance (34).

Autoimmune diseases and Streptococcal infection:

Autoimmune illnesses are a group of heterogeneous conditions characterized by autoreactive immune
responses that result in immune system-mediated organ damage (37). The clinical manifestations and progression
of autoimmune diseases vary greatly. The kidneys, skin, joints, heart, blood vessels, and central nervous system are
just a few of the bodily organs that can be impacted by autoimmune illnesses (38). Microbes and autoimmune
diseases have been linked in numerous reports (39).(Figure 3).
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Figure (3): infection with streptococcal bacteria and associated autoimmune disorders. Infections
with streptococci can cause autoimmune disorders in many body parts (40).

One of the key components of host defense is leukocytes' capacity to penetrate tissues in response to
immunological stimuli (40). On the other hand, inflammation is made worse by overactivating leukocytes, which
can result in several autoimmune disorders. In addition to causing a variety of symptoms related to the skin and
respiratory tract, Group A Streptococcus (GAS) can also occasionally result in autoimmune sequelae that last long
after the infection has cleared up because of particular characteristics like molecular mimicry, streptococcal antigens
(Sags), direct deposition of streptococcal antigens, xenobiotic-modified bacterial antigens, or organ tropism (Table
1).

Although thoroughly characterized, the precise mechanism by which streptococci cause chronic autoimmunity
remains unknown. It is still unclear which frequent streptococcal proteins trigger autoimmunity and how precisely
these antigens stimulate immune cell assault in particular organs. The persistent interplay between these two
elements and the dearth of appropriate animal models make establishing the cause-and-effect relationship between
germs and diseases incredibly challenging. Further study in human and animal models is needed to confirm the
importance of streptococci in autoimmune disorders and to identify novel therapeutic and preventive strategies (41).

Table (1): Summarized research on the relationship between autoimmune disorders and streptococcal infection.

Disease Antigens (Human/Streptococcus) ‘ Immune cells Mechanism

Acute theumatic fever cardiac myosin, tropomyosin, keratin, laminin, vimentin T cells, B cells molecular mimicry
IgA vasculitis NAPIr Neutrophils deposition of the bacterial antigen
ﬂl—glycaprolein 1 T cells, B cells molecular mimicry
Kawasaki disease SPE-A, SPE-G, SPE-] T cells superantigens
PANDAS dopamine D1 and D2 receptors T cells, B cells molecular mimicry
lysogangliosid, tubulin
Narcolepsy hypocretin-secreting neurons? T cells, B cells? molecular mimicry?
Primary biliary cirrhosis mitochondrial antigens, histone T cells, B cells molecular mimicry
xenobiotics
Behget's disease human heat-shock proteins T cells, B cells molecular mimicry

NAPIr, nephritis-associated plasmin receptor; PANDAS, Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections.
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CONCLUSION

Extending the duration of S. sanguinis's early enamel biofilm production appears to enhance demineralization
and alter the properties of S. sanguinis biofilms during the time frames investigated in this study, particularly when
sucrose is present. When repeatedly exposed to sucrose, S. sanguinis developing as monospecies biofilms exhibits a
cariogenic potential, albeit less so than S. mutans. This potential is mostly evident in accelerated demineralization.
In addition to preventing microorganisms from entering the bloodstream and internal tissues, the complement
system is essential for preserving the homoeostasis of the human microbiome, which includes the microbial
communities found in the oral cavity.

It has been observed that S. sanguinis isolated from individuals without caries produces more H202 than the
same species isolated from individuals with multiple carious lesions.
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