

Evaluation of Salivary Protein Carbonyl in Women with Polycystic Ovary Syndrome

Hadeer Mahmoud Hazem ^{(1)*}
Baydaa Hussein Abed Awn ^{(2)*}

^(1,2) Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad-Iraq.

Keywords:

Gingival index, Health risk, Plaque index, Salivary protein carbonyl Syndrome of polycystic ovary.

Article Info.:

Article History:

Received: 23/7/2024

Received in revised form:
13/8/2024.

Accepted: 20/8/2024

Final Proofreading: 20/8/2024

Available Online: 1/12/2025

© THIS IS AN OPEN ACCESS ARTICLE
UNDER THE CC BY LICENSE

<https://creativecommons.org/licenses/by/4.0/>

Citation: Hazem HM, Abed Awn BH. Evaluation of Salivary Protein Carbonyl in Women with Polycystic Ovary Syndrome. *Tikrit Journal for Dental Sciences* 2025; 13(2):445-451.

<https://doi.org/10.25130/tjds.13.2.16>

*Corresponding Author:

Email:

hadeerhassar@gmail.com

Master Student, Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad-Iraq.

Abstract

Background: Polycystic ovary syndrome (PCOS) is a common endocrine condition affecting fertile women. It is a complicated illness that affects both general and oral health. The current study was conducted in order to evaluate the state of gingival health in a group of women suffering from a condition called polycystic ovarian syndrome and to establish the correlation between gingival health and the levels of salivary protein carbonyl in unstimulated saliva. **Material and Method:** The cross--sectional comparison analysis was executed at Al-Zahraa specialty hospital/gynecological outpatient clinic in Al-Miqdadiyah city, Diyala ,Iraq. The sample consist of 80 women (40 with polycystic ovary syndrome as a study group and 40 women as a control group) was between ages of 25 and 30 with a BMI of 18.5-24.9 (normal weight). Under standard settings, the salivary protein carbonyl concentration was determined in unstimulated saliva.

Results: In the present study salivary protein carbonyl (PC) concentration and mean value of(PI,GI) were higher among study group than in control group ($P<0.05$). Likewise the association involving salivary protein carbonyl and plaque with gingival indies in the Polycystic ovarian syndrome group was a positive significant correlation ($P<0.05$.). **Conclusion:** The females with polycystic ovarian syndrome expressed higher gingival inflammation and oxidative stress than the females without the syndrome ,so it is important to concentrated effort toward preventive and educational oral health activities to improve the gingival health of the females with polycystic ovarian syndrome.

Introduction:

A complex hormonal disorder known as polycystic ovarian syndrome impacts between 6% and 22% of women globally (1,2). The chief signs of this difficult disorder are menstrual irregularities, hyperandrogenism, obesity, aberrant lipid profiles, and insulin resistance (IR) in certain women. Polycystic ovarian syndrome is the most widespread cause of female sterility and is linked to an increased risk of cancer of the endometrium, cardiovascular disease, type 2 diabetes, and psychological difficulties such as anxiety and depression, as well as eating disorders (3).

Dental plaque is an oral biofilm, or bacterial clump, that develops on the surface of teeth, often at or below the gingival line borders (4). It is composed of living, dead bacteria and their products together with organic and inorganic compounds derived from saliva (5).

Gingivitis is a condition in which the gingival tissue becomes inflamed and is restricted to the soft and connective tissue of the gingival. There is no loss of attachment, and thus the junction epithelium does not migrate. It is a reversible inflammatory condition (6). Periodontal disease may be exacerbated by PCOS-related hormonal and metabolic problems (7). PCOS patients had a higher PI and gingival index (GI) than healthy controls (8). The term "oxidative stress" refers to indicates to an imbalance between the oxidation and antioxidation processes that results in a change in the redox state of cells. Active oxidation chemicals are able to damage DNA, proteins, lipids, carbohydrates, and other substances (9-11). One of the most significant oxidative changes is protein carbonylation, which is recognized as a unique hallmark of oxidative stress-related illnesses. It is an irreversible oxidative alteration caused by reactive oxygen species (ROS.) that inserts a carbonyl group into the polypeptide chain, creating structural changes with a major impact on protein function. (12).

Despite the remarkable complexity of PCOS pathophysiology, there is mounting evidence that oxidative stress (OS) plays a

causal role in the disease's development (13). Numerous investigations have revealed that female PCOS patients have OS marker levels that are higher than normal (14, 15). Chronic low-grade inflammation describes polycystic ovarian syndrome (16). Chronic infections, such as gingivitis, which is a prevalent disease in PCOS patients, might create a prolonged undesirable inflammatory state (17).

Interactions between the host and the oral microbiome influence the onset and progression of periodontal diseases. Local microbial metabolism and systemic stress-induced dysbiosis, including hormone, toxin, and inflammatory cytokine imbalances, may result in a tenfold increase in immune cell migration from the gingival sulcus within the oral environment (18). According to the researchers, there has been no prior Iraqi investigation into the measurement of salivary levels of protein carbonyl and their relationship with gingival condition in women with PCOS; hence, this study was designed and carried out.

Materials and Methods

Study design and sampling

The existing cross-sectional comparative study was carried out at Al-Zahraa specialist hospital /gynecological outpatient clinic in Al-Miqdadiyah city /Diyala /Iraq. The sample consist of (40 PCOS female as a study group and 40 healthy female as control group) and their companions without PCOS. Their age was between 25 and 30 years old, with a body mass index (BMI) of 18.5- 24.9 (normal weight,).

Inclusion and exclusion criteria

The following were the inclusion criteria for the current study: - a finding of PCOS patients done by a gynecologist according to the Rotterdam classification (19).

Exclusion criteria : pregnancy, Smoking , hormonal disturbances, any systemic disease , medication affecting the periodontium (antiepileptic drugs, antihypertensives, corticosteroids, NSAIDs, immunosuppressant drug hormones), Recent use of antibiotics and/or anti-inflammatory treatments,

Confounding pharmaceuticals (contraceptive agents, steroid hormones), Use of nutritional supplements (vitamins, folic acid), and the existence of fewer than 20 natural teeth are done by self-report.

Diagnostic and measurement criteria:

The salivary samples were collected by drooling passively for five minutes into the graduated sterilized jar following the advice given by Navazesh and Kumer (20), and then centrifuged for approximately 20 min, The supernatant saliva was then separated and stored in the refrigerator at -20°C until analysis of the samples. Saliva samples were biochemically analyzed in line with the kit's guidance using a Human PC ELISA Package (Bio search Laboratory/China) for the protein carbonyl. Dental plaque was scored by the Silness and Löe plaque index(21), while gingival inflammation was scored by Löe gingival index (22).

Statistical methods

The data set was analyzed by way of (Statistical Package for Social Science (SPSS) version -22,, Chicago, Illinois, USA). The following data analysis methods were used: Mean, Standard deviation((SD), Paired t-test, and Pearson Correlation (r). G Power version 3.1.9.7 A P,<0.05 probability value would be considered statistically significant.

Results

Table 1 shows the mean plaque index and gingival index values for study group and control group.

The mean value of the plaque index was found to be greater in the study group than in the control group, with a significant difference (P,<0.05). Furthermore, the mean gingival index value was greater in the female with PCOS group than in the control group (P,,<0.05).

Table 2 displays the mean and standard deviation of salivary protein carbonyl for the study and control groups. Salivary protein carbonyl (PC) concentrations were found to be higher in the study group as compared to the control group, with a

significant difference (P ,<0.05) between the two groups.

The relationship between salivary protein carbonyl and oral factors (PII and GI) is shown in Table 3. The correlations between salivary (PC) and (GI with PII) were shown to be positive (P<0.05) in the female with PCOS group.

Table 4 shows correlation between gingival index with plaque index among the study and control groups . A positive weak not significant correlation was detected between GI and PII in the study and control groups (P>.0.05).

Table 5 showed sample distribution according to severity of gingival inflammation. Compared to the control group's 50%, the study group had a higher percentage of mild gingival inflammation (80%). Conversely, the study group observed a higher incidence of the moderate level of gingival inflammation (20%) in contrast to the control group's (2.50%).

Discussion

Several pathophysiological linkages have been proposed between PCOS and periodontal disease, including oxidative damage, insulin resistance (IR), low-grade systemic inflammation, and systemic hormonal substance levels (23).

In the current research, females in the study group had a statistically significant greater mean value of salivary protein carbonyl than the healthy control group. This finding was also confirmed by previous studies (24-27), However, the above mentioned studies were conducted in serum.

This result could be attributed to the fact that females with PCOS, there is an oxidant-antioxidant imbalance, which is caused by metabolic abnormalities that include hyperinsulinemia and dyslipidemia (28,29). Hyperglycemia causes an increase the reactive oxygen species ROS produced by mononuclear cells. Oxygen-free radicals, or ROS,, are produced aas waste products of metabolism and aerobic respiration. Consequently, the ovarian epithelium develops a vicious cycle, resulting in cyst development, low-quality ovarian

follicles, and sterility (30). However, this expression needs to be expanded in future studies.

The current investigation demonstrated that the study group had a higher mean value of the dental plaque index than the control group ($P < 0.05$). This might be explained by the fact that women with PCOS had worse oral habits compared to the control group; therefore, stressful PCOS is linked to a number of physiological and psychological symptoms, all of which progressively worsen self-neglect (31). The results appear to support the findings of other researchers (17, 32, 33), who found that PCOS increases periodontal bacteria counts in salivary secretions and their serum antibody response. This suggests that PCOS may affect oral microbiota by interacting with gingival and periodontal health in a way that is inconsistent with other conditions (34, 35). Therefore, the most important factor influencing the state of the gingiva was oral hygiene. It's common knowledge that periodontal disorders evolve in part due to tooth plaque (36).

Concerning gingival status, the findings of this research demonstrated a significant difference between the females in the PCOS group and the healthy female control group in the mean value of gingival inflammation. This result was also reported in previous studies (17, 34, 37, 38).

This may be explained by the fact that persistent inflammation in periodontal tissues is caused by systemic inflammation in metabolic disorders (39). One prevalent endocrine disorder is polycystic ovary syndrome, which impacts women's oral and systemic health and is marked by an imbalance in hormone levels (40) and that. Particularly when linked to gingival inflammation, the hormonal alterations in PCOS are probably going to affect the salivary levels of potential periodontal pathogens or their systemic antibody responses. (33).

As stated by Laven et al (41), women with PCOS have higher levels of the estrogen hormone. The gingival tissue reacts to these higher levels of the hormone estrogen through enhanced capillary

permeability and vasodilatation. White blood cells and fluid migration out of blood vessels are also increased. Periodic elevation of sexual steroid hormone synthesis often modifies the biology of the vascular and tissue of the gingiva, as well as detection by local immune system effector cells. (42, 43).

Sculley & Langley-Evans (44) found that the saliva of people with periodontitis had much greater PC levels and significantly lower total antioxidant capacity than the controls, and that there was a positive correlation between poor periodontal health and higher salivary protein carbonyl concentrations. The presence of protein carbonyls in the entire saliva was the study's primary finding, which showed that participants with the worst periodontal health condition were likely to have more oxidative damage.

The higher mean value in the gingival index among women with PCOS could also be attributed to the increased amount of salivary protein carbonyl (PC), an oxidative stress biomarker that can influence the beginning and progression of several inflammatory and infectious disorders, as measured by the greater level of ROS in this research as compared to the healthy without PCOS control group (45). Therefore, polymorphonuclear leukocytes produce massive amounts of reactive oxygen species ((ROS) in reaction to local inflammation and bacterial microflora. These ROS oxidize lipids, proteins, and nucleic acids, damaging periodontal connective tissue. (46).

Conclusion

Based on the study's findings, women with PCOS were shown to have higher gingival conditions. As a result, in addition to excessive oral hygiene regimens, comprehensive preventive and educational programs are crucial for improving the gingival health status of PCOS women. This study's interesting conclusion is that women with polycystic ovarian syndrome may be diagnosed using elevated salivary protein as a marker.

Ethical Clearance: The ministries of the environment, health, higher education, and scientific research have ethically approved the research conducted there.

Conflict of interest: There is no conflict of interest declared by the authors.

Funding: Self- funding.

Acknowledgment: The study's participants and Dr. M. Galib are both acknowledged by the authors for their assistance in data analysis and statistical work.

.

Table 1: Dental plaque with Gingival indices between study and control group.

Variables	Study group		Control group		Statistical differences		
	Mean	± SD	Mean	± SD	t-test	Df	P- value
Plaque index	0.917	0.303	0.383	0.373	7.024	78	0.000*
Gingival index	0.680	0.407	0.195	0.272	6.275	78	0.000*

* = highly significant P < 0.001 df = 78

Table 2: Salivary protein carbonyl level (mean± SD) among study group and control group.

Variables					Statistical differences		
	Study group		Control group				
	Mean	± SD	Mean	± SD	t-test	df	p-value
Protein carbonyl ng/ml	54.664	19.109	29.506	13.712	6.765	78	0.000*

* = highly significant P < 0.001 df = 78

Table 3: shows coefficient correlation between salivary protein carbonyl and dental plaque and gingival indices within the study and control groups.

Variables	PII				GI			
	Study group		Control group		Study group		Control group	
	r	P	R	P	r	P	r	P
PC ng/ml	0.377	0.017*	-0.038	0.817	0.457	0.003*	0.280	0.080

* = significant P < 0.05 Not significant* P > 0.05

Table 4: Plaque and gingival index correlation between the study and control groups.

Variables	Study group			Control group		
	PII		PII		GI	
	r	p	R	p	r	P
GI	0.172		0.289		0.254	0.114

Not significant P > 0.05

Table 5: showed sample distribution according to severity of gingival inflammation.

Gingival severity	Groups				Total	
	Study group		Control group			
	N	%	N	%	N	%
Healthy	0	.00	19	47.50	19	23.75
0.1-1 "Mild"	32	80.00	20	50.00	52	65.00
1.1-2 "Moderate"	8	20.00	1	2.50	9	11.25

References

[1] Kadhim MS. Serum ghrelin, LH and FSH concentrations during menstrual cycle in non-obese PCOS women compared to healthy women. *Biomedical & Pharmacology Journal*. 2017;10(4):2045.

[2] Guo F, Gong Z, Fernando T, Zhang L, Zhu X, Shi Y. The lipid profiles in different characteristics of women with PCOS and the interaction between dyslipidemia and metabolic disorder states: a retrospective study in Chinese population. *Frontiers in Endocrinology*. 2022 Jul 4;13:892125.

[3] Mizgier M, Jarząbek-Bielecka G, Opydo-Szymaczek J, Wendland N, Więckowska B, Kędzia W. Risk factors of overweight and obesity related to diet and disordered eating attitudes in adolescent girls with clinical features of polycystic ovary syndrome. *Journal of Clinical medicine*. 2020 Sep 21;9(9):3041.

[4] Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. *Journal of clinical periodontology*. 2018 Jun;45:S44-67.

[5] Chetruş V, Ion IR. Dental plaque-classification, formation, and identification. *International journal of medical dentistry*. 2013 Apr 1;17(2).

[6] Marchesan JT, Girnary MS, Moss K, Monaghan ET, Egnatz GJ, Jiao Y, Zhang S, Beck J, Swanson KV. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. *Periodontology 2000*. 2020 Feb;82(1):93-114. DOI: <https://doi.org/10.1111/1600-0559.12320>.

[7] Machado V, Escalda C, Proença L, Mendes JJ, Botelho J. Is there a bidirectional association between polycystic ovarian syndrome and periodontitis? A systematic review and meta-analysis. *Journal of clinical medicine*. 2020 Jun 23;9(6):1961.

[8] Zia A, Hakim S, Khan AU, Bey A, Ateeq H, Parveen S, Khalid S, Yusufi FN. Bone markers and bone mineral density associates with periodontitis in females with polycystic ovarian syndrome. *Journal of Bone and Mineral Metabolism*. 2022 May;40(3):487-97.

[9] Sarhat ER, Sarhat AR, Mustafa ZN, Wadi SA. Evaluation of the Salivary Oxidative Stress, and Non-Enzymatic Antioxidants Marker in Patients with Rheumatoid Arthritis. *Tikrit Journal for Dental Sciences*. 2019 Jul(1),27-30.

[10] Obaid SF, Munther, S, Abbas MH. Relationship between Salivary Levels of Protein Carbonyl and Total Antioxidant Capacity and Prevalence of Dental Caries among Type 1 Diabetic Children: An Analytical Cross-Sectional Study. *Dental Hypotheses*. 2023 Apr-Jun 14(2):p 59-61.

[11] Li W, Liu C, Yang Q, Zhou Y, Liu M, Shan H. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. *Frontiers in Nutrition*. 2022 Oct 28;9:1018674.

[12] Contreras-Puentes N, Alvíz-Amador A. Virtual screening of natural metabolites and antiviral drugs with potential inhibitory activity against 3CL-PRO and PL-PRO. *Biomedical and Pharmacology Journal*. 2020 Jun 25;13(2):933-41.

[13] Mancini A, Bruno C, Vergani E, d'Abate C, Giacchi E, Silvestrini A. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: controversies and new insights. *International Journal of Molecular Sciences*. 2021 Feb 7;22(4):1667.

[14] Özer A, Bakacak M, Kiran H, Ercan Ö, Köstü B, Kanat-Pektaş M, Kılıç M, Aslan F. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. *Ginekologia Polska*. 2016;87(11):733-8. DOI: 10.5603/GP.2016.0079

[15] Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. *Archives of physiology and biochemistry*. 2020 Mar 14;126(2):183-6.

[16] Ebejer K, Calleja-Agius J. The role of cytokines in polycystic ovarian syndrome. *Gynecological endocrinology*. 2013 Jun 1;29(6):536-40.

[17] Dursun E, Akalın FA, Güncü GN, Çınar N, Aksoy DY, Tözüm TF, Kılınç K, Yıldız BO. Periodontal disease in polycystic ovary syndrome. *Fertility and sterility*. 2011 Jan 1;95(1):320-3.

[18] Freire M, Nelson KE, Edlund A. The oral host-microbial interactome: an ecological chronometer of health?. *Trends in Microbiology*. 2021 Jun 1;29(6):551-61.

[19] Rotterdam ES. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. *Fertil Steril*. 2004;81(1):19-25. DOI: 10.1093/humrep/deh098

[20] Navazesh M, Kumar SK. Measuring salivary flow: challenges and opportunities. *The Journal of the American Dental Association*. 2008 May 1;139:35S-40S.

[21] Silness J, Löe H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. *Acta odontologica Scandinavica*. 1964 Jan 1;22(1):121-35.

[22] Löe H. The gingival index, the plaque index and the retention index systems. *The Journal of Periodontology*. 1967 Nov;38(6):610-6.

[23] Tanguturi SC, Nagarakanti S. Polycystic ovary syndrome and periodontal disease: underlying links-a review. *Indian journal of endocrinology and metabolism*. 2018 Mar;22(2):267.

[24] Fenkci V, Fenkci S, Yilmazer M, Serteser M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. *Fertility and sterility*. 2003 Jul 1;80(1):123-7.

[25] S. Kandasamy, R. Inmozhi Sivagamasundari, A. Bupathy, S. Sethubathy, V. Gobal. Evaluation of insulin resistance and oxidative stress in obese patients with polycystic ovary syndrome. *Int J Appl Biol Pharmacol Technol* 2010, 1: 391-8 .

[26] Kurdoglu Z, Ozkol H, Tuluce Y, Koyuncu I. Oxidative status and its relation with insulin resistance in young non-obese women with polycystic ovary syndrome. *Journal of Endocrinological Investigation*. 2012 Mar;35:317-21.

[27] Awn BH. Salivary protein carbonyl and selected antioxidants in relation to dental caries among pregnant women. *Journal of Baghdad College of Dentistry*. 2023 Mar 15;35(1):27-35.

[28] Macut D, Bjekić-Macut J, Savić-Radojević A. Dyslipidemia and oxidative stress in PCOS. *Polycystic Ovary Syndrome*. 2013;40:51-63.

[29] Ali OH, Raheem ZJ, Imran NK, Ahmed MA. Evaluation of serum levels Superoxide dismutase in women with polycystic ovarian syndrome and gingivitis. *Journal of baghdad college of dentistry*. 2018 Jun 15;30(2):29-33.

[30] Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. *Reproductive Biology and Endocrinology*. 2018 Dec;16:1-8.

[31] Takahashi N, Nyvad BJ. Caries ecology revisited: microbial dynamics and the caries process. *Caries research*. 2008 Oct 3;42(6):409-18.

[32] Rahiminejad ME, Moaddab A, Zaryoun H, Rabiee S, Moaddab A, Khodadoust A. Comparison of prevalence of periodontal disease in women with polycystic ovary syndrome and healthy controls. *Dental research journal*. 2015 Nov;12(6):507. DOI: 10.4103/1735-3327.170547

[33] Akçalı A, Bostancı N, Özçaka Ö, Öztürk-Ceyhan B, Gümüş P, Buduneli N, Belibasakis GN. Association between polycystic ovary syndrome, oral microbiota and systemic antibody responses. *PLoS one*. 2014 Sep 18;9(9):e108074.

[34] Tahir AA, Hussien B. Salivary Free Testosterone and Gingival Health Condition among a Group of Women with Polycystic Ovary Syndrome. *Journal of Baghdad college of dentistry*. 2017 Mar 13;29(1):165-9.

[35] Wendland N, Opydo-Szymaczek J, Mizgier M, Jarząbek-Bielecka G. Subgingival microflora in adolescent females with polycystic ovary syndrome and its association with oral hygiene, gingivitis, and selected metabolic and hormonal parameters. *Clinical Oral Investigations*. 2021 Mar;25:1485-96.

[36] Chapple IL, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, Geisinger ML, Genco RJ, Glogauer M, Goldstein M, Griffin TJ. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. *Journal of periodontology*. 2018 Jun;89:S74-84.

[37] Hameed, DJ,Ahmend M A A. Evaluation of serum homocysteine and nitric oxide levels in women with polycystic ovarian syndrome and periodontal diseases. *Tikrit J. Dent. Sci.* 2017, May: 57-65.

[38] Munther S. The effects of cigarette smoking and exercise on total salivary antioxidant activity. *Saudi Dent J*. 2019 Jan;31(1):31-38. doi: 10.1016/j.sdentj.2018.09.002. Epub 2018 Sep 20. PMID: 30705566; PMCID: PMC6349960.

[39] Minty M, Canciel T, Serino M, Burcelin R, Tercé F, Blasco-Baque V. Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. *Reviews in Endocrine and Metabolic Disorders*. 2019 Dec;20:449-59.

[40] Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, Lizneva D, Natterson-Horowitz B, Teede HJ, Yildiz BO. Polycystic ovary syndrome. *Nature reviews Disease primers*. 2016 Aug 11;2(1):1-8.

[41] Laven JS, Imani B, Eijkemans MJ, Fauser BC. New approach to polycystic ovary syndrome and other forms of anovulatory infertility. *Obstetrical & gynecological survey*. 2002 Nov 1;57(11):755-67.

[42] Panagakos F, Scannapieco F. Periodontal inflammation: from gingivitis to systemic disease. *Gingival diseases: Their aetiology, prevention and treatment*. 2011 Sep 22:155-68.

[43] Marcuschamer E, Hawley CE, Speckman I, Romero RM, Molina JN. A lifetime of normal hormonal events and their impact on periodontal health. *Perinatología Reproducción Humana*. 2009; 23(2):53-64.

[44] Sculley DV, Langley-Evans SC. Periodontal disease is associated with lower antioxidant capacity in whole saliva and evidence of increased protein oxidation. *Clinical science*. 2003 Aug 1;105(2):167-72.

[45] Ahmadi-Motamayel F, Goodarzi MT, Hendi SS, Kasraei S, Moghimbeigi A. Total antioxidant capacity of saliva and dental caries. *Medicina oral, patología oral y cirugía bucal*. 2013 Jul;18(4):e553. DOI: 10.4317/medoral.18762

[46] Boia S, Stratul řI, Boariu M, Ursoniu S, Gořa SL, Boia ER, Borza C. Evaluation of antioxidant capacity and clinical assessment of patients with chronic periodontitis treated with non-surgical periodontal therapy and adjunctive systemic antibiotic therapy. *Romanian J Morphol Embryol*. 2018 Jan 1;59(4):1107-13.