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Article Information  Abstract 

Article history:  Background: The exponential rise of Diabetes Mellitus (DM) presents significant health 

challenges.  Leptin is an adipokine mostly produced by white adipose tissue and is involved 

in regulating appetite and energy balance. Leptin modulates blood glucose levels by either 

central effects or peripheral effects. Objective: This review explores the biological functions 

and role of leptin in the pathophysiology of T2DM.Also, it aims to improve disease prediction 

accuracy, offer new insights into the pathophysiology, and contribute to future prevention 

efforts. The primary objective is to highlight leptin's biological role in T2DM. Method: The 

authors collected data from PubMed, Google Scholar, Research Gate, Science Direct, 

Elsevier, and others. The objective was to collect as much information as possible from 

articles using the keywords leptin and T2DM.  Conclusion: This review explores the role of 

leptin in T2DM, highlighting the need for multifaceted management due to its increasing 

prevalence and public health implications. Leptin is a potentially viable therapeutic target for 

T2DM 
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1. Introduction 

 
 1 DM is a chronic, multifactorial disorder characterized by 

high blood glucose levels resulting from the deficiency in 

insulin production, insulin action, or both (1). The common 

symptoms of DM are polyuria, polydipsia, and polyphagia. 

Other symptoms are tiredness, weight loss, blurred vision, 

impaired wound healing, and recurrent infection (2). It is a 

major risk factor for developing macrovascular and 

microvascular complications (3). Moreover, DM is classified 

according to etiology and pathophysiology into four groups. 

These are T1DM, T2DM, Gestational DM (GDM), and other 

specific types and causes of chronic hyperglycemia (4). 

 

2. Type 2 diabetes mellitus   

T2DM is one of the most common metabolic disorders, 

caused by a reduction in insulin secretion from the 
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pancreatic β-cells, resistance to the actions of insulin in 

the tissues, and an insufficient compensatory response in 

insulin secretion. The progression of the condition impairs 

insulin secretion, resulting in an inability to maintain 

glucose homeostasis and elevated blood glucose levels (5). 

T2DM accounts for more than 90% of all diabetic patients 

(6). It is also known as non-insulin-dependent DM or adult-

onset DM (7). Patients with T2DM are mainly identified by 

obesity or an elevated body fat percentage, usually 

distributed in the abdominal area.  

The incidence of metabolic disorders, including obesity and 

T2DM, has increased as a result of  sedentary lifestyle and 

high caloric intake characteristic of modern living (6). 

Obesity and T2DM are critical global health problems 

owing to their association with life-threatening disorders, 

including cardiovascular disorders and cancers (8,9). 

Obesity, considered an environmental factor, is 

characterized by abnormal or excess accumulation of 

adipose tissue (AT), which is associated with an elevated 

risk of development of T2DM.  In this state, AT promotes IR 

via many mechanisms, which include elevated release of 

free fatty acids (FFAs) and adipokine dysregulation. The 

gradual impairment of serum glucose regulation leads to 

micro- and macrovascular disorders (10). 
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3. Pathogenesis of type 2 diabetes mellitus  

The pathogenesis of T2DM often follows a certain sequence 

of events. In the beginning, IR causes impairment of 

glucose tolerance. The human body initiates reactive 

hyperplasia of the beta cells of the pancreas as 

compensation. Ultimately, there will be a gradual 

deterioration of the pancreatic cells and the onset of overt 

increased serum glucose levels (11). Obesity is tightly 

associated with IR and modifications in glucose metabolism 

via a process known as lipotoxicity (12). The progression of 

obesity correlates with elevated levels of FFAs. FFAs 

contribute to IR and lipotoxicity via two primary 

mechanisms. Randle et al. revealed that elevated levels of 

FFAs result in the accumulation of acetyl-CoA and citrate 

in muscle tissue, subsequently inhibiting two critical 

glycolytic enzymes, phosphofructokinase and pyruvate 

dehydrogenase, which further causes the accumulation of 

the glucose and glucose-6-phosphate. The accumulation of 

glucose and the glucose-6-phosphate diminishes insulin-

mediated glucose uptake contributing to IR (13). Free fatty 

acids also induce stimulation of insulin receptors and 

subsequent downstream impacts (14). Two primary 

processes explain this: the dysfunction of insulin receptor-

mediated downstream actions and the dysfunction of the 

glucose transporters. Dresner et al. 1999 showed that FFAs 

inhibit the downstream insulin receptor signaling by 

exerting a blocking influence on phosphoinositol-3-kinase, 

a crucial downstream enzyme via which insulin receptor 

mediates its actions (15). Karnieli and Armoni 1990 

suggested that in diabetic patients, there is a decreased 

expression of glucose transporters due to the exhaustion of 

the intracellular receptor pool. Furthermore, the 

suppression of the whole activity of the receptors in these 

individuals has been shown (16).Due to such processes, 

there is a reduction in the metabolism of glucose and in the 

synthesis of glycogen by the liver, resulting in elevated 

serum glucose levels or hyperglycemia. Initially, the 

elevation in serum glucose is mitigated by a compensatory 

elevation in insulin production due to beta cell hyperplasia. 

IR at the tissue level initiates a detrimental loop of 

hyperglycemia mediated by IR, resulting in an increased 

demand on pancreatic beta cells, eventually failing beta 

cells (17,18). 

4. Leptin  

   Leptin is the classical proinflammatory adipokine, 

primarily synthesized by adipocytes and, to a lesser extent, 

by the gastric fundic epithelium, placenta, intestine, 

skeletal muscle, mammary epithelium, and brain  (19). It 

has been shown to have several biological functions, such 

as reproduction and immunological and inflammatory 

response, hematopoiesis, angiogenesis, bone formation, 

and wound healing. It is also known as a satiety hormone 

that regulates food consumption and energy expenditure; 

hence, it plays an essential role in metabolic and 

neuroendocrine functions in both animals and humans 

(20). Also, it is secreted in a pulsating pattern. However, 

the amplitude of release is greater in obese people (21). 

Leptin is significant in the pathogenesis and consequences 

of T2DM. In healthy people, it inhibits appetite and 

controls body weight. Its levels are abnormally elevated in 

obese persons, indicating resistance to its actions at 

elevated concentrations, resulting in elevated leptin (22). 

Additionally, research indicates that leptin induces IR, 

thereby contributing to obesity by modifying the 

metabolism of glucose (23). This establishes a feedback 

loop whereby leptin induces IR, resulting in obesity, which 

in turn stimulates leptin synthesis, resulting in beta-cell 

failure (24).Leptin concentration is proportional to the 

mass of AT, and excessive leptin, known as leptin 

resistance, indicates obesity (6). Studies show that blood 

leptin levels may serve as a marker for obesity. Recent 

research has shown leptin inhibits the release of insulin 

and has actions that are contrary to those of insulin in the 

liver and adipose tissue. It significantly contributes to IR in 

T2DM and obesity (25). 

4.1. Chemistry of leptin  

The leptin molecule is a 167-amino-acid structure with a 

three-dimensional arrangement. It consists of four 

antiparallel α-helices that are joined by two long crossover 

links and one short loop, as shown in Figure 1. The 

protein becomes biologically inactive if any of the cysteine 

residues undergo mutation (26). The structure of leptin, 

which impacts both its biological activities in living 

organisms and its receptor-binding activities in laboratory 

settings, may be classified into three types (27) : 

 The N-terminal amino acid sequence (22–115) is 

important for biology binding activities. 

 The C-terminal amino acid sequence (116–166) has a 

loop structure that plays a crucial role in increasing the 

functions of the N-terminal portion. 

 The C-terminal disulfide bond is not necessary for the 

activity of leptin. 

 

Figure 1. Structure of leptin (28) 



Sura khalid Mohammed et al.            Iraqi Journal of Pharmacy 22(4) (2025), 215-233 

 

217 

4.2. Glucoregulatory actions of leptin 

Adipocytes release adipocytokines, like leptin and 

adiponectin, that have an important effect on the body's 

energy, lipid, and glucose metabolism. An imbalance in 

adipocytokine levels has been associated with obesity, IR, 

and T2DM (29). Adiponectin is an anti-inflammatory 

adipokine that is produced by adipocytes and has shown a 

beneficial effect on lipid and glucose metabolism by 

increasing the sensitivity to insulin and has an essential 

role in maintaining the homeostasis of glucose and the 

metabolism of lipids (30).  

On the other hand, Leptin modulates blood glucose levels 

by either central effects (indirectly influencing the CNS) or 

peripheral effects (directly affecting peripheral tissues) (31). 

Central impacts are mediated by the interaction with leptin 

receptors present on neurons in the CNS (32,33).  However, 

the roles of leptin on regulating glucose levels in 

individuals with obesity and IR are controlled via pro-

opiomelanocortin (POMC)-expressing neurons found in the 

hypothalamic (34). Regarding the peripheral effects, leptin 

controls blood glucose levels by directly interacting with its 

receptors, known as the leptin receptors, which are found 

in many peripheral organs (35) as shown in Figure 2. 

Leptin directly regulates the release of hormones from the 

endocrine pancreas. It reduces the secretion of glucagon 

and insulin. The basic mechanisms involve the activation 

and movement of the ATP-sensitive K+ (KATP) channels 

across the membrane, which results in hyperpolarization of 

the pancreatic beta-cell membrane leading to decreased 

production of insulin (36). The liver immediately receives 

instructions from leptin in the circulation to control 

glucose and fat metabolism. Furthermore, leptin inhibits 

the process of gluconeogenesis by acting on insulin 

receptor substrate-2 and depleting the amount of TG in the 

liver (37, 38). 

 

Figure 2. Metabolic actions of leptin 

 4.3. Role of leptin in energy balance  

The majority of individuals maintain body weight in a 

stable state. To achieve a consistent weight, it is necessary 

to maintain an energy equilibrium; the total amount of 

energy received must be equal to the total amount of 

energy expended. However, when an equilibrium of energy 

intake and expenditure is disrupted, it may ultimately 

result in persistent weight issues, such as in those who are 

obese. Body weight regulation is controlled by a complex 

mechanism that includes both peripheral and central 

elements. Leptin and ghrelin are two hormones that appear 

to have a major effect on the control of food consumption 

and body weight. Both begin in the periphery and transmit 

signals via distinct routes to the brain, specifically to the 

hypothalamus. Activation of the leptin or ghrelin receptor 

in the brain triggers distinct signaling cascades that result 

in alterations in food consumption. Ghrelin (also known as 

hunger hormone) has an essential role in activating the 

neuropeptide Y (NPY) neurons (appetite-stimulating 

neuropeptides). In contrast, leptin has the opposite effect of 

suppressing NPY neurons in the arcuate nucleus of the 

hypothalamus. (39,40). Once released by the adipose tissue 

into the circulation, leptin passes the blood-brain barrier 

(BBB) and attaches to the leptin receptors in the 

hypothalamus. This interaction provides information about 

the body's energy stores. Leptin affects the function of 

different hypothalamus neurons as well as the production 

of Orexigenic (appetite-stimulating) and anorexigenic 

(appetite-suppressing) neuropeptides by binding to its 

receptors (41,42). 

Leptin is activated when it binds to its receptor and 

initiates the Janus kinase II (JAK2) route, which promotes 

the phosphorylation of two tyrosine residues on functional 

LEP-R’s intracellular region, promoting the binding of STAT 

proteins. Subsequently, leptin is transported to the 

nucleus, where it functions as a transcription factor to 

control the synthesis of orexigenic NPY and anorexigenic 

POMC, as seen in Figure 3 (43). 

 

Figure 3. Mechanism of action of leptin (44) 
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Neuropeptide Y (NPY) is most abundantly present in the 

hypothalamus, brain stem, and anterior pituitary. NPY is 

also present in the hypothalamus's arcuate nucleus 

(ARC). ARC projects to the paraventricular nuclei (PVN) and 

the dorsomedial nuclei (45). ARC has a specific anatomical 

structure, it does not have the BBB. Therefore, the NPY in 

the ARC acts as the center for sensing and integrating 

peripheral energy signals including serum glucose levels, 

leptin, insulin, and ghrelin (46). 

NPY produces its actions via NPY receptors which are G-

protein-coupled receptors. Arcuate nucleus NPY neurons 

are stimulated when there is lack of energy and higher 

metabolic demands, such as during intensive physical 

activity, exposure to cold temperatures, and pregnancy. 

Energy deficits and decreased glucose levels stimulate forty 

percent of the NPY neurons (47). 

Ghrelin has an essential role in activating NPY neurons in 

the arcuate nucleus. While insulin and leptin have the 

opposite effect of suppressing the NPY neuron. Many of the 

ARC neurons possess leptin and insulin receptors (48). 

Also, leptin and insulin reduce the activation of NPY 

neurons triggered by ghrelin by 30-40% (46). 

Regarding POMC, leptin stimulates the production of 

POMC by interacting with LEP-R via the JAK2 signaling 

route, as seen in Figure 4 (49). After being activated, 

POMC undergoes post-translational cleavage, leading to the 

production of an alpha-melanocyte-stimulating hormone 

(α-MSH). Likewise,α-MSH subsequently stimulates 

melanocortin receptors 3 (MC3R) and 4 (MC4R) located in 

the hypothalamus, resulting in a reduction in food 

consumption and an elevation in energy expenditure (50). 

 

Figure 4. Leptin action via the POMC pathway (51) 

4.4. Anti-obesity action of leptin  

The anti-obesity action of leptin mainly acts on ObR-

expressing neurons in the hypothalamus. Leptin inhibits 

hunger by binding to receptors in the lateral hypothalamus 

(52) and counteracting the effects of neuropeptide Y and 

anandamide, which are powerful hunger stimulants 

(53). While the medial hypothalamus leptin promotes 

satiety by improving the production of α-MSH, which 

suppresses appetite (54). Studies have shown that when 

mice have a genetic lack of leptin or a malfunctioning leptin 

receptor, it leads to changes in brain proteins and neuronal 

activities. This ultimately results in serious weight gain and 

T2DM. However, these effects may be repaired by leptin 

replacment therapy (55, 56). On the other hand, elevated 

leptin levels are associated with atherosclerosis, increasing 

your risk of cardiovascular disorders (57). However, in 

several instances, obese subjects have abnormally elevated 

levels of circulating leptin compared to those of normal 

weight. This is attributed to the development of leptin 

resistance, which refers to the decreased ability of leptin to 

suppress appetite and prevent weight gain. Several 

mechanisms have been suggested to explain leptin 

resistance; however, the most common cause is the 

reduced transportation of leptin across the BBB, which 

hinders its anti-obesity effects (58, 59). 

4.5. Regulation of energy consumption by 5-

hydroxytryptamine  

Leptin in the circulation interacts with peripheral serotonin 

(5HT) and reduces the appetite (60). Serotonin, also known 

as 5-hydroxytryptamine, or 5HT is linked to various 

psychological and behavioral aspects and serves as a 

biochemical mood indicator (61). 5HT has a role in 

regulating energy consumption in the hypothalamus, and 

the levels of 5HT in the CNS are affected by the energy 

conditions (62). 5HT has a hypophagic effect by inhibiting 

the orexigenic system via interactions with hypocretins and 

NPY in the CNS. Additionally, 5HT probably has a 

stimulating impact on the anorexigenic POMC system (63). 

Regarding the interactions between leptin and 5HT, prior 

research using a mouse model found that 5HT decreased 

peripheral leptin levels. Additionally, 5HT directly affects 

adipocytes and controls the release of leptin from 

adipocytes (64). 

4.6. Other biological functions of leptin 

In addition to regulation of appetite and energy intake, 

leptin also has been shown to exert effects on several 

biological functions, such as reproduction, the 

immunological and inflammatory response, hematopoiesis, 

angiogenesis, bone formation, and wound healing. 

It plays a key role in reproductive health. It sends signals 

to the brain about the body's nutritional status and fat 

reserves, which is crucial for the onset of puberty and 

maintenance of reproductive function. Adequate leptin 

levels are required for the release of the gonadotropin-

releasing hormone (GnRH), which is critical for regulating 

reproductive hormones. Furthermore, leptin affects bone 

metabolism. It has been shown to control the activity of 

osteoblasts, which are cells that produce bones, and to 

alter the balance between bone formation and resorption. 

Additionally, leptin has an essential role in immunological 
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function by acting as a cytokine. By affecting the activity of 

different immune cells, such as T-cells and macrophages, it 

aids in regulating immunological responses (65-67). 

4.7. Leptin and insulin resistance 

The relationship between leptin and insulin is very intricate 

(68). Exposure of adipocytes to insulin and glucose leads to 

an apparent increase in leptin production (69). Conversely, 

elevated levels of leptin in the bloodstream enhance the 

sensitivity of peripheral tissues to insulin while 

simultaneously decreasing the release of insulin from 

pancreatic beta cells (70). 

In individuals with normal health, leptin inhibits appetite 

and controls body weight. Obese individuals have 

abnormally elevated levels of leptin, indicating a resistance 

to its effects at greater concentrations. This leads to a 

condition of elevated leptin (71, 72). In addition, studies 

indicate that leptin induces IR, hence contributing to 

obesity via altering glucose metabolism (71-74). Thus, a 

feedback loop is created in which the hormone leptin 

induces IR, which leads to obesity. In turn, obesity triggers 

the production of leptin, which ultimately leads to the 

failure of beta cells (72, 75). 

4.8. Leptin as the potential target for several 

therapeutic approaches 

Food and Drug Administration approved leptin replacement 

therapy for generalized lipodystrophy syndromes 

and congenital leptin deficiency. The approved 

pharmaceutical formulation, metreleptin, is given 

subcutaneously and is recognized for its ability to correct 

the metabolic abnormalities associated with these 

disorders (76). It results in considerable reductions in body 

weight, serum insulin, and glucose concentrations, 

markedly enhancing insulin sensitivity (77). A research 

study including 9 individuals with leptin deficiency and 

lipodystrophy demonstrated a 1.9% absolute reduction in 

HbA1c, a 60% decrease in triglyceride levels, and a 30% 

rise in high-density lipoprotein cholesterol (78). 

In animals, leptin therapy has shown efficacy in improving 

serum glucose concentration by reducing glucose synthesis 

in the liver, suppressing glucagon release, and enhancing 

the uptake of glucose (79). Clinical studies in patients with 

T1DM indicate that administering of leptin as an adjunct to 

insulin treatment results in weight reductions of 3.7%  at 

week 12 and 6.6% at week 20 (p-value of 0.003) (80). 

Furthermore, insulin needs in these individuals were 

markedly decreased by 12.6% at week 12 and 15.0% at 

week 20 (p-value = 0.006), attributable to enhanced insulin 

sensitivity. A further positive result of the study was the 

lack of any serious adverse responses associated with the 

subcutaneous leptin administration. Nonetheless, the 

medication failed to demonstrate efficacy in improving 

glycemic status, as there was no significant alteration in 

HbA1c levels after twenty weeks relative to the baseline 

level (p-value was 0.75) (80). 

Non-obese people with T2DM exhibiting either normal or 

low leptin levels may potentially get advantages from leptin 

subcutaneous administration since they have greater leptin 

sensitivity compared to obese patients (81). Recent clinical 

studies involving obese individuals with T2DM have shown 

that leptin treatment is either unsuccessful or only slightly 

beneficial in improving metabolic disorders and IR. The 

research indicated that neither body weight nor 

inflammatory markers altered in hyperleptinemic obese 

and diabetic patients during metreleptin therapy (82). The 

findings were significant, showing no change in body mass 

index or fat mass after 2 weeks of therapy with a low 

dosage (30 mg/day) and a high dose (80 mg/day) of leptin. 

These findings demonstrate a strong correlation between 

obesity and resistance to the actions of leptin (83). 

The processes behind leptin resistance are challenging to 

delineate; however, many hypotheses have been proposed. 

Mutations in leptin receptors or BBB transport proteins 

may disrupt leptin signaling intracellularly (83). Strategies 

that enhance leptin kinetics and facilitate its transport 

across the BBB, irrespective of the leptin transporter, 

represent a possible therapeutic target (84). 

Numerous pharmaceutical interventions have been used to 

address leptin resistance historically, including the 

administration of leptin with glucagon-like peptide 1 (GLP-

1) agonist, amylin, and fibroblast growth factor 21 (FGF-

21). To get optimum leptin responsiveness, all interventions 

need substantial weight reduction via lifestyle adjustments 

(85). A viable strategy in such a situation is a combined 

treatment of GLP-1 agonists, FGF-21, or insulin with 

partial leptin reduction (e.g., monoclonal leptin-neutralizing 

antibodies). Given that substantial weight gain is a 

common side effect of insulin therapy, the addition of 

leptin-neutralizing antibodies might reestablish the 

sensitivity of leptin and be beneficial for obesity control in 

T2DM (86). 

 5. Conclusions 

The present study aimed to clarify the role of leptin in 

T2DM and to summarize the relevant information. Leptin is 

a potentially viable therapeutic option for T2DM. For a 

condition as extraordinary as T2DM, both in its prevalence 

and its effect on quality of life, it is essential to investigate 

all possible strategies to alleviate the burden of the disease. 
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 السكري من النوع الثاني داء اللبتين: الوظائف البيولوجية والتنظيم الأيضي في

 الملخص

التي ينتجها النسيج الدهني الأبيض في الغالب  ( تحديات صحية كبيرة. اللبتين هو أحد الأديبوكيناتDMيمثل الارتفاع الهائل في الإصابة بمرض السكري ) :قدمةمال

 البحثيقيم هذا الهدف: ية. ويشارك في تنظيم الشهية وتوازن الطاقة. ينظم اللبتين مستويات الجلوكوز في الدم إما من خلال التأثيرات المركزية أو التأثيرات الطرف

. كما يهدف إلى تحسين دقة التنبؤ بالمرض, وتقديم رؤى جديدة في 2السكري من النوع الوظائف البيولوجية ودور اللبتين في الفسيولوجيا المرضية لمرض 

لهدف الأساسي هو تسليط الضوء على الدور البيولوجي للببتين في مرض السكري من النوع االفسيولوجيا المرضية, والمساهمة في جهود الوقاية المستقبلية.

وغيرها. كان الهدف هو جمع أكبر  Elsevierو Science Directو Research Gateو Google Scholarو PubMedجمع المؤلفون البيانات من  الطريقة:.2

دور اللبتين في مرض  بحثيستكشف هذا ال الاستنتاج:. 2قدر ممكن من المعلومات من المقالات التي تستخدم الكلمات الرئيسية اللبتين ومرض السكري من النوع 

الضوء على الحاجة إلى إدارة متعددة الأوجه بسبب انتشاره المتزايد وتداعياته على الصحة العامة. اللبتين هو هدف علاجي قابل  , مسلطا2ًالسكري من النوع 

 .2للتطبيق لمرض السكري من النوع 

 .مقاومة الأنسولين , السمنة, اللبتين,الثاني السكري من النوع داء: الكلمات المفتاحية
 


