

Al-Qadisiyah Journal of Pure Science

ISSN(Printed): 1997-2490 ISSN(Online): 2411-35

Al-Qadisiyah Journal of Pure Science

Some properties of Pre-locally closed set and Pre D-set and relation between them

Hadeel Husham Kadhim

Department of Mathematics, The college of Education , University of Al-Qadisiyah IRAQ

. Email - hiadeel.husham@qu.edu.iq

ABSTRACT

The aim of this work presented locally closed set and D-set generated by pre-open set. Also we introduced basic properties of these sets and relations among them in this paper.

 $\label{lossed} \textbf{Key words}: pre-open \ set \ , \ pre*-continuous \ function \ , \ pre*-open \ function \ , \ locally \ closed \ , \ pre-locally \ closed \ , \ pre-D-set \ and \ pre-locally \ D-set \ .$

1 - INTRODUCTION

Bourbaki in 1966 [1] defined locally closed set . In 1981 [4] Mashhour presented the concepts of preopen set , pre-closure and pre-interior . Tong in 1982[6] studied D-set . Popa introduced pre-separated sets in 1987 [5] . In 2001[3] Jafari investigated definition of pre-D-set . In this paper we introduced pre-locally closed , locally pre-closed set , pre-D-set and pre-locally D-set . Properties of these new concepts are studied as well as the relationships among them .

2 - Pre-locally closed set

Definition(2.1)[4]

Let X be a space A subset G of X is said to be pre-open set in X if $G \subseteq \overline{G}$. The complement of *pre-open* set is said to be *pre-closed* that is if $\overline{G^{\circ}} \subseteq G$

Remark (2.1)[2]

Every open is pre-open . But the apposite is not true

Remark (2.2)

- 1- The union of two pre-open sets is pre-open . [6]
- 2- The intersection of two pre-closed sets is pre-closed

Definition(2.2)

i) The pre-closure of A denoted by p-CL(A) or $\overline{A}^p = \bigcap \{F: F \text{ pre-closed } ; A \subseteq F\} [3]$

- ii) The pre-interior of A denoted by p-int(A) or $A^{op} = U\{U: U \text{ pre-open }; U \subseteq A\}$. [4]
- iii)The pre-Exterior of A denoted by p-Ext(A) or $A^{cop} = \bigcup \{U : U \text{ pre-open }; U \subseteq A^c \}$.

Remark (2.3)

Let X be a space and $A \subseteq X$ we have $(\overline{A}^p)^c = (A^c)^{op} = p\text{-Ext}(A)$.

Definition(2.3)

Suppose X is a space and $G \subseteq X$ is said to be

- i) locally closed [2] if $G = K \cap H$, where K open and H is closed in X.
- ii) locally pre closed if $G = K \cap H$, where K open and H is pre closed in X.
- iii) pre-locally closed if $G = K \cap H$, where K pre-open and H is pre-closed in X.

Theorem (2.2)

- i- Every locally closed is pre-locally closed.
- ii- Every locally pre-closed is pre-locally closed.

Proof:

- i- Suppose G is locally closed then $G = K \cap H$ where $K \in \tau$, H is closed .Thus K pre-open and F pre-closed by Remark (2.1) .Therefore G pre-locally closed
- ii- Suppose G locally pre-closed then $G=K\cap H$, Such that $K\in \tau$, H is pre-closed .Thus K pre-open Remark (2.1) . Therefore G pre-locally closed

But pre-locally closed is need not pre-open for the following example.

Example (1.1)

Let X={m,n,p,q} and τ ={Ø, X,{p,q}}topology on X. If A={m}. Since A ={m,p} \cap {m, n} and {m,p} is pre-open, {m,n} is pre-closed thus A is pre-locally closed. But A not pre-open

Theorem (2.3)

The intersection of pre-closed and pre-locally closed is pre-locally closed.

Proof:

Let A pre-closed and B pre-locally closed then $B=U\cap F$ such that U pre-open and F pre-closed .Thus $A\cap B=A\cap U\cap F=U\cap H$. Such that $H=A\cap F$ is pre-closed and U pre-open . Therefore $A\cap B$ pre-locally closed .

Theorem (2.4)

For a space X the following statements are equivalent

- 1- A pre-locally closed
- 2- $A = U \cap \overline{A}^p$ for some U pre-open
- 3- $A = U p_Ext(A)$ for some U pre-open

4- $X - A = F \cup p_Ext(A)$ for some F pre-closed

Proof:

- 1) \rightarrow 2) Let A pre-locally closed then A= U \cap H such that U pre-open and H pre-closed thus A \subseteq U and A \subseteq H then A \subseteq $\overline{A}^p \subseteq \overline{H}^p = H$. Hence A \subseteq U \cap \overline{A}^p . Also U \cap $\overline{A}^p \subseteq$ U \cap U \cap U \cap \cap Ext(A) for some U pre-open. $\overline{H}^p = \cup \cap$ H = A. We have A = U \cap \overline{A}^p .
- 2) \rightarrow 3) $A = U \cap \overline{A}^p$ for some U pre-open then $= U (\overline{A}^p)^c , (\overline{A}^p)^c = (A^c)^{op} = p_- Ext(A) \text{ hence}$ $= U p_- Ext(A) \text{ for some U pre-open }.$
 - 3) \rightarrow 4) Since A = U- $p_Ext(A)$ for some U pre-open. = U \cap ($p_Ext(A)$)^c $A^c = (U \cap (p_Ext(A))^c)^c$ = $U^c \cup p_Ext(A)$. Let $F = U^c$ = F $\cup p_Ext(A)$. Since U pre-open thus F pre-closed.
 - 4) \rightarrow 1) Since $X A = F \cup p_Ext(A)$ for some F pre-closed. Therefore $A = F^c \cap (p_Ext(A))^c$ $= U \cap ((A^c)^{op})^c$. Such that $U = F^c$ is pre-open $= U \cap \overline{A}^p$.

Since \overline{A}^p is pre-closed. We have A is pre-locally closed.

Theorem (2.5)

If A pre-locally closed in X then

- 1) $\overline{A}^p A = (\overline{A}^p \cup U^c)$ for some U pre-open
- 2) $\overline{A}^p A = (\overline{A}^p \cup F)$ for some F pre-closed
- 3) A \cup p-Ext(A) is pre-open
- 4) $A \subseteq (A \cup p_Ext(A))^{op}$

Proof

1) Since A pre-locally closed then there is U pre-open where A the intersection of U and p-closure of A

$$\overline{A}^{p} - A = \overline{A}^{p} \cap A^{c}$$

$$= \overline{A}^{p} \cap (U \cap \overline{A}^{p})^{c}$$

$$= \overline{A}^{p} \cap (U^{c} \cup (\overline{A}^{p})^{c})$$

$$= (\overline{A}^{p} \cup U^{c}) \cap (\overline{A}^{p} \cup (\overline{A}^{p})^{c})$$

$$= (\overline{A}^p \cup U^c) \cap X$$
$$= (\overline{A}^p \cup U^c)$$

- 2) Since $\overline{A}^p A = (\overline{A}^p \cup U^c)$ such that $U^c = F$ pre-closed hence $\overline{A}^p A = \overline{A}^p \cup F$
- 3) A is pre-locally closed then there is U pre-open and $A = U \cap \overline{A}^p$

$$A \cup p\text{-}Ext(A) = (U \cap \overline{A}^p) \cup A^{cop}$$

$$= (U \cap \overline{A}^p) \cup \overline{A}^{p^c}$$

$$= (U \cup \overline{A}^{p^c}) \cap (\overline{A}^p \cup \overline{A}^{p^c})$$

$$= V \cap X = V.$$

U and \overline{A}^{pc} are pre-open we have the intersection of U and the complement of p-closure of A is pre-open by Remark (2.2) hence A \cup p-Ext(A) is pre-open.

4) Since the union of A and p-Ext(A) is pre-open then $A \cup p-Ext(A) = (A \cup p_Ext(A))^{op}$. Since A subset of $A \cup p-Ext(A)$ thus $A \subseteq (A \cup p_Ext(A))^{op}$.

Definition (2.4)[5]

For a space X the sets A and B are pre-separated sets if $\overline{A}^p \cap B = A \cap \overline{B}^p = \emptyset$.

Theorem (2.6)

If A_1 and A_2 are pre-locally closed and pre-separated then union is pre-locally closed **Proof:**

Suppose that A_1 and A_2 are pre-locally closed .Thus there is G and H are pre-open such that $A = G \cap \overline{A_1}^p$, $B = H \cap \overline{A_2}^p$ by Theorem(2.4).

Put
$$U=G\cap (\overline{A_2}^p)^c$$
 and $V=H\cap (\overline{A_1}^p)^c$. Then $U\cap \overline{A_1}^p=G\cap (\overline{A_2}^p)^c\cap \overline{A_1}^p=A_1\cap (\overline{A_2}^p)^c=A_1$. (since A_1 subset of $(\overline{A_2}^p)^c$)

Similarity
$$V \cap \overline{A_2}^p = A_2$$

Since U $\cap \overline{A_2}^p = \emptyset$ and V $\cap \overline{A_1}^p = \emptyset$. Since U and V pre-open by Remark(2.2) thus

$$(U \cup V) \cap (\overline{A_1 \cup A_2}^p) = (U \cup V) \cap (\overline{A_1}^p \cup \overline{A_2}^p)$$

$$= (U \cap \overline{A_1}^p) \cup (U \cup \overline{A_2}^p) \cup (V \cap \overline{A_1}^p) \cup (V \cap \overline{A_2}^p)$$

$$= A \cup B \text{ . Therefore } A \cup B \text{ is pre locally closed}$$

Theorem (2.7)

If G and H are pre-locally closed then there exist K pre-close set such that $G - H = (G \cap K) \cup (G \cap p_Ext(H))$

Proof:

Let G and H are pre-locally closed sets .Thus $G = S \cap \overline{G}^p$ and $H = L \cap \overline{B}^p$ such that S and L are pre-open then $G - H = (S \cap \overline{G}^p) - (L \cap \overline{H}^p)$

$$= (S \cap \overline{G}^{p}) \cap (L \cap \overline{H}^{p})^{c}$$

$$= (S \cap \overline{G}^{p}) \cap (L^{c} \cup (\overline{H}^{p})^{c})$$

$$= (S \cap \overline{G}^{p} \cap L^{c}) \cup (S \cap \overline{G}^{p} \cap (\overline{H}^{p})^{c})$$

$$= (G \cap L^{c}) \cup (G \cap p_Ext(H))$$

Since L pre-open thus L^c pre-closed. Let $K = L^c$ hence $G - H = (G \cap K) \cup (G \cap p_Ext(H))$

Theorem (2.8)

If A_1 and A_2 are pre-locally closed and $A_1 \cap p_Ext(A_2) = A_2 \cap p_Ext(A_1) = \emptyset$ then there exist H and F pre closed sets such that $A_1 \triangle A_2 = (A \cap H) \cup (B \cap F)$.

Proof:

Let A_1 and A_2 are pre-locally closed thus \exists U and V are pre-open where

$$\begin{split} A_1 &= \mathsf{U} \cap \overline{A_1}^p \ , A_2 = \mathsf{V} \cap \overline{A_2}^p \ \text{ by Theorem}(\ 2.5) \\ A_1 \ \Delta \ A_2 &= \left[(\ A_1 - A_2) \cup (A_2 - A_1) \right] \\ &= \left[(\ A_1 \cap A_2^c) \cup (A_2 \cap A_1^c) \right] \\ &= \left[(\ \mathsf{U} \cap \overline{A_1}^p) \cap (\ V \cap \overline{A_2}^p)^c \ \right] \cup \left[(\ V \cap \overline{A_2}^p) \cap (\ \mathsf{U} \cap \overline{A_1}^p)^c \ \right] \\ &= \left[(\ \mathsf{U} \cap \overline{A_1}^p) \cap (\ V^c \cup (\overline{A_2}^p)^c) \ \right] \cup \left[(\ V \cap \overline{A_2}^p) \cap (U^c \cup (\overline{A_2}^p)^c) \right] \\ &= \left[\mathsf{U} \cap \overline{A_1}^p \cap V^c \ \right) \cup \left(\ \mathsf{U} \cap \overline{A_1}^p \cap (\overline{A_2}^p)^c \right) \cup \left(\ V \cap \overline{A_2}^p \cap U^c \right) \cup \left(\ V \cap \overline{A_2}^p \right) \cap \left(\overline{A_1}^p \right)^c) \\ &= (A_1 \cap V^c) \cup \left(A_1 \cap \left(\overline{A_2}^p \right)^c \right) \cup \left(A_2 \cap U^c \right) \cup \left(A_2 \cap \left(\overline{A_1}^p \right)^c \right) \\ &= (A_1 \cap V^c) \cup \left(A_1 \cap A_2^{cop} \right) \cup \left(A_2 \cap U^c \right) \cup \left(A_2 \cap A_1^{cop} \right) \\ &= (A_1 \cap H) \cup \left(A_1 \cap p_- Ext(A_2) \right) \cup \left(A_2 \cap F \right) \cup \left(A_2 \cap p_- Ext(A_1) \right) \end{split}$$

Since V and U pre open then $V^c = H$ and $U^c = F$ are pre-closed

Since $A_1 \cap p_Ext(A_2) = A_2 \cap p_Ext(A_1) = \emptyset$ thus $A_1 \triangle A_2 = (A_1 \cap H) \cup (A_2 \cap F)$

Definition (2.5)

A function $h: X_1 \to X_2$ is called

- i) pre* -continuous if $h^{-1}(A)$ is pre-open in X_1 for all A pre-open in X_2 .
- ii) pre*-open if h(A) is pre-open in X_2 for all A pre-open in X_1 .
- iii) pre* -closed if h(A) is pre-closed in X_2 for all A pre-closed in X_1 .

Remark(2.3)

If $h: X_1 \to X_2$ is bjective and pre*-continuous then the inverse image is pre-closed in X_1 for all A pre-closed in X_2 .

Theorem (2.9)

If $h: X_1 \to X_2$ is bjective then

- i) If h pre*-continuous then the inverse image for all pre-locally closed in X_2 is pre-locally closed in X_1 .
- ii) If h pre*-open then the image for all pre-locally closed in X_1 is pre-locally closed in X_2 .

Proof:

- i) Let G pre-locally closed in X_2 . Thus $G = V \cap H$ such that V pre-open and H pre-closed sets in X_2 . Since h pre*-continuous then $h^{-1}(U)$ is pre-open in X. Since h bijective then $h^{-1}(F)$ is pre-closed in X_1 . Hence $h^{-1}(U) \cap h^{-1}(F) = h^{-1}(U \cap F) = h^{-1}(A) = B$. There fore B pre-locally closed in X.
- ii) Clear.

3 - Pre D-set

Definition (3.1)

If X be space and A subset of X. Then S is said

- 1- difference set (D-set) [6] if \exists open sets U and V in X so that $U \neq X$ and S = U V.
- 2- Pre difference set (pre D-set) [3] if \exists pre-open sets U and V in X so that $U \neq X$ and S = U V.

Theorem (3.1)

- 1- Every pre-open (not equal to X) is pre-D-set
- 2- Every D-set is pre-D-set

Proof:

- 1- Let S is pre-open and $S \neq X$. Since $S = S \emptyset$ and \emptyset pre-open we have S is pre-D-set.
- 2- Let A is D-set then there are open sets A_1 and A_2 in X so that $A_1 \neq X$ and $A = A_1 A_2$. Thus A pre-D-set.

But the converse of (2) is not true for the following example.

Example(3.1)

Let $X = \{1, 2, 3\}$ and τ indiscrete topology on X. It is clear that for every S subset of X is pre-open thus S pre-D-set but there is no open sets open. Hence S not D-set.

Theorem (3.2)

Every pre-D-set is pre-locally closed.

Proof:

Let S is pre-D-set there are two pre-open sets S_1 and S_2 in X so that $S_1 \neq X$ and $S = S_1 - S_2$. Thus S $= S_1 \cap S_2^c$. Since S_2 pre-open thus S_2^c pre-closed therefore S pre-locally closed

Definition (3.2)

For a space X and S \square X is said pre-dense if $\overline{S}^p = X$.

Theorem (3.3)

- 1) Every pre-dense and pre-locally closed is pre-D-set.
- 2) Every pre-dense pre-D-set is pre-open.

Proof

- 1) Let S pre-locally closed thus there exist U pre-open such that $S = U \cap \overline{S}^p$. Since S pre-dense then $\overline{S}^p = X$. Thus S = U then S is pre-open hence S is pre-D-set.
- 2) Let G pre-D-set thus there exist V pre-open so that $V \neq \emptyset$ and $G=V \cap \overline{G}^p$. Since G pre-dense then $\overline{G}^p = X$. Thus G = V then G is pre-open.

Theorem (3.4)

For a space X the following statements are equivalent

- i. S pre D-set.
- ii. $S = U \cap \overline{S}^p$ for some U pre-open and $U \neq X$.
- iii. $S = U p_E xt(S)$ for some U pre-open and $U \neq X$.
- iv. $S^c = F \cup p_Ext(S)$ for some F pre-closed and $F \neq \emptyset$.

Proof:

 $i \rightarrow ii$ Let A pre D-set thus \exists pre-open sets U and V so that $U \neq X$ and S = U - V.

Thus $S = U \cap V^c$ then V^c pre-closed thus S pre-locally closed hence $S = U \cap \overline{S}^p$ for some U preopen by Theorem (3.2) and Theorem (2.4) we have $S = U \cap \overline{S}^p$ for some U pre-open and $U \neq X$.

ii \rightarrow iii Let $S = U \cap \overline{S}^p$ for some U pre-open and $U \neq X$. Thus $S = U - \overline{S}^{p^c}$ then $S = U - p_E x t(S)$ for some U pre-open and $U \neq X$.

iii. \rightarrow iv. Let $S = U - p_-Ext(S)$ for some U pre-open and $U \neq X$. Hence $S^c = (U - p_-Ext(S))^c$ then similar to theorem (2.5) we have $A^c = U^c \cup p_-Ext(S)$. Whereas U pre-open therefore $U^c = F$ preclosed. Since $U \neq X$ then $U^c = F \neq \emptyset$.

iv→ i clear

Theorem (3.5)

If A and B are pre-D-sets then there exist pre-closed set $F \neq \emptyset$ such that $A - B = (A \cap F) \cup (A \cap p\text{-}Ext(A))$

Proof

Let A and B are pre-D-sets .Thus $A = K \cap \overline{A}^p$ and $B = H \cap \overline{B}^p$ so that K and H are pre-open and K, $H \neq X$ by Theorem (2.4) then it is clear that $A - B = (A \cap H^c) \cup (A \cap (\overline{B}^p)^c)$, Since H pre-open and $H \neq X$ thus H^c pre-closed and $H^c \neq \emptyset$. Let $H^c = F$. Since $(\overline{B}^p)^c = p\text{-}Ext(A)$ there fore $A - B = (A \cap F) \cup (A \cap p\text{-}Ext(A))$.

Theorem (3.6)

If $h: M \to N$ is bijective thus

- 1) If pre*-continuous thus $h^{-1}(S)$ is pre-D-set in M for all S pre-D-set in N.
- 2) If pre*-open then h(S) is pre-D-set in N for all S pre-D-set in M.

Proof:

- 1) Suppose S pre-D-set in N. Thus there exist S_1 and S_2 pre-open in N so that $S_1 \neq N$ and $S = S_1 S_2$. Since h pre*-continuous then $h^{-1}(S_1)$ and $h^{-1}(S_2)$ pre-open in M. Since h bijective then $h^{-1}(S_1) \neq M$. Hence $h^{-1}(S_1) h^{-1}(S_2) = h^{-1}(S_1 \cap S_2) = h^{-1}(S) = K$. There fore K pre-D-set in M.
- 2) Clear.

Definition (3.3)

A subset S of space X is called Pre-locally D-set if $S = U \cap G$, where U pre-open and G is pre-D-set.

Theorem (3.7)

Every pre-open is pre-locally D-set

Proof: Clear

Example(3.2)

Let $X=\{s_1, s_2, s_3, s_4\}$ and $\tau=\{\emptyset, X, \{s_3, s_4\}\}$. Let $G=\{s_1, s_2, s_3\}$ and $K=\{s_1, s_4\}$. It is clear that G and K are pre-open then K is pre-D-set thus $G\cap K=\{s_1\}$ is pre-locally D-set but not pre-open.

Theorem (3.8)

For A \square Y then the following statements are equivalent

- 1) A pre-locally D-set
- 2) A is intersection of pre-open is not equal to Y and pre-locally closed

Proof:

1) \rightarrow 2) Since A pre-locally D-set then A =U \cap G such that U pre-open and G pre-D-set. Since G pre-D-set thus G = V-K such that V \neq Y and V, K are pre-open therefore A = U \cap (V-K)

$$= U \cap (V \cap K^c)$$

= $V \cap (U \cap K^c)$ since K pre-open then K^c pre-closed

$$= V \cap M$$
 such that $M = U \cap K^c$ pre locally closed

Hence $A = V \cap M$ such that $V \neq Y$ is pre-open and $M = U \cap K^c$ pre locally closed

2) \rightarrow 1) Since A = U \cap K so that U \neq Y is pre-open and K pre locally closed hence K= V \cap F such that V pre-open and F pre-closed therefore

 $A = U \cap (V \cap F)$. Let $F = H^c$

= $V \cap (U \cap H^c)$ = $V \cap (U - H)$ since U and H pre-open such that $U \neq Y$ thus M= U - H pre-D-set

 $A = V \cap M$ since V pre-open we have A pre locally D-set

Remark(3.1)

If $h: X \to Y$ is bijective then

- 1. If pre*-continuous then the inverse image for all pre-locally D-set in Y is pre-locally D-set in X.
- 2. If pre*-open thus the image of all pre-locally D-set in X is pre-locally D-set in Y

The following diagram shows that the relationships of pre-D-set with locally closed sets generated by pre-open set as shown in Fig.1.

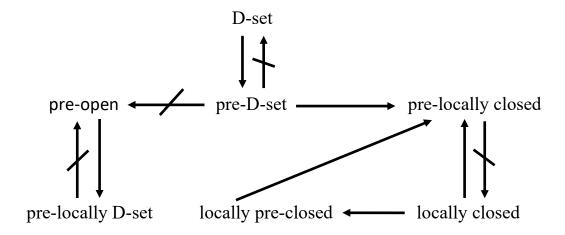


Fig. 1. Relationship of pre-D-set with locally closed set.

References

- [1] N. Bourbaki, "General Topology" part-I Addison wesley publ.co. Reading Mass (1966).
- [2] R . B . Al-kazragi " On Semi-p-open sets ", Msc. Thesis university of Bagdad college of Education Ibn-Al-Haitham (2004) .
- [3] M. Jafari "On weak separation axioms" Far East J. Math. Sci. 3(2001) 779-787.
- [4] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb "On precontinues and weak precontinues mappings, proc. Math phys. Soc. Egypt 51(1981).

- $[5]\ V.$ Popa . " properties of H-almost continuous functions " Bull . Math . Soc. Sci. Math. R. S. Romanie Ns, (1987) .
- [6] J . Tong " A separation axioms between T_o and T_1 " Ann. Soc. Sci. Bruxelles 96 (1982) , 85-90 .