

The Number of Inflammatory Cells in Generalized Periodontitis Versus Healthy Periodontium

Saif S. Saliem ⁽¹⁾
Salwan Y. Bede ⁽²⁾
Hadeel Mazin Akram ^{(3)*}
Mohamed Saeed M. Ali ⁽⁴⁾

^(1,3,4) Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq.

⁽²⁾ Department of Oral Surgery, College of Dentistry, University of Baghdad, Baghdad, Iraq.

Keywords:

Dendritic cell, Gingival tissue, Inflammation, Periodontal classification, Periodontitis.

Article Info.:

Article History:

Received: 24/7/2024

Received in revised form: 30/8/2024

Accepted: 10/9/2024

Final Proofreading: 10/9/2024

Available Online: 1/12/2025

© THIS IS AN OPEN ACCESS ARTICLE
UNDER THE CC BY LICENSE

<https://creativecommons.org/licenses/by/4.0/>

Citation: Saliem SS, Bede SY, Akram HM, Ali MS. The Number of Inflammatory Cells in Generalized Periodontitis Versus Healthy Periodontium. *Tikrit Journal for Dental Sciences* 2025; 13(2): 551-558.

<https://doi.org/10.25130/tjds.13.2.26>

*Corresponding Author:

Email:

hadeel.mazin@codental.uobaghdad.edu.iq

B.D.S, M.Sc. Professor,
Department of
Periodontology, College of
Dentistry, University of
Baghdad, Baghdad, Iraq.

Abstract

Background: Periodontal disease is a complex chronic inflammatory condition primarily initiated by an uncontrolled inflammatory response to bacterial colonization of the tooth surface. The subsequent degeneration of periodontal tissues results from the host's inflammatory reaction to the microbial challenge. **Purpose:** The purpose of this research was to examine the quantitative of inflammatory cells in clinically confirmed states of periodontal health and disease based on the recent periodontal classification criteria.

Materials and methods: This cross-sectional study enrolled 88 systemically healthy individuals, divided into two groups based on their periodontal status (healthy periodontium and periodontitis). Gingival tissue samples were obtained from them. Thorough periodontal measurements, such as bleeding on probing, probing pocket depth, and clinical attachment loss, were documented. Tissue samples were fixed in paraffin and then processed to quantify the population of inflammatory cells.

Results: a significant difference (p -value < 0.0001) was found in the scores of the inflammatory cells between periodontitis and healthy periodontium tissue samples. However, there were no significant variations in the number of inflammatory cells among different stages of periodontitis (p -value=0.528). Notably, the number of dendritic cells differed significantly between the two groups.

Conclusion: The results demonstrate that the quantity of inflammatory cells is markedly higher in periodontitis-afflicted individuals than those with healthy periodontium. Notably, the number of inflammatory cells did not show a significant correlation with the stages of periodontitis. These findings shed light on the immune response dynamics in periodontal disease and underscore the importance of understanding inflammatory cell profiles in periodontal health and disease management.

Introduction:

Periodontitis is a multicausal, complex, chronic inflammatory condition characterized by immunological dysregulation and it is influenced by different simultaneous, interrelated factors⁽¹⁻⁴⁾. It is initiated by microbial colonization of the tooth surface, which triggers a cascade of inflammatory processes leading to the loss of periodontal tissue⁽⁵⁾. The pathogenesis of periodontitis is closely associated with the host's immune response, dysbiosis in the subgingival biofilm, and the influence of additional risk factors, which could be genetic or environmental risk factors⁽⁶⁾. The chronic progression of the acute host response may result in some systemic manifestations⁽⁷⁾.

The 2017 World Workshop Classification system for periodontal and peri-implant diseases and conditions was developed to accommodate advances in biological and clinical research since the previous International Classification of Periodontal Diseases in 1999. The recent classification uses a system that classifies periodontitis based on its progression rate and severity, using criteria like staging and grading^(8,9). Previous studies have mentioned the differences in the count and in the density of lymphocyte subpopulations and plasma cells at different stages of periodontal disease. Early and stable periodontal lesions are primarily characterized by the presence of T lymphocytes, while advanced and progressive lesions exhibit a predominance of B lymphocytes and plasma cells⁽¹⁰⁻¹²⁾.

A higher CD14 level has been seen in apical periodontitis, this variation in CD14 levels could be related to the innate immune response triggered by the detection of lipopolysaccharides, endotoxins, and peptidoglycan⁽¹³⁾. Furthermore, the role of beta-cells in the body's defence mechanism against oxidative stress has been explored, providing information about their proliferation during pregnancy and their effect on insulin sensitivity⁽¹⁴⁾. Various causes could be associated with the loss of periodontal tissues and increased probing pocket depth (PPD). These factors

encompass the modified functionality of polymorphonuclear cells, alterations in host defences, and disrupted tissue homeostasis caused by a long-established microangiopathic effect⁽¹⁵⁾.

Dendritic cells (DCs) are critical as immune guards and exist in a dormant state in lymphoid or peripheral organs. Within the oral environment, DCs are essential for activating and polarizing the native T cells, contributing to developing immunity and tolerance. Oral DCs, functioning as antigen-presenting cells, are widely distributed in lymphoid and non-lymphoid organs, bridging innate and adaptive immunity by triggering antigen-specific immune responses. Interestingly, oral DCs can encounter commensal bacteria and food antigens without provoking unfavorable immune reactions due to their tolerogenic nature⁽¹⁶⁾. Evidence suggests that the oral epithelial microenvironment plays a crucial role in maintaining DCs in a tolerogenic state⁽¹⁷⁾. This study aimed to quantitatively analyze the histopathological features of human gingival tissue, comparing healthy gingiva with periodontitis-afflicted tissue, and also to assess the inflammatory cells' level in the oral mucosa.

This investigation sought to evaluate the inflammatory cell profiles in clinically verified states of periodontal health and disease. By exploring the dynamics of inflammatory cell populations, this research may contribute to a better understanding of the immune response involved in periodontitis, highlighting the importance of the role of inflammatory cells in characterizing periodontal health and disease management.

Materials and Methods

Study Design and Participants:

This is a cross-sectional study that enrolled eighty-eight systemically healthy individuals who were non-smoker and older than 14 years. They sought dental care at the College of Dentistry, University of Baghdad, between May 2021 and July 2022. The protocol for the research was approved by the institution's Research Ethics Committee, and all of the procedures were carried out in accordance

with the Declaration of Helsinki in 2013. Every participant gave their consent after being fully informed about the study and signed an informed consent.

The participants were divided into two groups based on their periodontal status. The study group comprised patients diagnosed with periodontitis who required periodontal treatment using the modified Widman flap approach. Diagnosis of periodontitis was confirmed through clinical and radiographic examination of selected sites. The control group consisted of subjects who had healthy periodontium. Participants with systemic disorders, smokers, women who were pregnant or breastfeeding, individuals who had taken antibiotics or anti-inflammatory drugs within the preceding six months, and individuals who had previously received periodontal therapy were not allowed to take part in the study.

Periodontal Examinations:

The clinical and radiological evaluations of the patients was carried out by a single calibrated examiner. The oral clinical evaluations included measurements of pocket depth (PD)⁽¹⁸⁾, clinical attachment level (CAL), bleeding on probing (BOP)⁽¹⁹⁾, and plaque index (PI)⁽²⁰⁾. These measurements were done by using a Williams-type periodontal probe (Hu-Friedy; Chicago, Illinois, United States of America), the measurements were obtained from six different locations surrounding each tooth. intra-examiner reliability was evaluated by, the Kappa-Cohen test, With a value of 0.90 to ensure a good level of consistency across all clinical criteria.

Periodontal Status Assessment:

According to the criteria of the World Periodontal and Peri-Implant Diseases and Conditions Classification Workshop in 2017, the participants were divided into two groups^(21,22).

The control group included 27 individuals with good periodontal health, characterized by clinically healthy gingiva⁽²³⁾, BOP less than 10%, PPD equal or less than 3 mm, no attachment loss, no evidence of radiographic alveolar bone

loss, and should have no history of periodontitis.

The study group comprised 61 patients with generalized periodontitis. For the study group, tissue samples were obtained from sites with bone loss which were currently unstable. In contrast, for the control group, samples were collected after extraction for orthodontic reasons or from patients who underwent gingivectomy for esthetic purposes such as crown lengthening and correction of gummy smile.

Tissue Preparation and Staining:

Tissue specimens were fixed in 10% formalin and routinely processed into paraffin blocks. Sections thickness of 4 μ m were prepared and mounted on standard glass slides for hematoxylin and eosin (H&E) staining. The sections were then evaluated under a light microscope to determine the number of inflammatory cells. Additionally, 4 μ m thick sections were cut and mounted on positively charged slides for immunohistochemical staining using primary antibodies (anti-vimentin) to assess the number of DCs.

Inflammatory Cell Infiltration Scoring System:

The slides were captured using a microscope camera equipped with a 10-megapixel resolution (OPTIKA, Italy). The photographs were divided into 16 squares, and the number of inflammatory cells within each square was tallied to get the average count for each group. The inflammatory cells were classified into four categories based on the number of cells present: negative reaction or score 0 (0-25 inflammatory cells), mild or score 1 (26-50 inflammatory cells), moderate or score 2 (51-75 inflammatory cells), and severe or score 3 (greater than 75 inflammatory cells). as shown in figure 1.

Vimentin Scoring System:

Using a numerical scale, the intensity of cytoplasmic staining (vimentin) was assessed⁽²⁴⁾. A negative expression was denoted by -, a weak expression by +, a moderate expression by ++, and a strong expression by +++. When each intensity level was used, the percentage of cells that

were stained was rated as follows: 0 (<5%), 1 (5-25%), 2 (26-50%), 3 (51-75%), and 4 (>75%). The intensity score and percentage of positive cells were multiplied to derive the final scores⁽²⁵⁾.

Evaluation of Staining Results:

For immunohistochemical evaluation, at least five representative fields were selected for each tissue section, examined microscopically using a 40X objective, and the mean positive percentage was recorded for each case⁽²⁶⁾.

Statistical Analysis:

GraphPad Prism version 6 for Windows (GraphPad Software, La Jolla, California, United States) was utilized to carry out the statistical analysis. When conducting descriptive statistics, it was necessary to compute percentages and the mean \pm the standard deviation (SD). When analyzing the distribution of continuous variables, the Shapiro-Wilk normality test was utilized as the assessment tool. The Mann-Whitney test, Fisher's exact test, Chi-square test, and Spearman correlation test were all utilized in the process of inferential analysis using statistical methods. Statistical significance was determined to be present when the probability values were less than 0.05.

Results:

This study included 61 individuals diagnosed with periodontitis, with an average age of 44.3 ± 9.8 and a median age of 44 years. Regarding the gender 22 were males (36.1%), and 39 were females (63.9%). A total of 61 tissue samples were collected for evaluation.

Conversely, the control group comprised 27 individuals with a healthy periodontium from which 27 tissue samples were obtained, with an age range of 14-45 years, a mean (SD) age of 24 (7.8) years, and a median age of 22 years. Among them, 9 were males (33.3%), and 18 were females (66.7%). The difference in age between the two groups was statistically significant, while the gender difference between the groups was not statistically significant, as shown in Table 1.

There was a significant difference in inflammatory cell scores between the study group (periodontitis) and the control group. The study group exclusively showed a negative reaction (score 0), whereas the control group had no severe reaction (score 3), as shown in Table 2.

However, there were no significant differences in the number of inflammatory cells among the different stages of periodontitis, as shown in Table 3

Furthermore, a weak positive correlation was found between the number of inflammatory cells and the probing pocket depth (PPD) ($r = 0.3$, $P = 0.028$).

Regarding dendritic cells, a significant difference was observed between the two groups. The control group showed a negative reaction (score 0) in all samples, while the study group predominantly exhibited a mild reaction, as shown in Table 4.

Discussion

The immune response to bacterial attack is known to play a significant role in the development of periodontal disease⁽²⁷⁾. The periodontitis and healthy periodontium groups. Specifically, the periodontitis group exhibited a negative reaction (No score of 0 was found that meant the percentage of inflammatory cells was more than 5%), while the healthy periodontium group did not exhibit a severe reaction (No score 3 was found that meant the percentage of inflammatory cells was less than 51%). This aligns with the findings of Zekonis et al. in 2014⁽²⁸⁾, who reported higher lymphocyte and macrophage counts in periodontitis patients compared to healthy individuals⁽²⁹⁾. Based on the analysis of inflammatory cells, it was evident that the control group exhibited the lowest percentage value, while the periodontitis group demonstrated the highest percentage value. These results align with previous studies by Zekonis et al., who observed higher lymphocyte and macrophage counts in patients with chronic periodontitis compared to healthy individuals⁽³⁰⁾. Castro et al. also reported an increase in lymphocyte numbers in gingival tissue

samples over time, correlating to the severity of chronic periodontitis⁽³¹⁾. Interestingly, we found no significant differences in the number of inflammatory cells among the various stages of periodontitis. Notably, severe and moderate reactions were more prevalent in stage 4 periodontitis. This lack of correlation between the number of inflammatory cells and the stage of periodontitis may be attributed to the new classification system, which primarily relies on attachment loss rather than pocket depth for staging. However, a positive correlation was observed between inflammatory cell numbers and probing pocket depth. These findings align with the research by Choi et al., who reported distinct bacterial profiles, prevalence, and inflammatory cell responses among groups with different degrees of periodontal disease⁽³²⁾. Other studies have also demonstrated variations in the number and type of inflammatory cells at different stages of periodontal disease. Early and stable lesions were associated with T lymphocytes, while more advanced and progressive lesions showed a prevalence of B lymphocytes and plasma cells^(10,11).

In the context of DCs identification, we employed the anti-vimentin protein immunohistochemical marker, which proved effective in labelling these cells. DCs were mainly present in the oral gingival epithelium, particularly in the basal and suprabasal layers. These findings support the findings of previous studies⁽³³⁾, in which it was reported about the presence of DCs scattered across the basal and suprabasal keratinocytes of the mucosal squamous epithelium. In addition, dendritic cells were found to be more intense in cases of periodontitis, showing significant variation in gingival inflammation between the studied groups. This difference in DCs between healthy and periodontitis specimens could be related to their increased intensity in periodontitis⁽³⁴⁾. In this study, all 61 cases of periodontitis showed positive staining for the anti-vimentin antibody, with predominantly of mild distribution of immunostained cells (score 1), while the control group showed a negative reaction

(score 0), indicating fewer than 25 DCs distributed in the epithelial layer.

Since DCs are the primary antigen-presenting cells in the gingival tissue, their expression level may be highly correlated with that of the periodontitis group, reflecting their immunomodulatory activity on the intensity of the inflammatory response⁽³⁵⁾.

In summary, this study has highlighted the role of the inflammatory cell dynamics in periodontal health and disease. The significant difference in inflammatory cell scores between periodontitis and healthy periodontium shows the importance of considering immune responses in understanding periodontal disease. The distinct pattern of DCs presence and distribution in periodontitis cases underlines their potential immunomodulatory influence on the inflammatory response. Overall, these findings contribute to our comprehension of periodontal pathogenesis and could aid in developing targeted therapeutic approaches for managing periodontal disease.

Nonetheless, further investigations are warranted to delve deeper into the intricate immunological processes underlying periodontitis and explore potential therapeutic interventions. Nevertheless, due to the study's limitations, like the presence of tissue samples from individuals with ages of 14 years old in the control group only, the lack of grading, and the limited amount of tissue samples, further research is warranted to explore these relationships in more extensive and more diverse populations, considering other potential confounding factors.

Conclusions

This study revealed notable differences in the quantity of inflammatory cells and dendritic cells between the periodontitis and healthy periodontium groups. The periodontitis group exhibited a substantially higher number of inflammatory cells and DCs compared to the control group. However, it is worth noting that the number of inflammatory cells did not exhibit a significant correlation with the stages of periodontitis,

although showing a weak association with the probing pocket depth (PPD). These findings contribute to our understanding of the inflammatory response associated with periodontal disease and underscore the importance of considering inflammatory cell dynamics in periodontal health and disease characterization.

Conflict of interest: The authors declare no conflict of interest.

Funding: self-funded

Regulatory Statement: The study was approved by the institutional Research Ethics Committee, and all procedures adhered to the principles outlined in the Declaration of Helsinki 2013.

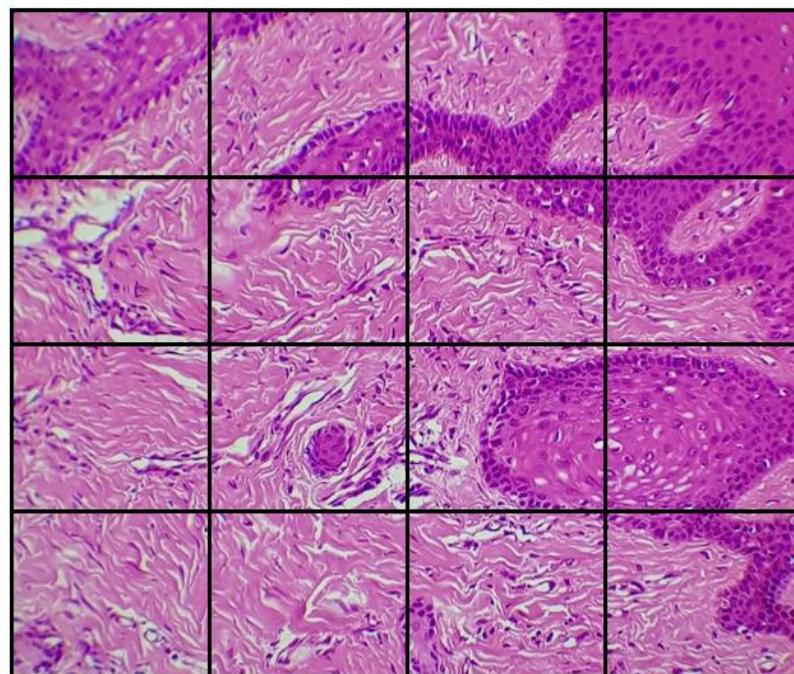


Figure (1): Designing a method for inflammatory cell counting (H&E stains).

Table 1: Statistical Analysis of Demographic Data

Age			
Group	Mean \pm Sd (years)	Median (years)	P value
Control group	24 \pm 7.8	22	<0.001 * Significant
Periodontitis group	44.3 \pm 9.8	44	
Gender			
Group	Male N(%)	Female N(%)	P value
Control group	9 (33.3%)	18 (66.7%)	>0.05** Non-Significant
Periodontitis group	22 (36.1%)	39 (63.9%)	

* Significant at $p < 0.05$ using the T- test, %: Percentage, N: total number, ** non-significant at $p > 0.05$ using the Chi-square test

Table 2: Difference in the number of inflammatory cells between the two groups.

Score	Number of inflammatory cells (%)		P value
	periodontitis group	Control group	
Negative (score 0)	0 (0)	12 (44.4)	< 0.0001 *
Mild (score 1)	10 (16.4)	13 (48.1)	
Moderate (score 2)	23 (37.7)	2 (7.5)	
Severe (score 3)	28 (45.9)	0 (0)	
Total	61	27	

* Significant at $p < 0.05$ using the Chi-square test. %: Percentage

Table 3: The number of inflammatory cells in different stages of the periodontitis group.

Stage of periodontitis	Number of inflammatory cells (%)			P value
	Mild	Moderate	Severe	
2	1 (1.7)	4 (6.6)	1 (1.7)	0.528 *
3	5 (8.2)	8 (13.1)	12 (19.6)	
4	4 (6.6)	11 (18)	15 (24.5)	
Total	10 (16.5)	23 (37.7)	28 (45.8)	

* Significant at $p < 0.05$ using the Chi-square test. %: Percentage

Table 4: Difference in the number of dendritic cells between the two groups.

Score	Number of inflammatory cells (%)		P value
	periodontitis group	Control group	
Negative	22 (36.1)	27 (100)	< 0.0001 *
Mild	35 (57.4)	0 (0)	
Moderate	2 (6.5)	0 (0)	
Severe	0 (0)	0 (0)	
Total	61 (100)	27 (100)	

* Significant at $p < 0.05$ using the Chi-square test. %: Percentage

References

- 1-Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. *Trends Immunol.* 2014;35(1):3-11.
- 2-Loos BG, Papantonopoulos G, Jepsen S, Laine ML. What is the contribution of genetics to periodontal risk? *Dent Clin North Am.* 2015;59(4):761-80.
- 3-Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. *Jpn Dent Sci Rev.* 2022;58:268-78.
- 4-Fadhil R, Akram HM, Najah A, Gul SS. Association of matrix metalloproteinase-1-1607 1G/2G single nucleotide polymorphism genotypes with periodontitis in Iraqi population. *Braz Dent Sci.* 2022;25(3). Available from: <https://doi.org/10.4322/bds.2022.e3283>
- 5-Te Velde AA, Bezema T, Van Kampen AH, Kraneveld AD, 't Hart BA, Van Middendorp H, Hack EC, Van Montfrans JM, Belzer C, Jans-Beken L, Pieters RH. Embracing complexity beyond systems medicine: a new approach to chronic immune disorders. *Frontiers in immunology.* 2016 Dec 12;7:587.
- 6-Esteves-Lima RP, Reis CS, Santirocchi-Júnior F, Abreu LG, Costa FO. Association between periodontitis and serum c-reactive protein levels. *J Clin Exp Dent.* 2020;12(9):e838-e43.
- 7-Shake ZF, Hashem BH. Study the role of proinflammatory and anti-inflammatory cytokines in Iraqi chronic periodontitis patients. *J Baghdad Coll Dent.* 2012;24:164-9..
- 8-Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. *Nat Rev Endocrinol.* 2018;14(10):576-90.
- 9-Dietrich T, Ower P, Tank M, West NX, Walter C, Needleman I, et al. Periodontal diagnosis in the context of the 2017 classification system of periodontal diseases and conditions - implementation in clinical practice. *Br Dent J.* 2019;226(1):16-22.
- 10-Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - introduction and key changes from the 1999 classification. *J Clin Periodontol.* 2018;45 Suppl 20:S1-8.

11-Offenbacher S. Periodontal diseases: pathogenesis. *Ann Periodontol.* 1996;1(1):821-78.

12-Mikhaleva LM, Barkhina TG, Shapovalov VD, Luss LV, Il'ina NI. [Ultrastructure of cell populations of gingival soft tissue in chronic inflammatory processes]. *Arkh Patol.* 2001;63(6):15-21.

13-Janani K, Teja KV, Ajitha P, Sandhya R. Assessment of sCD14 levels in patients with endodontic pathology requiring root canal treatment. *Braz Dent Sci.* 2022;25(3). Available from: <https://doi.org/10.4322/bds.2022.e2809>

14-Sulaiman AI. Molecular identification of *Fusobacterium* isolates and limitation of biofilm formation adhesion gene (*fadA*) in dental outpatients. *Baghdad Sci J.* 2019;16(4):0843.

15-Al-Qarakhli AMA, Al-Taweel FB, Abdul Ameer LA, Saliem SS, Abdulkareem AA. Assessing the level and diagnostic accuracy of osteopontin and oral health status in periodontitis patients with/without type-2 diabetes mellitus. *Braz Dent Sci.* 2021;24(4). Available from: <https://doi.org/10.4322/bds.2021.e2968>

16-Hamza MA. Lymphocytes prediction of homeostasis model assessment of beta-cells function (HOMA-B) and C-peptide level during pregnancy: new insight into beta-cells proliferation and insulin sensitivity. *Baghdad Sci J.* 2022;19(4):0821.

17-Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. *Frontiers in immunology.* 2013 Apr 3:4:82.

18-Pelaez-Prestel HF, Sanchez-Trincado JL, Lafuente EM, Reche PA. Immune tolerance in the oral mucosa. *Int J Mol Sci.* 2021;22(22):11832.

19-Haffajee AD, Socransky SS, Goodson JM. Clinical parameters as predictors of destructive periodontal disease activity. *J Clin Periodontol.* 1983;10(3):257-65

20-Newbrun E. Indices to measure gingival bleeding. *J Periodontol.* 1996;67(6):555-61.

21-O'Leary TJ, Drake RB, Naylor JE. The plaque control record. *J Periodontol.* 1972;43(1):38

22-Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *J Periodontol.* 2018;89 Suppl 1.

23-Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *J Clin Periodontol.* 2018;45 Suppl 20

24-Ramos-Vara J, Borst LB. Immunohistochemistry: fundamentals and applications in oncology. Berlin: Springer; 2016.

25-Azeez SH, Gaphor SM. Evaluation of antibacterial effect against *Porphyromonas gingivalis* and biocompatibility of essential oil extracted from the gum of *Pistacia atlantica* Kuridca. *Biomed Res Int.* 2019;2019:9195361.

26-Huang WT, Lin CW, Tsai PH, Cheng YC, Lin YY, Hsu SM. Vimentin overexpression promotes head and neck cancer cell maturation and is associated with shorter survival time. *Oncol Rep.* 2010;24(6):1629-37.

27-Liu PF, Kang BH, Wu YM, Sun JH, Yen LM, Fu TY, et al. Vimentin is a potential prognostic factor for tongue squamous cell carcinoma among five epithelial-mesenchymal transition-related proteins. *PLoS One.* 2017;12(6).

28-Zekonis G, Barzdziukaite I, Zekonis J, Sadzeviciene R, Simonyte S, Zilinskas J. Local and systemic immune responses in gingivitis and periodontitis. *Central European Journal of Medicine.* 2014 Oct;9:694-703.

29-Amunulla A, Venkatesan R, Ramakrishnan H, Arun KV, Sudarshan S, Talwar A. Lymphocyte subpopulation in healthy and diseased gingival tissue. *Journal of Indian Society of Periodontology.* 2008 May 1;12(2):45-50.

30-Van Dyke TE, Serhan CN. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. *J Dent Res.* 2003;82(2):82-90.

31-Zekonis G, Barzdziukaite I, Zekonis J, Sadzeviciene R, Simonyte S, Zilinskas J. Local and systemic immune responses in gingivitis and periodontitis. *Cent Eur J Med.* 2014;9(5):694-703.

32-Cecilia EC, Myriam AK, María EL. Cytological analysis of the periodontal pocket in patients with aggressive periodontitis and chronic periodontitis. *Contemp Clin Dent.* 2014;5(4):495-500

33-Choi JU, Lee JB, Kim KH, Kim S, Seol YJ, Lee YM, et al. Comparison of periodontopathic bacterial profiles of different periodontal disease severity using multiplex real-time polymerase chain reaction. *Diagnostics (Basel).* 2020;10(11):965

34-Séguier S, Godeau G, Leborgne M, Pivert G, Brousse N. Quantitative morphological analysis of Langerhans cells in healthy and diseased human gingiva. *Arch Oral Biol.* 2000;45(12):1073-81.

35-Bodineau A, Godeau G, Brousse N, Pellat B, Folliguet M, Séguier S. Langerhans cells express matrix metalloproteinases 9 and 2 and tissue inhibitors of metalloproteinases 1 and 2 in healthy human gingival tissue and in periodontitis. *Oral Microbiol Immunol.* 2006;21(3):197-200.