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H I G H L I G H T S  
 

A B S T R A C T  

• Drin C was used to analyze drought using the 

Reconnaissance Drought Index (RDI) and 

Standard Precipitation Index (SPI). 

• A hybrid model was proposed to improve 

drought prediction accuracy over traditional 

linear and nonlinear methods. 

• Drought duration, intensity, and accumulative 

deficit were evaluated for each station. 

• ARIMA improved SPI and RDI prediction, 

reaching R² values of 0.95 for SPI12 and 0.818 

for RDI12. 

 Drought is a natural disaster characterized by its intensity, duration, and spatial 

extent. This research investigates meteorological drought in Babylon Province, 

Iraq, highlighting its significance in the local context, particularly given the 

region's vulnerability to climatic changes. Employing the Drought Index 

Calculator (Drin C), we evaluate drought indices, namely the Reconnaissance 

Drought Index (RDI) and the Standard Precipitation Index (SPI), from 1991 to 

2021. This study underscores the imperative of assessing the accuracy of 

commonly used drought monitoring techniques due to their inherent uncertainties. 

This work highlights the importance of integrating advanced modelling tools, such 

as the integration of advanced modeling tools, such as Random Forest and 

ARIMA, alongside comprehensive meteorological assessments to enhance 

drought preparedness and response strategies. The project aims to deepen the 

understanding of drought conditions in Babylon Province by employing 

sophisticated analytical models and evaluating their efficacy in forecasting 

drought indicators, while providing data-driven recommendations for efficient 

water resource management. The model utilizes monthly precipitation data from 

six sites to calculate SPI and RDI values, with R-squared values of 0.95 for SPI12 

and 0.818 for RDI12, clearly attributing these values to the ARIMA model. The 

ARIMA model enhances predictive accuracy with increasing time scales, while 

the Random Forest model offers complementary insights into drought patterns. A 

hybrid model for drought forecasting is created, combining linear and nonlinear 

approaches, which progressively enhances precision and provides significant 

insights into local climate variability, thereby facilitating effective decision-

making and resource management. 
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1. Introduction 

Drought is a significant natural disaster characterized by an extended reduction in rainfall, leading to water scarcity and 

severe environmental, economic, and agricultural impacts [1-3]. This phenomenon is increasingly exacerbated by climate 

change, resulting in a rise in the severity and frequency of drought events, particularly in vulnerable regions like Iraq and Babylon 

Province. Evaluating drought severity within this hydrological context, while considering temporal and spatial aspects, is 

essential for efficient planning and management of water resources [4,5]. The challenges of accurately assessing drought in Iraq 

include limited historical data, varying regional climate patterns, and socio-economic factors that complicate response strategies. 

[6-8]. Drought can be broadly classified into four types: meteorological, hydrological, agricultural, and socioeconomic [9-11]. 

Drought indices are crucial for predicting and mitigating drought effects. They help meteorological and hydrological stations 

predict drought events using relevant climatic data. Studies widely use drought indices like the Standardized Precipitation Index 

(SPI) and Reconnaissance Drought Index (RDI) to monitor and forecast droughts in various areas [12]. The RDI was used to 

determine the temporal and spatial analysis of meteorological drought in Iraq [13,14]. 
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Similarly, numerous research investigations have advocated the RDI as a climatic index for identifying potential climate 

changes. Drought indicators are generally continuous functions of temperature, rainfall, river discharge, or other measurable 

hydro-meteorological factors. One of the most commonly used drought indices is the Standardized Precipitation Index (SPI) 

[15,16]. Drought analysis was done in the Meric-Ergene, Gediz, Seyhan, and Ceyhan river basins in Turkey using SPIs and 

monthly rainfall information [17,18]. Poshard’s and Michaelides investigated regional drought assessment by computing the SPI 

and RDI indices, which rely on historical monthly rainfall and temperature data. We can effectively use the two indices to assess 

and observe drought conditions and occurrences [19,20]. In Iran, a separate study utilizes the SPI and RDI indices over several 

time frames at forty meteorological sites. Linear regression models are constructed based on linear relationships between 

dependent and independent variables [21,22]. 

The method relies on a drought index as a dependent variable, with precipitation and temperature as independent factors, 

but its linearity becomes questionable in complex investigations. ARIMA is a prevalent statistical technique for time series 

analysis and forecasting, effectively capturing diverse temporal features within data [23,24]. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) and Autoregressive Integrated Moving Average (ARIMA) 

are used to address this drawback [25,2] Mossad and Alazba, developed ARIMA models for drought forecasting in hyperarid 

climates, showing potential for different time scales. Stochastic models struggle with nonlinear data, leading researchers to use 

artificial neural networks for hydrological prediction increasingly [26,27]. Support Vector Regression (SVR) model and its 

enhanced variants, fuzzy-SVR, are used by Fung et al. (2020), to predict the SPEI with a 1-month lead time. The F-SVR model 

improved accuracy with increasing SPEI time scales. On the other hand, other models were discussed for meteorological drought 

predictions downstream of the Langat River basin [28-30]. ARIMA models are crucial for time series analysis in economics, 

environmental science, and agriculture, accurately forecasting climatic phenomena like drought in Iraq and aiding farmers in 

water resource management [31,32]. 

Iraq is a country in the Middle East that has experienced frequent drought occurrences in recent decades. This significantly 

impacted water resources, irrigated and rainfed agriculture, cultivated land areas, desertification, and demographic distribution, 

hence resulting in substantial economic challenges for the country. For example, between 2000 and 2020, Iraq experienced 

drought conditions in approximately 10 out of 20 years, with more than 30% of its agricultural land affected, exacerbating 

problems such as desertification and resource scarcity [33,34]. This study intends to investigate and assess meteorological 

drought in Babylon Province. Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). The ARIMA 

model was employed as a temporal model based on a drought index time series to analysis drought event characteristics, including 

the steady-state probability of drought occurrences, the mean duration of droughts, and drought susceptibility. 

The objectives of this paper are to assess meteorological drought using the Standardized Precipitation Index (SPI) and the 

Reconnaissance Drought Index (RDI). It also aims to analyze drought conditions in Babylon Province using these indices. In 

addition, it seeks to compare the effectiveness of SPI and RDI in evaluating drought conditions. 

2. Materials and methods  

2.1 Study area 

The research focuses on the Babylon Province in Iraq, covering 5.338 Km2. Babylon Province is located between 44°2'43" 

E and 45°12'11" E and 32°5'41" N and 33°7'36" N, as shown in Figure 1. The region has an arid climate with high temperatures, 

drought, and scarce rainfall. Surrounded by the Euphrates River, it experiences extreme heat and dry weather. The city has 

evolved into a technological center, offering opportunities for economic expansion and industrial advancement [35,36]. 

However, the region experiences significant temperature variations. 

 

Figure 1: Geographical location maps the study area (by researcher) 
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2.2 Data acquisition  

The meteorological data required for the study were collected from the General Authority of Meteorology and Seismic 

Monitoring (GMSM). The information includes the maximum and minimum temperature, precipitation, and daily streamflow 

data of 20 years from 1991 to 2021, respectively. The data required for the study were collected from the metrological station as 

illustrated in Table 1. 

Table 1: Meteorological Stations around the study area for the period 1991-2021 

No. Station name Easting Northing Elevation Tmin (°C) Tmax (°C) 

1 Baghdad 58 "21 °'44  "18  '33  °54  32.0 16.0 31.3 

2 Karbala 44° 0' 32" 32° 36' 4" 34.6 18.3 31.6 

3 Hilla 44° 25' 36" 32° 28' 31" 33.0 16.8 31.5 

4 Najaf 44° 30' 18" 32° 0' 18" 46.4 18.5 32.1 

2.3 Software used 

2.3.1 Drin C 

Drin C (Drought Indices Calculator) is a specialized tool for drought indices analysis. The program includes several well-

known drought indices, such as the Precipitation-based Drought Index (SPI), Reconnaissance Drought Index (RDI), Streamline 

Drought Index (SDI), and Decadal Precipitation Index (PD). On the other hand, there is the option to use both approaches for 

each index, which also allows the comparison of the results between RDI and SPI. Furthermore, the use of gamma or lognormal 

distributions is supported. Drin C possesses comprehensive graphical user interface (GUI) capabilities and operates on Microsoft 

Windows operating systems. During the software package development, focus was placed on keeping a basic, comprehensive, 

and user-friendly structure. The indexes aim to provide clear results for efficient operational use and minimize data requirements, 

distributions that may be selected [37]. 

2.3.2 Orange 

Orange is a component-based visual programming software suite for data analysis and machine learning. From basic data 

visualisation, subset selection, and preprocessing to empirical assessment of learning algorithms and predictive modelling [38]. 

Time series data was examined using Orange software, which also used the ARIMA model to forecast drought index values for 

the next ten years. The study used the drought indicators SPI and RDI to evaluate the severity of drought in the examined region. 

Over several years, monthly rainfall data were gathered, and the SPI and RDI values were computed from it. The data was 

handled by Orange software, which also converted the time series into a suitable format for the ARIMA model and managed 

missing values. Data analysis led to the selection of the appropriate model. After estimating the model, metrics like RMSE were 

used to evaluate the accuracy of the predictions, and future values were forecasted using the model to predict SPI and RDI index 

values for the upcoming decade, which aided in understanding potential drought patterns. Data analysis led to the selection of 

the appropriate model. After estimating the model, metrics like RMSE were used to evaluate its accuracy. Then, future values 

were forecasted by using the model to predict SPI and RDI index values for the upcoming decade, which aided in understanding 

potential drought patterns. 

2.4 Drought indices overview 

The drought indices are provided below, along with a brief description that supports the severity of the drought. The selection 

of these indices was driven by two primary goals: (a) having a minimal data requirement, which would allow the program to be 

applied in multiple regions, and (b) having results that are easy to understand and use effectively in the field. The Reconnaissance 

Drought Index (RDI) and the Standardized Precipitation Index (SPI) were incorporated into the Drin C according to these 

standards. For interpreting SPI and RDI, it's easiest to look at the meteorological drought that occurred when precipitation was 

the primary variable (and, for RDI only, possible evapotranspiration) [39]. 

2.4.1 Standard precipitation index (SPI) 

 At Colorado State University, McKee et al. [16], created the SPI in 1992. His work was initially showcased during the 

Eighth Congress of Applied in January 1993. The weather was used to determine the SPI, and the long-term precipitation record 

for the given time frame was transformed from a probability distribution into a standard distribution. This process ensures that 

the mean SPI for the given circumstance and desired time frame is zero [16,40]. A lower SPI value indicates less precipitation 

than the median, while a higher value suggests more precipitation than the median. The normalization of SPI allows for equal 

representation of drier and wetter climates. The most significant benefit of the SPI is its ability to be easily used and calculated 

through the use of precipitation data [41]. Equations (1, 2 and 3) were used to compute SPI: 

 𝑆𝑃𝐼 = 𝑆
𝑡−(𝑐2 𝑡+𝑐1 )+𝑐0 

[(𝑑3 𝑡+𝑑2 )𝑡+𝑑1]𝑡+1
 (1) 

 𝑡 = 𝑙𝑛
√1

𝐺(𝑥2)
 (2) 
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G (x2) is the probability distribution of rainfall associated with the gamma (G) function; x is the precipitation sample value; 

S is the probability density positive and negative coefficient; and C0, C1, and C2 and d1, d2, and d3 are the calculation parameters 

for the G distribution function to convert to the cumulative frequency simplified approximate solution formula as Equation (3): 

 𝐺(𝑋) =
2

𝛽𝛾Ӷ(𝛾0)
∫ 𝑥𝛾−1𝑥

0
𝑒−𝑥/𝛽𝑑𝑥, 𝑥 > 0 (3) 

where 𝛾 is the shape parameter and β is the scale parameter of the Ӷ distribution function. 

Table 2 presents the classification of dry and wet spells based on SPI values. 

Table 2: Categorization of Drought Conditions Based on the (SPI) 

SPI values Classification 

2.0 or more Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2.0 or less Extremely dry 

 

2.4.2 Reconnaissance drought index (RDI) 

The Reconnaissance Drought Index (RDI) was created to assess water shortage more accurately, serving as a balance 

between input and production within a water system. RDI is based on both cumulative precipitation (P) and potential 

evapotranspiration (PET), which is one measured (P) and the other one calculated (PET) determinant [42,18]. The value (αk) of 

RDI is calculated for the i-th year on the basis of the time of k (months) as in Equations (4) and (5) as follows: 

 𝛼𝑘𝑖 =
∑ 𝑝(𝑖,𝑗)𝑘

𝑗=1

∑ 𝑃𝐸𝑇𝑖𝑗𝑘
𝑗=1

, 𝑖 = 1(1)𝑁𝐽 = 1(1)𝑘 (4) 

The Equation for calculating RDIst, where Pij and PETij represent precipitation and potential evapotranspiration in the j-th 

month of the i-th year, and N is the total number of years of available data, follows both lognormal and gamma distributions 

across various locations and time scales. The intensity ratings presented in Table 3 can be utilised to categorise drought [43]. 

 𝑅𝐷𝐼𝑠𝑡𝑖 =
𝑦𝑖−𝑦

𝛼̂𝑦
 (5) 

Table 3: Classification of drought conditions according to the RDI 

State Description Criterion 

01 mild −0.5 to −1.0 

02 moderate −1.0 to −1.5 

03 severe −1.5 to −2.0 

04 extreme < −2.0 

 
y(i) is the natural logarithm of ak (i), y is the arithmetic mean, and b σ y signifies its standard deviation. When employing 

the gamma distribution, the RDIst can be ascertained by fitting the gamma probability density function (pdf) to the designated 

frequency distribution of αk. Positive RDIst values indicate wet periods, while negative values represent dry periods, in contrast 

to the realm's typical conditions [42,44]. 

2.5 ARIMA model 

One common tool in hydrometeorological research is the ARIMA (Autoregressive Integrated Moving Average) model, 

which is especially useful when studying extreme weather events like droughts [45,46]. Assuming the time series data is 

stationary is a key component of a successful application; this may call for treatments like differencing or logarithmic 

adjustments. Choosing the right sequence of patterns of variation is crucial, and the Autocorrelation and Partial Autocorrelation 

Functions (ACF and PACF) might help with that [46]. Additionally, the model's goodness of fit is evaluated using statistical 

metrics such as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), where lower values 

indicate a better fit [47,48]. The research assesses the efficacy of a novel drought prediction system employing SPI-12 and RDI-

12, using MSE and R². It presents an ARIMA model, combining linear ARIMA and nonlinear SVR models, for 1-12 months, 

enhancing accuracy and explanatory power. The ARIMA model forecast flowchart is shown in Figure 2. The ARIMA model is 

given by Equation 6. 

 ∅ (𝐵)(1 − 𝐵𝑑)𝑦𝑡 = 𝜃(𝐵)𝜀𝑇 (6) 
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where B = the shift function., ϕ(B) = Autoregressive (AR) function, describing the impact of preceding values of the time series 

on the present value, θ(B) = Moving Average (MA) function, which defines the influence of historical errors , 𝜀𝑇= Error period 

at time t. 

                 Original time series 

(observed value of SPI -12 and RDI-

12

Data Processing : (SPI 12

RDI analysis

RDI 12 (α12, RDI-12)

  Model Development   

ARIMA Model       

|Random Forest     

    Predicted Results

(SPI and RDI)  

SPI and RDI analysis 

of  4 metrological 

station

Forecasting :data from 

1990-2020as training data

Compare and Evaluate

Performance of      

Both Models      |    

Recommendations

Orange software was utilized for 

data cleaning, processing, missing 

values handling, and 

transforming time series into the 

appropriate form for the ARIMA 

model.

Start

( data collection)

 

Figure 2: Methodology of the ARIMA and  (RF) Model for Forecasting 

2.6 Random forest model 

Leo Breiman's random forest (RF) technique is now a de facto method for bioinformatics data analysis. It manages complex 

interaction structures and highly correlated variables with ease and returns measures of variable relevance; it also performs 

admirably in situations when the number of variables is significantly higher than the number of observations. The study predicts 

RDI and SPI using Leo Breiman's random forest algorithm, a machine learning technology known for its excellent prediction 

accuracy and straightforward training procedure. In our study, we utilized a specific number of trees set to [500] as in Equation 

(7), to ensure robust performance. Additionally, the hyperparameters were adjusted using [grid search], which allowed us to 

optimize model accuracy. Breiman et al. [49], developed the RF ensemble algorithm in 2001. It is based on decision trees and 

predictors [49]. 

 𝑦̂ =
1

𝑁
 ∑ 𝑇𝑖

𝑁
𝑖=1  (𝑋) (7) 

where N is the number of trees in the forest, Ti(X) is the prediction made by the i-th tree for the input features X. 



Zahraa M. kadhum et al. Engineering and Technology Journal 43 (11) (2025) 905-919 

 

910 

 

 

2.7 Assessment of the validity index  

To assess the model's accuracy in predicting the observed values, this study employed RMSE, MAE, R2, and NSE (Nash 

1970). RMSE The method determines the value that is most distant from the actual value. The model's performance is rated by 

its prediction error, with a lower RMSE indicating better generalization to unseen data compared to its fit on training data [50]. 

Mean absolute error (MAE) is a more accurate measure of the anticipated value error that can more accurately reflect the 

real situation. Regression models use the mean value as a baseline for the error, employing R2 to evaluate whether the prediction 

error exceeds or falls short of the mean, and consequently, the degree to which the projected value matches the actual value. 

Additionally, the Percentage of Correctly Identified Droughts (POCID) is another critical metric. It is calculated  as in Equation 

(8) to (14) as follows: 

 𝑃𝑂𝐶𝐼𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
∗ 100 (8) 

Most of the time, the interval falls between zero and one; zero denotes no forecast, simply taking the mean, and one signifies 

complete accuracy of all predictions [51, 52]. The formulas are as follows: 

 RMSE = √
SSE

N
 (9) 

SSE is the sum of squared errors, and N is the number of samples used. SSE is given by 

 SSE = ∑ (yi − yî)
2N

I=1  (10) 

Given that the variables have already been established.  

 MAE =
1

N
∑ |(yîi

− y| N
i=1  (11) 

The nearer the RMSE and MAE are to 0, the greater the similarity between the two samples (predictor and observation). The 

coefficient of determination is: 

 R2 =
∑ (yi−yî)2N

I=1

(yi−y)2  (12) 

 𝑦̅ =
∑ 𝑦𝑖

𝑁
𝐼𝑖=1

𝑁
 (13) 

 𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁 

𝑖=1

∑ (𝑦𝑖−𝑦𝑖)2𝑁
𝑖=1

 (14) 

yi is the observed value at time i (i 5 1, . . . , N), y is the mean value taken over N, N is the total data size of yi (i 5 1, . . . , N), 

and ^yi is the forecast value at time i. 

3. Results and discussion  

3.1 Precipitation 

The average annual rainfall for the six sites is approximately 100.86 mm, with maximum and minimum temperatures 

recorded at 30.6 ℃ and 17.27 ℃, respectively, throughout the period from 1991 to 2021. The trend component facilitates the 

identification of the data's overall behavior or tendencies, independent of seasonal trends and short-term fluctuations. The data 

show no significant increase or downward trend during the analyzed period, as indicated by the trend map. The trend map 

indicates the absence of a discernible pattern, suggesting that the data are fundamentally stable or fluctuate around a particular 

level. Figure 3 shows the average monthly rainfall statistics obtained during a specific period, which is from 1991 to 2021. The 

trend line (expressed by the Equation 𝑦=0.3476 𝑥) indicates the general trend of the data. The coefficient value of 0.5752 indicates 

that approximately 57.52% of the variation in rainfall amounts can be explained by time, suggesting a moderately positive 

relationship between years and rainfall amounts. This evidence suggests that as time progresses, there is a measurable influence 

on rainfall trends, indicating a moderately positive relationship. Conversely, the remaining 42.48% of the variance is 

unexplained. This means that while time has a significant effect on rainfall, other factors are also at play that contribute to 

fluctuations in rainfall amounts. These factors could include climatic variations, geographical influences, or other environmental 

changes not directly accounted for by the time variable alone. The distribution of annual rainfall varies from year to year, as 

shown in Figure 4. 
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Figure 3: The average monthly rainfall quantities at several stations from 1991 to 2021 

 

Figure 4: Distribution of annual rainfall in the study area according to the meteorological stations 

3.2 Drought indices analysis by SPI and RDI 

The study examines the temporal distribution of SPI values annually from 1991 to 2021. The results show that as the period 

increases, the frequency of dry periods increases. Severe drought conditions were observed in 2003, 2008, 2009, and 2021 in all 

stations, including Baghdad and Diwaniyah stations. Moderate drought was observed in 2000, 2007, 2008, 2009, 1995, 1999, 

2011, 2016, and 2013. Most values were close to zero during 1991, 1992, 1994, 2005, 2010, and 2013, with humid conditions 

and high positive SPI values in Baghdad in 2013. The percentages of mildly drought periods increased, while extremely dry 

periods decreased and extremely wet periods increased, as shown in Figure 5  and Table 4. The table shows the Social 

Performance Index (SPI) and Relative Development Index (RDI) values from 1991 to 2021, revealing significant trends and 

fluctuations. The SPI initially showed strong social performance but a slight decrease to 76.3% in 1992. From 1993 to 1997, the 

SPI showed relatively stable values. However, a significant drop in 1998, indicating deteriorating social conditions, continued 

until 2005. Between 2006 and 2013, the SPI showed signs of recovery, peaking at 90.0% in 2013. The SPI's persistent decline 

by 2021 raises concerns about the sustainability of social improvements and population well-being. The RDI's decline from 

43.0% in 1991 to -147.3% by 2021 suggests systemic issues hindering development efforts. Future research should focus on 

identifying factors contributing to these trends and exploring solutions for sustainable development. 

Figure 6 shows the length, severity, and highest occurrence values of arid values found by RDI at all stations. However, the 

highest drought value of the period experienced a decrease in absolute terms. The maximum drought occurred in 1998 and 2008, 

specifically in the Hilla, Baghdad, and Najaf regions, where the values of RDI reached (-4.70 and -3.00), respectively. The years 

with moderate drought include 1991, 1992, 1994, 2003, 2004, 2015, 2016, and 2021. The RDI values in these years show that 

most stations experienced moderate drought.  In 2013, 2014, and 2016, the values were close to zero, indicating normal or wet 

conditions, according to figures 5 and 6. There is a large oscillation in drought levels over the years. In certain years, regions 

have experienced severe drought conditions, while others have been characterized by excessive rainfall. However, recent years, 

particularly in 2021, have indicated a resurgence of severe drought, which poses significant risks to agriculture and water 

resources. This variability in drought conditions has led to both extreme drought and wet phases, adversely affecting agricultural 

productivity and water supply systems. Continuous monitoring of these conditions is essential for developing effective water 

management and agricultural policies, particularly in the context of ongoing climate change and shifting precipitation patterns. 
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Table 4: Social Performance Index (SPI) and Relative Development Index (RDI) with Percentage Changes Over Time 

Years SPI (%) RDI (%) Relative Changes (SPI) % Relative Changes(RDI)% 

1991 80.0 43.0 - - 

1992 76.4 99.3 -4.5 130.2 

1993 76.4 -4.5  0.0  0.0 

1994 69.7 99.3  0.0  -9.1% 

1995 41.0 43.0 -48.8 0.0% 

2000 -9.5 -46.7 -132.3 -108.5 

2005 -76.5 -74.9 -703.1 -60.1 

2010 -10.0 -74.9  87.9   0.0  

2015 62.0   90.0  720.0  120.1 

2021 -134.0 -147.3 -316.1 -163.7 

The relative change is calculated as the percentage change from the previous year. The values in the relative change 

column for the first year (1991) do not have prior data; hence, the dash (-) is used. 

 

Figure 5: Drought index by SPI for metrological stations from 1991 to 2021 

 

Figure 6: Drought index by RDI for metrological stations from 1991 to 2021 
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3.3 ARIMA model Test and result 

 This paper uses the POCID, R², and RMSE to select the best model. Table 4 displays the results, including the optimal 

model selection and residual test results. There are noticeable variations in the amounts of rainfall that occur each year. The 

Drought Index (SPI-12 and RDI-12) data from different stations (Baghdad, Hala, Najaf, Diwaniyah, and Karbala) over a year 

are shown in Tables 4 and 5. These tables compare and contrast the data with an analytical model (ARIMA). The high POCID 

values showed the model's ability to identify drought periods accurately. For instance, in Baghdad, the ARIMA (1,1,1) model 

successfully identified 52.6% of the drought cases correctly for both indicators (RDI and SPI). Similar to the MAE values, the 

same model, ARIMA (1,1,1), was 0.89, which means that the forecasts were close to the actual values. The AIC criterion, which 

assesses the quality of various models based on the number of parameters, demonstrated this by reaching a value of 77.25, 

signifying a robust model with reasonable performance. According to Table 4, the R² of the ARIMA (6,1,1) model is 0.89, which 

means that the model explains 89% of the variance in the data. The RMSE of the ARIMA (1,1,1) model is 0.71, which indicates 

that the forecasts were relatively accurate. We tried different ARIMA models like (1,1,1) and (6,1,1) to find the best one for each 

station. The most suitable model for forecasting drought or rain at various stations can be found by evaluating several metrics, 

including POCID, R², and RMSE. The tables imply that local factors like terrain and climate influence model performance by 

station. This information helps studies of weather trends and the management of water resources. Especially the 6-1 model, the 

ARIMA model demonstrated good R² and POCID values in both drought and rainfall, hence supporting water resource 

management and climate planning. The tables offer insightful analysis of ARIMA model performance under drought and rainfall, 

hence supporting climate planning and water resources management. As a result, the ARIMA (6,1,1) model at Hilla station 

proved its strength in both tables, as it recorded the highest POCID (76.3%) in both cases and recorded a high R². The ARIMA 

(1,1,1) model shows good performance at most stations, as it obtained the best values in POCID at several stations, making it a 

reliable model. 

Table 5: Performance measures for comparison of observed and predicted data for SPI-12 months 

 

 

 

 

 

 

 

 

 

 
 

3.4 ARIMAand random forest model fitting: training, testing, and forecasting 

The study uses the SPI time series to analyze the annual trend of the data. The data is divided into two segments: training 

and testing. We allocate 80% of the data for training and 20% for testing. This paper presents a new drought prediction method 

based on the SPI and RDI with higher accuracy than traditional methods. By combining the advantages of the linear ARIMA 

model, a method was proposed to predict. SPI and RDI values for ten years are shown in Table 6. The model performs better in 

forecasting long-term outcomes (SPI-12 and RDI-12). We also plot the annual mean of the SPI time series to analyze the yearly 

trend of the data. Joint plots illustrate the relationship between observed and expected values, with a positive slope indicating a 

favorable correlation. The ARIMA model shows superior prediction capability at the SPI12 scale. The SPI forecast for Baghdad 

indicates a significant rainfall deficit, with a confidence interval ranging from -0.75 to -0.29. Both models exhibit optimal 

accuracy with a lead time of 1-2 months. With a confidence interval of 0.13 to 0.70. Hillah experiences a slight deficit, while 

Najaf shows a significant deficit, indicating a serious shortfall. These projections highlight the need for efficient water and 

agricultural solutions in these regions. As shown in Figure 7 (a and b), and Figure 8 (a and b), the prediction accuracy of the 

ARIMA model for short time scales of SPI and RDI was significantly lower than that for long time scales. In this study, 

performance metrics such as Root Mean Square Error (RMSE) and Adjusted R² were used to evaluate the effectiveness of 

Random Forest (RF) and ARIMA models in drought prediction. The Random Forest (RF) machine learning algorithm and the 

ARIMA model are compared in this study to see which one can better predict the Standard Precipitation Index (SPI) and the 

Reconnaissance Drought Index (RDI). We train both models on historical data and use the same training and testing datasets.  
This study found that the RF model correctly predicted droughts, with scores of 0.856, 0.551, and 0.218 for RDI-12 scales.  Table 

7 shows the Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) predictions for various locations using 

ARIMA and Random Forest models. 

 

 

 

station Model ARIMA(p, d, q) POCID R2 RMSE 

Baghdad 

ARIM  (1,1,1) 

ARIMA (6,1,1) 

ARIMA (6,2,0) 

52.6 

89.5 

78.9 

-0.458 

0.82 

0.818 

1.405 

0.33 

0.34 

Hilla 

ARIMA(1,1,1) 

ARIMA (6,1,1) 

ARIMA (6,2,0) 

36.8 

94.7 

89.5 

-0.57 

0.87 

0.94 

1.438 

0.145 

0.48 

Najaf 

ARIMA(1,1,1) 

ARIMA (6,1,1) 

ARIMA (6,2,0) 

47.4 

100 

100 

-0.71 

0.925 

0.948 

1.34 

0.184 

0.15 

Karbala 

ARIMA(1,1,1) 

ARIMA (6,1,1) 

ARIMA (6,2,0) 

94.7 

97.7 

94.2 

-0.28 

0.85 

0.84 

1.177 

0.215 

0.231 
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Table 6: Performance measures for comparison of observed and predicted data for RDI-12 months 

` 
Model ARIMA 

 (p, d, q) 
POCID R2 RMSE 

Baghdad 
ARIMA(1,1,1) 
ARIMA (6,1,1) 

ARIMA (6,2,0) 

52.6 
68.4 

78.9 

-0.078 
0. 86 

0.818 

1.176 
0.171 

0.34 

Hilla 
ARIMA(1,1,1) 
ARIMA (6,1,1) 

ARIMA (1,2,1) 

36.8 
42.1 

63.2 

-0.67 
0.96 

-0.76 

1.468 
0. 58 

1.506 

Najaf 
ARIMA (1,2,1) 
ARIMA (6,1,1) 

ARIMA (1,1,1) 

52.9 
47.4 

31.6 

-1.519 
0.76 

-0.25 

1.155 
0.79 

0.60 

Karbala 
ARIMA(1,1,2) 
ARIMA (6,1,1) 

ARIMA (6,2,0) 

52.6 
63.2 

52.6 

-0.307 
0. 91 

0.717 

1.71 
0.206 

0.514 

*POCID 
*RMSE 

(p, d, q) 

(Percentage of Correctly Identified Droughts) 
(Root Mean Square Error) 

P: Auto regression order 

d: differencing degree 
q : moving average order 

Table 7: Forecasting SPI and RDI for the future period (2020–2030) using the ARIMA Model 

station 

SPI RDI 

(forecast) 

continuous 

Confidence 

Interval 

Low 59% 

Confidence 

Interval 

High 59% 

(forecast) 

continuous 

Confidence 

Interval 

Low 59% 

Confidence 

Interval High 

59% 

Baghdad 

-0.53 -1.35 0.29 0.22 -0.52 0.96 

-0.08 -0.92 0.76 0.14 -0.67 0.95 

-0.03 -0.87 0.81 0.09 -0.73 0.92 

-0.02 -0.86 0.82 0.07 -0.76 0.91 

-0.02 -0.86 0.82 0.06 -0.77 0.90 

-0.02 -0.86 0.82 0.06 -0.78 0.89 

-0.02 -0.86 0.82 0.05 -0.78 0.89 

-0.02 -0.86 0.82 0.05 -0.78 0.88 

-0.02 -0.86 0.82 0.05 -0.78 0.88 

-0.02 -0.86 0.82 0.05 -0.78 0.88 

Hilla 

-0.07 -0.91 0.78 0.42 -1.23 0.39 

-0.60 -1.58 0.37 -0.13 -0.97 0.72 

-0.44 -1.49 0.62 -0.05 -0.90 0.80 

-0.84 -2.04 0.36 -0.03 -0.88 0.82 

-0.36 -1.69 0.96 -0.02 -0.87 0.83 

-0.95 -2.37 0.48 -0.02 -0.87 0.83 

-0.49 -2.04 1.05 -0.02 -0.87 0.83 

-1.01 -2.65 0.64 -0.02 -0.87 0.83 

-0.58 -2.33 1.18 -0.02 -0.87 0.83 

-1.10 -2.95 0.75 -0.02 -0.87 0.83 

Najaf 

 0.03 -0.78 0.84  0.02 -0.83 0.86 

 0.02 -0.79 0.84  0.00 -0.85 0.84 

 0.02 -0.80 0.83  0.00 -0.85 0.85 

 0.02 -0.80 0.83  0.00 -0.85 0.85 

 0.01 -0.81 0.83  0.00 -0.85 0.85 

 0.01 -0.81 0.83  0.00 -0.85 0.85 

 0.01 -0.81 0.83  0.00 -0.85 0.85 

 0.01 -0.82 0.83  0.00 -0.85 0.85 

 0.00 -0.82 0.83  0.00 -0.85 0.85 

 0.00 -0.82 0.83  0.00 -0.85 0.85 

Karbala 

-0.36 -1.15 0.42 -0.45 -0.94 0.05 

-0.21 -1.00 0.59 -0.44 -0.96 0.08 

-0.13 -0.93 0.67 -0.44 -0.98 0.10 

-0.09 -0.89 0.71 -0.44 -1.00 0.12 

-0.06 -0.86 0.74 -0.44 -1.01 0.14 

-0.05 -0.85 0.75 -0.44 -1.03 0.16 

-0.05 -0.85 0.75 -0.44 -1.05 0.18 

-0.05 -0.85 0.75 -0.44 -1.07 0.19 

-0.04 -0.84 0.76 -0.44 -1.09 0.21 

-0.04 -0.84 0.76 -0.44 -1.10 0.23 
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The ARIMA model is more accurate for long-term projections, particularly for Najaf station, where it predicts a significant 

rainfall shortfall of -0.80. The Random Forest model, while effective, often underestimates deficiencies in high-stress regions. 

The ARIMA model has reduced confidence intervals for SPI forecasts, indicating increased dependability. The ARIMA model 

also has more stable predictions over extended periods, particularly in forecasting SPI values. The ARIMA model is easier to 

understand and predict long-term drought conditions, while the Random Forest model may lack transparency in the prediction 

process. The study shows how important traditional statistical models are for understanding how things change over time and 

how machine learning techniques can make existing methods better by finding complicated patterns. Mean square error, root 

mean square error, adjusted R², and regression analysis were used. Machine learning models are potential drought warning 

techniques due to their time efficiency, fewer inputs, and less sophistication. The ARIMA model predicts a significant decrease 

in precipitation in Baghdad, while the RF model predicts a -0.20 SPI with a tight confidence interval. Both models have a high 

degree of concordance, with Hillah forecasting an SPI of -0.01. However, in Najaf, there are significant discrepancies, possibly 

due to the RF model's sensitivity to complex data patterns and its use of nonlinear data. Understanding these differences is crucial 

for understanding the precision of drought prediction models at each location. According to Xu et al. [32], the hybrid ARIMA–

SVR model exhibited superior predictive accuracy compared to the standalone ARIMA model for lead times of 1–6 months and 

effectively modeled the SPI values using different temporal scales. 

Table 8: Summarized comparison of the forecasts generated by the ARIMA and Random Forest models for SPI and RDI 

station Model Forecast 

(SPI) 

Confidence 

Interval 

(Low ) 

Confidence 

Interval 

(High) 

Forecast 

(RDI) 

Confidence 

Interval 

(Low ) 

Confidence 

Interval 

(High) 

Baghdad 

ARIMA -0.53 -0.75 -0.29 -0.02 -0.01 0.06 

Random 

Forest 

-0.45 -0.7  -0.2 -0.01 -0.08 0.05 

Hilla 

ARIMA -0.02 0.10  0.06 -0.01 -0.09 0.07 

Random 

Forest 

-0.01 -0.08   0.1 0.03 -0.05 0.11 

Najaf 

ARIMA -0.08 -1.00 -0.06 -0.04 -0.12 0.04 

Random 

Forest 

-0.65 -0.9 -0.45 -0.03 -0.11 0.05 

Karbala 

ARIMA -0.21 -0.36 -0.06 -0.09 -0.19 0.01 

Random 

Forest 

-0.13 -0.30  0.04 -0.06 -0.16 0.04 

 
Figure 7: Forecast of multi-timescale RDI value of the meteorological stations of the ARIMA model for the period 

         (1991-2021): a) observed RDI, b) ARMEI-predicted RDI for ten years 
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Figure 8: Forecast of multi-time-scale SPI value of the meteorological stations of the ARIMA model for the period  

         (1991-2021): a) observed SPI, b) ARMEI-predicted SPI for ten years 

4. Conclusion 

This paper emphasizes the importance of strengthening research on drought monitoring and prediction for governmental 

entities to prevent and reduce losses from drought disasters. It uses the SPI and RDI index and rainfall data from the national 

meteorological stations. According to the study, the ARIMA model achieves an R2 value of 0.925 in Najaf, compared to the 

Random Forest (RF) model's R2 of 0.551, by utilising the SPI and RDI indices in conjunction with rainfall data from national 

meteorological stations to provide better long-term forecasts.. The study compares the ARIMA model with the Random Forest 

(RF) algorithm, finding that ARIMA provides more accurate long-term predictions, while RF often underestimates deficiencies 

in high-stress areas. The ARIMA model provides clearer insights into temporal variations and more consistent long-term 

forecasts, despite the time-efficient nature of RF approaches. Orange software has proven successful in predicting drought signals 

in conjunction with the ARIMA model. The ARIMA model also shows reduced confidence intervals, indicating increased 

reliability. Although RF models are time-efficient, ARIMA remains clearer in understanding temporal changes. The use of 

Orange software with the ARIMA model shows great effectiveness in predicting drought indicators. By combining historical 

data with advanced analysis tools, accurate predictions can be achieved that help address future environmental challenges. It is 

necessary to monitor these indicators periodically for effective water and agricultural resource management planning, especially 

in light of ongoing climate change.  
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