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H I G H L I G H T S  
 

A B S T R A C T  

• Fluctuations in groundwater storage (GWS) 

were monitored in the Dammam unconfined 

aquifer. 

• GSFC, JPLD, CLSM, and in-situ data were 

used to assess GWS in the Dammam region. 

• GWS_GSFC showed the highest R² of 0.93, 

while GWS_JPLD had the lowest at 0.42. 

• GWS_GSFC showed better correlation than 

both GWS_JPLD and GWS_CLSM. 

• GSFC and JPL GWS data aligned with the 

highest spatiotemporal depletion zones. 

 Recently, the worldwide drought situation has gotten worse and is posing a serious 

threat to many nations, including Iraq. It is now unavoidable to use modern 

technologies, including remote sensing, to lessen the effects of this catastrophe. 

This paper aims to check the consistency of groundwater storage (GWS) derived 

from multiple sources utilizing remote sensing data with direct measurements in 

wells in the Dammam unconfined aquifer, which is situated in Al-Muthanna 

Governorate, Iraq. This study utilizes the water-level readings from well records 

from January 2008 to December 2014. The groundwater results from different 

combinations of Gravity Recovery and Climate Experiment (GRACE) products, 

Goddard Space Flight Center (GSFC) mascon, Jet Propulsion Laboratory 

Downscaled (JPLD), and Catchment Land Surface Model (CLSM), are calibrated 

and validated using statistical analysis. The findings illustrate large GWS 

depletion rates of GWS_W, GWS_JPLD, and GWS_GSFC at -54∓10 mm/yr, -

11∓5 mm/yr, -6∓5 mm/yr, respectively. The Pearson, Spearman, and Kendall 

correlation reaches 0.93, 0.96, and 0.90 with a P-value less than 0.05. The highest 

coefficient of determination (R2) was 0.93 for GWS_GSFC, and the lowest was 

0.42 for GWS_JPLD. The finding of classification of the GSFC and JPL data 

indicated that the GWS agrees with the spatial and temporal distributions of the 

highest depletion in the Dammam Aquifer. The study demonstrated that GRACE 

estimations can accurately reflect monthly variations in groundwater stocks, 

making them a valuable tool for resource managers to assess the water situation 

and plan sustainable water use. 
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1. Introduction 

Iraq faces a persistent water shortage due to the country's decreased share of fresh water coming from the source, which naturally 

leads to a deterioration in its quality brought on by pollution and climate change. Groundwater is the lifeblood of many sectors, 

especially agriculture and rural regions, and is the primary source of domestic water in many rural zones. The major source of the 

groundwater recharge is rainfall. Progress in geodetic monitoring has assisted in a deeper comprehension of water dynamics, 

allowing for monitoring temporal variations in water storage and identifying their underlying causes [1,2]. Hydrological dynamics 

are greatly impacted by climate change [3]. Climate change poses a serious threat to the management of water resources worldwide 

[4]. Changing climates and excessive groundwater utilization pose previously unheard-of risks to arid and semi-arid areas. Because 

of environmental, climatic, and administrative factors, the effects of lack of water differ from one place to another; terrain, weather 

trends, and management strategies are important factors. Iraq, located in an arid to semi-arid zone, has a scorching summer and a 

cool winter with little precipitation, an elevated evaporation rate, and water scarcity. Therefore, groundwater is an essential strategic 

resource. To guarantee water security in Iraq, thorough planning and long-term investment are needed [5,6]. The demand for 

groundwater has increased recently due to frequent droughts and growing populations [7]. 
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For measuring the groundwater storage (GWS) fluctuation, hydrological researchers depend heavily on monitoring wells [8]. 

Nevertheless, it is very challenging to implement monitoring well in mountainous and arid areas, which causes severe issues related to 

GWS data. Variations in groundwater storage are hard to estimate, given the spatiotemporal constraints in achieving finished and 

accurate groundwater estimates for vast geographical regions [9]. The storage of groundwater and surface water, two crucial elements 

of terrestrial water storage (TWS), is significantly impacted by environmental changes [10]. Conventionally, directly monitoring 

hydrological variables inside the water balance equation is the foundation of the TWS measuring approach [11]. Utilizing Remote 

Sensing (RS) to analyze data collected from an item is an efficient method [12, 13] and beneficial for modeling different hydrological 

processes. However, the 2002 GRACE satellite mission and its successor, GRACE-FO, revolutionized global water storage monitoring 

by providing a remote geodetic approach [14]. Nevertheless, the area of study selected must be greater than 200,000 km2 when utilizing 

GRACE; therefore, there are many limitations and uncertainties [15].  

Both natural and man-made variables influence water resources; the primary storage sources are rainfall and river recharge, 

while the main outputs are evapotranspiration, surface water, and domestic consumption of water [16]. Water storage volatility 

may result from temperature and precipitation variations [16,17]. According to Mo et al. [18], surface water and rainfall 

significantly affect water storage variations. Human activities like irrigation affect water storage variation with increased 

evapotranspiration and groundwater abstraction [19, 20]. Moreover, rising populations increase water supply demands [21]. 

According to earlier studies, variations in land cover significantly impact the global hydrological cycle [22, 23]. Aquifers are a 

rare source of water that is especially useful in arid and semi-arid areas where water scarcity is common, and a large amount of 

storage space is needed. This paper attempts to monitor variations in the hydrological situation of the Dammam Aquifer, an 

unconfined aquifer. It is the largest source of stored water in Iraq's Western and Southern Deserts. There is an absence of studies 

on the potential of monitoring the aquifer's GWS variations using remote sensing technologies. This paper aims to check 

complying of GWS derived from multiple sources utilizing remote sensing techniques with direct measurements in wells for the 

Dammam Aquifer; moreover, the study highlights the temporal and spatial analysis of GWS variations at the local scale in the 

absence of time series for the observation wells. Utilizing statistical analysis to assess GWS derived from RS data is a unique 

aspect of this study. To establish groundwater management policy, classification maps help identify depletion zones. This paper 

contributes to establishing a database for the groundwater level that supports informed decision-making on groundwater resource 

management in the Al-Muthanna Governorate, especially considering the difficulties these resources face due to interconnected 

environmental and human factors. 

2. Material and methods 

2.1 Study area 

The Dammam Aquifer, an unconfined aquifer, was the study area in this research. It is extended within the borders of Al-

Muthanna Governorate, in the southwestern desert region of Iraq. The region expands between longitudes 43° 48ʹ and 46° 41ʹ E 

and between latitudes 29° 03′ and 31° 43′ N, with a total region of approximately 46928 square kilometers [24], as shown in 

Figure 1. The ground's surface is defined by a gradual slope that begins at about 459 m in the southwest and decreases 

northeastward to less than 100 m above mean sea level (m.a.s.l) [25], as shown in Figure 2. One of the most notable geological 

formations with substantial groundwater aquifers is the Dammam Formation, particularly those found in unconfined aquifers in 

the Samawah Desert region [26,27]. The study area's climate is mostly described as arid desert, with summer temperatures 

consistently above 40 °C and rain only falling in the winter [28].  

 

 

 

Figure 1: Location of the study area al-dammam aquifer Figure 2: DEM (m) of the study area 
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In August, the highest recorded temperature at Al-Samawah Meteorological Station was 45.6 °C. Meanwhile, at 28.3 °C in 

July, the lowest temperature was recorded at its highest rate. The most precipitation was recorded in March, with 25.2 mm. 

Evaporation peaked in June, totaling 439.9 mm [29], in addition to winds primarily causing dunes [30].  

2.2 Data sources  

Estimates of monthly changes in groundwater levels from 2008 to 2014 in the studied aquifers were based on data collected 

from four sources, as shown in Table 1. 

Table 1: Data sources utilized 

No. Source Data 

1 GWS from GRACE-GSFC Mascon Data. 

2 GWS from CLSM – GLDAS Model from GEE. 

3 GWS from Global Mascon (CRI Filtered) from GEE. 

4 GWS from in situ measurement data. 

2.2.1 GRACE-GSFC mascon data 

The Goddard Space Flight Center (GSFC ) mascon provides access to the GRACE satellite datasets utilizing various methods 

[31]. GWS estimates based on GRACE satellite data were computed by subtracting non-groundwater storage components (e.g., 

Canopy Water (CW), Surface Water (SW), Soil Moisture (SM), and Snow Water (SW)) from TWS based on the same period 

[32]. This study utilized soil moisture storage at depths ranging from 0 to 2 m in the area of interest using the GLDAS model 

NOAH025_Mv2.1 dataset. 

2.2.2 CLSM – GLDAS model 

The Catchment Land Surface Model (CLSM025_DA1_D v2.2), enables climate change simulation and digitalizes land-

atmosphere interactions [33]. It is based on a groundwater dynamics model stored shallowly beneath two meters of bedrock. 

However, it disregards the impact of human activities like pumping, reflecting the aquifer's natural variability in GWS [33].  

2.2.3 Global mascon (CRI filtered) from GEE 

Google Earth Engine (GEE) platform has been utilized in this study to gain GWS estimation, based on a dataset that contains 

gridded monthly global water storage derived from GRACE and GRACE-FO and processed at JPL utilizing the Mascon approach 

(RL06.1Mv03). The RL06.1Mv03 is an updated version of the previous Tellus JPL Mascon RL06Mv02. A spatial resolution of 

55660 m was downscaled to 10000 m for GRACE-JPL Mascon, from 2008 to 2014. 

2.2.4 In situ measurement data 

The measured groundwater levels (GWL) data at 85 wells in the Dammam unconfined Aquifer for the period from 2008 to 

2014, as shown in Figure 3, were provided by the General Authority for Groundwater in Iraq (unpublished data). The 

groundwater depths in these wells range between 8.5 to 255 m. The aquifer's depth, thickness, and permeability are crucial 

variables that define the ideal well placement [34], in addition to the terrain of the location [35]. The recorded static water level 

(GWL) was utilized to estimate the GWS derived from these wells by multiplying it with the corresponding specific yield (Sy) 

value Equation 1 [36]: 

  GWS = GWL × Sy         (1)                                    

The aquifer material characteristics were utilized for estimating the amount of Sy [36]. Its average was 0.01 for the 

unconfined zone of the Dammam Aquifer [37]. The data utilized in the study are shown in Table 2. 

Table 2: Description of data utilized from 2008 to 2014 

Variables Data type Spatial 

resolution  

Notes 

GRACE-GSFC 

Mascon  

RL06 v 02 0.5°×0.5° https://earth.gsfc.nasa.gov/geo/data/grace-mascons. 

Available format Net-CDF. 

Accessed on 1 October 2024. 

GRACE-JPL Mascon RL06.1Mv03 55660 m Google Earth Engine. 

CLSM025 DA1_D  v2.2 27830 m Google Earth Engine. 

SMS 

 

GLDAS model 

NOAH025_Mv2.1 

0.25°×0.25° https://giovanni.gsfc.nasa.gov/giovanni. 

Available format Net-CDF. 

Accessed on 1 October 2024. 

 SWS, CWS GLDAS model 

NOAH025_Mv2.1 

0.25°×0.25° https://giovanni.gsfc.nasa.gov/giovanni. 

Available format Net-CDF. 

Accessed on 1 October 2024. 

 Wells in-situ Point   

https://earth.gsfc.nasa.gov/geo/data/grace-mascons
https://giovanni.gsfc.nasa.gov/giovanni
https://giovanni.gsfc.nasa.gov/giovanni
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Figure 3: Location of groundwater wells in the study area 

2.3 Methodology  

The GEE platform was utilized to process GRACE satellite data by downscaling and computing the GWS monthly in Tiff 

format, following a seamless download. An ArcGIS 10.8 raster calculator was utilized to convert the data yearly. Figure 4 

summarizes the adopted methodology for estimating GWS_GSFC from 2008 to 2014. The study area lacks a snow water 

equivalent depth. Furthermore, the components, such as canopy and surface water storage, did not have a substantial impact 

because their mean values were very close to zero. Therefore, they were ignored. 

 

Figure 4: Methodology of estimating GWS_GSFC from 2008 to 2014 

3. Results and discussion 

The calculated fundamental statistics of the GRACE data in Table 3, the findings show that GRACE-JPLD and GSFC, 

located in an unconfined aquifer zone of the Al-Muthanna Governorate, have the highest negative GWS, at -52.99 cm and -47.67 

cm, respectively. The overuse of groundwater pumping causes to decline in rainfall and an increase in evaporation, as well as 

activities of humans in this region, as pointed out by [38, 39]. In contrast, conversely, in GWS_CLSM, the minimum surplus of 

GWS +34.56 cm was found. At the same time, GSFC and JPLD have the highest deficits of -38.66 cm and -34.64 cm, 

respectively. But at GWS_CLSM, the maximum surplus was 50.24 cm. Thus, the arithmetic mean and median declined for the 

GWS_GSFC and GWS_JPLD, whereas CLSM rose. Notably, the Coefficient of Determinate (R2) values of 0.93, 0.45, and 0.42 

for the GWS_GSFC, GWS_CLSM, and GWS_JPLD, respectively. The variation between the CLSM model and the GRACE 

satellite data may be due to the CLSM model's unsuitability to local climatic conditions [40].  
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Table 3: GRACE data's fundamental statistical parameters 

Parameters GWS_JPLD GWS_CLSM GWS_GSFC 

Minimum (cm) -52.99 34.56 -47.67 

Maximum (cm) -43.64 50.24 -38.66 

Mean (cm) -46.55 41.92 -42.78 

Median (cm) -46.21 43.39 -42.43 

Skewness -1.50 -0.50 -0.45 

Kurtosis  2.65 2.21 -2.00 

Coefficient of determinate R2   0.42 0.45 0.93 

Stander Deviation  3.23 6.51 2.70 

Root Mean Square Error RMSE (m)  0.33 6.2×10-3 0.10 

 

The finding illustrates the study’s ability to assess groundwater levels over a small region, with a Root Mean Square Error 

(RMSE) ranging from 6.2×10-3 to 0.33 m. From a temporal perspective, the most significant temporal variability was observed 

in the CLSM and JPLD, with standard deviations of 6.51 and 3.23, respectively. The least variable was GSFC, which had a 

standard deviation of 2.70. Figure 5 compares GWS variations of the wells data and RS data in the water level of the Dammam 

Aquifer. The time series reveals a high concordance between the spatiotemporal fluctuation in GWS obtained from GRACE data 

(JPLD, GSFC, CLSM) and direct measurement data from in-situ wells from 2008 to 2009 and from 2012 to 2014, where GWS 

continued to decline in the aquifer, according to this data. Due to the region's proximity to the Kingdom of Saudi Arabia and its 

shared aquifer, variations in groundwater levels in wells may be caused by regional or international groundwater fluctuations. 

According to the GRACE satellite data, the histograms, shown in Figure 6, the distribution of probabilities of the GRACE 

data is either normal or inclined to be such. Skewness values for GSFC and CLSM are minimal (-0.5 < Skewness < 0.5), with 

the exclusion of JPLD, which illustrates a value < - 0.5, indicating a negatively skewed distribution. Furthermore, all Kurtosis 

numbers are modest < 3 and negative, suggesting a Platykurtic distribution with light tails or no outliers. The GWS_W's depletion 

rates are higher than those of the GWS_JPLD and GWS_GSFC, as shown by depletion trends of -54±10, -11±5, and -6±5 mm 

per year, respectively. Thus, the RS data GWS_JPLD and GWS_GSFC trend were negative, which also matches those submitted 

by [38, 41, 42]. The negative trend in the study area is closely associated with groundwater extraction rates that exceed recharge 

rates to support agricultural activities, threatening the sustainability of water resources; researchers [38, 39, 43] attribute these 

declines to the drought in late 2007 in Iraq. Table 4 illustrates the correlations between the GWS derived from GRACE and 

GWS_W according to the findings of the Pearson, Kendall, and Spearman correlation analyses. 

 

Figure 5: The fluctuations of the GWS based on various sources 
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Figure 6: Data histograms from GRACE 

Table 4: Correlations of GWS-derived satellite data with recorded well data in Dammam, an unconfined aquifer 

Parameter 

GWS 

Pearson Spearman Kendall 

 Correlation P-value Correlation P-value Correlation P-value 

GWS_JPLD 0.42 0.34 0.25 0.58 0.23 0.45 

GWS_CLSM 0.44 0.31 0.29 0.53 0.33 0.29 

GWS_GSFC 0.93 0.002 0.96 0.0004 0.90 0.004 

 

The results from the Pearson, Spearman, and Kendall correlation analyses in Table 4 present the relationships between the 

GWS-derived GRACE and GWS_W. The results of the correlation analysis showed that GWS_GSFC has a strong positive 

Pearson, Spearman, and Kendall correlation; if the p-value > 0.05, it indicates not statistically significant, and if it is < 0.05, it 

shows statistically significant [44, 45]. Then, GWS_JPLD and GWS_CLSM have a weak positive (non-significant) Pearson, 

Spearman, and Kendall correlation. Groundwater is the primary water source in the study area for household, agricultural, and 

industrial uses. There were perhaps 70 public and 700 private benefit wells. [46], as shown in Figure 7. It is apparent from Figure 

7 that the wells are highly concentrated in the study area's northern part, with a less dense distribution in the southern and eastern 

parts. The aquifers in the north may contain more water, encouraging more wells to be drilled. There may be a higher 

concentration of population in the north, raising the demand for water sources.  

 

Figure 7: Distribution of wells in the study area [46]. 
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Figure 8 illustrates the spatial variation in GWS throughout the study area. Significant variation in GWS can be clearly seen. 

Some parts experienced a considerable decline in GWS, as clear in the northern part, where the average GWS was -51.79 and -

51.00 cm/yr for the GSFC and JPLD, respectively. While other parts experienced a lesser decrease, as in the eastern part, where 

the average GWS is -35.80 and -36.73 cm/yr for the GSFC and JPLD, respectively, this significant variation is due to the 

inconsistent distribution of wells. This illustrates that exceedingly large GW withdrawals from deep wells impact the GRACE 

satellite data and are not limited to shallow wells. 

To show and evaluation the distribution and difference in the computed depletion of groundwater, the average GWS’s 

spatiotemporal variation was classified into five classes (≤ -50, -47 to -43, -43 to -41, -41 to -39, and ≥ -39), Figure 9 and Table 

5. These classes represent the ratio of groundwater depletion within the Dammam Aquifer from 2008 to 2014. 

 
Figure 8: Average GWS's spatiotemporal variations from 2008 to 2014in the dammam aquifer a) GSFC and b) JPLD 

 

Figure 9: Classify average GWS a) GSFC and b) JPLD in the Dammam Aquifer 

Table 5: Groundwater depletion ratio in the dammam aquifer is categorized based on the area it occupies 

Class Average GWS_GSFC Average GWS_JPLD 

Ratio % Area (Km2) Ratio % Area (Km2) 

≤ -50  6 2562 7 3175 

-47 to -43 8 3697 25 11729 

-43 to -41 59 27124 39 18166 

-41 to -39 22 10406 21 9789 

≥ -39 5 2509 8 3439 

 

The finding of the classification that class (-43 to -41) is the most common, occupying 59% and 39% of the study area, 

equivalent to 27124 km2 and 18166 km2 for the GWS_GSFC and GWS_JPLD, respectively. In contrast, class (≥ -39) is the least 

common, occupying only 5% of the area (2509 km2), which represents the minimal level of groundwater consumption for the 

GWS_GSFC, but class (≤ -50) is the least common, occupying only 7% of the area (3175 km2), which represents the higher level 
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of groundwater consumption for the GWS_JPLD. When comparing the ratio of areas classified as class (≤ -50) according to 

GSFC and JPLD data, the finding is that JPLD data shows a wider distribution of areas suffering from severe depletion of the 

groundwater storage. The variation probably results from JPLD data's increased sensitivity in identifying water changes that 

cause depletion. While the class (-47 to -43) is classified as moderately depleted, there is a significant varies in the estimate of 

its area and ratio when comparing the GSFC and JPLD data. The class (-43 to -41) was widely distributed in both datasets, 

indicating a widespread moderate decline in the consumption of groundwater storage. The class (-41 to -39), with similar ratios 

for both data, represents areas with relative stability in groundwater storage consumption. Class (≥ -39), the GSFC data 

represented a small ratio compared to the JPLD data. It represents the areas with the lowest groundwater storage consumption, 

possibly due to the lesser number of wells or minimal human activity. 

4. Conclusion 

This paper suggests the ability of GRACE to detect GWS fluctuations over an unconfined aquifer at a smaller geographic 

scale than the usual spatial resolution of GRACE in southern Iraq. Generally, the unconfined Dammam Aquifer has experienced 

groundwater depletion over the last seven years. The highest rate of groundwater depletion during the study period from January 

2008 to December 2014 for GWS_W at -54±10 mm/yr, whereas the depletion based on the RS data ranged from -54±10, -11±5 

to -6±5 mm per year. The study's findings indicate that the GRACE-MASCON can be utilized over a small region to estimate 

groundwater levels, achieving an RMSE of 0.10 m and an R² of 0.93. On the other hand, the results of the correlation analysis 

showed that GWS_GSFC has a strong positive Pearson, Spearman, and Kendall correlation. 

The primary drivers of GWS depletion are human activity, climate change, drought, and a rise in the demand for water in 

agriculture. This led to a lower amount of groundwater recharge than groundwater consumption. Furthermore, groundwater 

withdrawals from all shallow or deep wells impact GRACE satellite data. This paper highlights the utility of using GRACE-

GSFC gravity data to detect GWS variation in data scarcity and to create an integrated database of wells in situ and GWS derived 

from RS to monitor the aquifer from expected depletion. 
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