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Face recognition (FR) is a fundamental task in computer vision with applications in security,
healthcare, and human—computer interaction. Although convolutional neural networks
(CNNs) have significantly advanced FR performance, existing systems remain highly
sensitive to variations in illumination, pose, and image quality. Moreover, reliance on
benchmark datasets alone often limits generalizability to real-world conditions. In this work,
a customized lightweight CNN architecture was designed to enhance recognition accuracy
under diverse lighting and pose variations. The approach integrates both the Labeled Faces
in the Wild (LFW) dataset and a locally collected dataset, ensuring evaluation under
benchmark and real-world conditions. A robust preprocessing pipeline—including cropping,
normalization, and augmentation—further strengthens the model’s generalization. To avoid
undertraining, model optimization was guided by validation loss and early stopping rather
than fixed epoch counts. Experimental results show that the proposed model achieves
99.67% accuracy on the local dataset and 93.33% accuracy on LFW, with a compact model
size of only 117 MB. In addition, the proposed CNN requires 33.63M parameters and 0.73
GFLOPs, which is substantially lower than ResNet101 (42M, 3.27 GFLOPs) and VGG-16
(134M, 3.09 GFLOPs), highlighting its efficiency in terms of both model size and
computational complexity. Compared with state-of-the-art (SOTA) architectures such as
ResNet101, GoogLeNet and VGG-16, the customized CNN delivers a favorable trade-off
between accuracy, efficiency, and computational complexity. These results demonstrate that
carefully designed lightweight CNNs, when combined with local and public datasets, can
achieve robust face recognition in unconstrained environments, making them suitable for
deployment in resource-limited real-world applications.

1. Introduction

Face recognition (FR) technology continues
to evolve dynamically with ongoing research

[1], [2]. The protection of personal identity
authentication methods has declined, and
incidents such as forged IDs have occurred
frequently. However, FR systems surpass

and development. Reliable personal identity
authentication is critical to protecting sensitive
information. This interdisciplinary technology
has numerous applications and is utilized in
various sectors, including security, human-
robot interaction, genetic disorder diagnosis
from facial features and appearance deformities
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traditional recognition methods in speed and
efficiency, which is nearly instantaneous
identification. It also offers a strong element by
examining a whole feature in the face, making
it a very secure method in many applications.
Moreover, these systems' automation lowers
the need for human intervention, reducing
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operating expenses and human error, despite
progress, FR still degrades under variable and
making them a proper choice for numerous
applications. Moreover, the automation of FR
systems reduces human intervention, operating
cost, and human error. Despite such progress,
FR performance still degrades under variable
illumination and pose, which motivates the
present work [3]. FR exhibits prominent
advantages in particular scenarios, such as
criminal identification. An FR system does not
require expensive equipment, in which only
camera devices can collect facial images to
train the model using a computer and then the
system is ready to serve in real-world
application [4]. However, FR still has
shortcomings, such as the lighting conditions
either low or strong light environments, data
collection issues from privacy and errors
associated with labelling the samples, and the
complexity of creating the right data for a
specific project [5]. Since the 1960, numerous
FR techniques have been developed, and these
techniques are often categorized as shallow
learning methods since they require artificial
experience to extract sample features and can
only utilize a few fundamental features of
images. On the other hand, Neural network-
based techniques can extract more complex
characteristics, like corner, edge, and texture
information, and are regarded as deep learning
techniques [6]. CNNs play an important role in
the development of FR technology because
they can efficiently extract facial features from
images. A large amount of data is required to
train this network. The size and quality of the
training data have a critical impact on the
performance of CNNs. Most datasets are
limited in quantity and quality; the data may
not be sufficient to achieve the convergence
required to train an accurate model. The data
may contain errors such as mislabeling or
image quality deviations. Despite these issues,
CNN-based FR methods have clear advantages.
These networks independently extract complex
features from labeled data, and eliminating the
need for manual feature engineering [7]. CNNs
provide translation equivariance and, with
pooling, limited translation invariance (not full
scale invariance), allowing faces to be

recognized at different scales despite
differences in location and size. This feature
makes CNNs ideal for dealing with variations
in facial orientation and expression. [1 Recent
innovations in  CNN architectures (e.g.,
AlexNet, GoogLeNet, and ResNet), have
improved the accuracy of FR systems, which
demonstrate  exceptional performance in
diverse and challenging environments such as
complex illumination, changing facial
expressions, and partial occlusion. As a result,
CNN-based FR has become an important
research area, and significant progress has been
made in both theoretical models and practical
applications [8].

However, FR, as a field of computer vision
and pattern recognition, has been extensively
studied in the past few years as one of the most
active research areas in artificial intelligence,
where the system designed starts by detecting a
face and then recognizing it . Researchers have
developed several recognitions approaches to
capture discriminative features. Traditional
techniques typically include two processes:
high-dimensional  feature extraction and
classifier design. On the other hand, CNN
models automatically combine the classifier
and feature extractor in an end-to-end manner
[9], which significantly advanced FR
technology. CNN can be adapted to various
challenges to the real-world applications. In
comparison to traditional FR techniques, CNN
models consistently outperform them [10].
Researchers have adopted various strategies to
optimize CNNs. For example, an efficient
hybrid multi-layer CNN combined with
Support Vector Machines (SVM) enhances FR
by handling diverse datasets and reaches an
accuracy of 99.87% [11]. Moreover, a
proposed CNN model called RobFaceNet
achieved balance by incorporating multiple
features and attention mechanisms, achieving
95.95% and 92.23% on the CA-LFW and CP-
LFW datasets, respectively, compared to
95.45% and 92.08% for the very deep ArcFace
model [12]. Regarding low-resolution image
issues, Mishra et al. [13] have utilized
multiscale parallel deep CNN architectures to
tackle the difficulties associated with low-
resolution images of faces, offering a solution
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that enhances accuracy in surveillance
applications. Furthermore, the authors in [14]
have designed an algorithm for low-resolution
images, a crucial aspect of surveillance
applications, in which it focuses on optimizing
CNN classifiers to handle the challenges of
pose and low-resolution imaging. Recent
literature on DCNNs highlights considerable
success in static conditions, yet struggles in
dynamic environments remain prevalent.
Furthermore, there is no real consideration for
the computational challenges. This paper
critically  examines these  shortcomings,
particularly in adaptability to lighting and pose
variations, and introduces an innovative
approach that effectively addresses these
challenges. Moreover, to increase the enhanced
reliability, a local dataset has been created and
compared with the LFW dataset in various
scenarios. The design proficiently achieves FR
in  unconstrained  settings,  addressing
challenges reported by prior methods. Beyond
ResNet-101, GoogLeNet, and VGG-16, state-
of-the-art (SOTA) face recognition models
have been reported in literature to achieve
superior verification accuracy on large-scale
datasets. While these were not re-implemented
in this study, their results are discussed to
contextualize the performance of the
customized CNN.

Despite remarkable progress, existing
CNN-based face recognition systems still face
challenges in uncontrolled environments,
particularly under extreme variations in
lighting and pose. Moreover, most studies rely
heavily on benchmark datasets while
neglecting the importance of integrating local,
real-world data, which limits generalizability.
Addressing these gaps, this paper proposes a
lightweight, customized CNN framework
specifically optimized for robust performance
under diverse illumination and pose conditions.
The proposed approach combines public
(LFW) and locally collected datasets, advanced
preprocessing, and systematic architectural
refinements to balance accuracy, efficiency,
and robustness.

The main contributions of this work are
summarized as follows:

Customized CNN Design: Development of
a lightweight deep CNN architecture that
integrates convolutional, normalization,
pooling, and dropout layers in a systematic
manner to improve robustness against lighting
and pose variations.

Integration of Local and Public Datasets:
Novel use of both the Labeled Faces in the
Wild (LFW) dataset and a locally collected
dataset, ensuring evaluation and training under
real-world conditions.

Advanced Preprocessing Pipeline:
Implementation of preprocessing techniques
(cropping, normalization, augmentation, noise
addition) to enhance model generalization
while reducing sensitivity to illumination and
pose variability.

Comprehensive Experimental  Analysis:
Comparative evaluation of the proposed model
against SOTA architectures (ResNet101,
GoogLeNet, VGG-16), supported by detailed
metrics (accuracy, TPR, FLOPs, parameters,
and inference/training times).

Efficiency-Oriented  Training  Strategy:
Adoption of validation-guided training (early
stopping) instead of fixed epochs, ensuring
convergence while reducing overfitting and
computational overhead.

The arrangement of this research is as
follows: Section 2 describes the tools and
methodologies of CNN  design and
optimization.  Section 3  presents the
experimental results which demonstrates the
effectiveness of the proposed approach.
Finally, Section 4 presents the conclusions and
outlines directions for future work.

2. Tools and Methodology

The methodology of the FR system is
explained in this part. The approach integrates
advanced machine learning techniques with a
customized DCNN design. In addition, an
effective  combination of  preprocessing
methods (resizing, normalization, cropping,
augmentation) reduces sensitivity to lighting
and pose variations and enhancing its
application breadth. The description of the
hardware and software configurations is as
follows:
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2.1 Hardware and Software Utilized for
Recognition System

A laptop with the following hardware was
used for the experiments: Processor: 13th Gen
Intel(R) Core (TM) i7-13620H, 2.40 GHz;
RAM: 16.0 GB; GPU: NVIDIA GeForce RTX
3060, 6GB. The software tool used for
implementing and testing the FR system was
MATLAB R2023b. This version of MATLAB
has an environment for development and
implementation, including the Deep Learning
Toolbox for building and training the CNN
model and other add-ons, such as the Image
Processing Toolbox, were utilized for data
preprocessing and visualization. Also, the
Vision Toolbox’s
\vision.CascadeObjectDetector was used. The
study used neural network functions to train
and validate CNN models. MATLAB's video
processing tools extracted frames from the
smartphone's captured videos. Face data were
captured using a Realme smartphone with a
camera resolution of 125 MP (4:3 aspect
ratio), and the video recording was HD 1080p,
30 fps.

2.2 Data Preparation
2.2.1 The Local Dataset

The local dataset for training and validation
was built by capturing videos of five
individuals, each no longer than one minute,
under different lighting and facial pose
conditions [15]. The camera was positioned to
replicate real-world scenarios, capturing frontal
and slightly angled facial views. Next, the
frames were extracted from videos using
MATLAB’s VideoReader function and images
were saved per subject for training and testing.
Figure 1(a) shows a sample of the locally
created dataset.

Data Augmentation (DA) is a prevalent and
crucial preprocessing technique for CNN to
reach significant performance. A MATLAB
code has been designed to perform DA. It
applies various transformations to create new
versions of the original images, thereby
increasing the size and diversity of the dataset
up to four times. Figure 1(b) shows a sample of
a dataset with various augmentation methods.

Augmentation was applied to the training set
only; test sets remained unchanged.

'
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Flgure 1 (a) Sample of Locally Created Dataset
Before the Preprocessing, and (b) Sample of a Pre-
processed Local Dataset, Including Changing in Lighting
Condition, Adding Noise and Rotation [15]

2.2.2 Public dataset

The LFW dataset is among the most widely
used benchmarks for unconstrained face
recognition [16]. It contains over 13,000
labeled images collected from the web and
features a diverse group of people
photographed under a variety of conditions.
Given its inherent diversity in poses, lighting,
and facial expressions, this dataset is ideal for
evaluating labeled face systems in the wild. For
this research, a subset of the LFW dataset was
selected and customized to make it suitable for
the proposed system in which the identities
with >75 images have been retained, yielding 5
identities and 375 total images. Selection
criteria and final counts are reported to ensure
reproducibility. The selection of the images
was random for each person, ensuring
variability in lighting conditions, facial poses,
and expressions. Preprocessing steps were
applied to ensure consistency with the CNN
input and compatibility with the model. The
dataset was split into two subsets: a training set
(75%) and a validation set (25%) for evaluating
the model’s performance with a confusion
matrix. To further enhance the dataset’s
variability and robustness, DA was applied to
the training set only; the test set remained
untouched to ensure an unbiased evaluation.
Using a public and recognized dataset enhances
the credibility of the research and provides a
benchmark for comparing it with the local one
that created for the proposed system with
existing methods. Figure 2 (a) shows a sample
of the public dataset LFW, and Figure 2 (b)
shows a sample of LFW dataset with various
augmentation methods.
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Figure 2. (a) Sample of Public Dataset (LFW)
Before the Preprocessing, and (b) Sample of a Pre-
processed Public Dataset, Including Changing in
Lighting Condition, Adding Noise and Rotation [16]

2.3 FR system and Network Design
2.3.1 Steps of FR System

The proposed FR system is designed to
reliably identify individuals under diverse
lighting and pose conditions. Figure 3
illustrates the pipeline of the system. A video
stream is first captured by a standard camera.
From this stream, facial regions are detected
using a cascade object detector. The detected
face images undergo preprocessing steps,
including cropping, normalization, resizing,
and data augmentation, to reduce sensitivity to
environmental variations.

The preprocessed facial images are then
passed into the customized CNN model. The
CNN maps each face to a high-dimensional
feature embedding, which is subsequently
compared either through Softmax classification
(for closed-set recognition) or embedding
similarity (cosine distance) for verification
tasks. This ensures that recognition is not
solely dependent on classification but can
generalize across identities. The system is
designed for  deployment in  secured
authentication scenarios where only authorized
individuals are recognized; the term “secured
area” refers to application domains such as
restricted office entry, laboratory access, or
device unlocking.

S
gE

Extract Frames

Preprocessing

Cropping

v

= Augmentation
Customized

CNN e
Archetichture

6 Convolution
& RelLU i
Recognized Pooing y, Training
Activations
Traaining

Fuly Connected
Figure 3. The Flowchart of the Proposed Face
Recognition System Showing the Most Important Layers
in the Customized Model

2.3.2 Designing the Network

The proposed DCNN was developed using
a stepwise design methodology. This means
that layers were incrementally added, and their
impact on performance was carefully
evaluated. The initial architecture began with a
single convolutional layer, followed by max
pooling. Successive modifications introduced
multiple  convolutional blocks, batch
normalization, and dropout layers to improve
stability and prevent overfitting. This
systematic, step-by-step design ensured that
each architectural addition was performance-
driven, striking a balance between accuracy,
computational cost, and robustness. The
architecture targets complex facial patterns,
aiming to improve accuracy and robustness
under unconstrained conditions. The network
design is inspired by traditional DCNN
architectures like AlexNet, and was modified to
meet  task-specific  requirements  while
remaining lightweight.

The final model consists of 14 layers:

Convolutional blocks (Conv3 with 64, 128,
and 256 filters) for hierarchical feature
extraction.

Batch normalization and ReLU activations
to stabilize and accelerate training.

Max-pooling layers to reduce spatial
complexity while preserving discriminative
features.
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A fully connected layer (256 units) to
integrate extracted features.

This layer joins the features that have been
collected to a high-dimensional vector. This is
the last representation that is used before
classification. The mathematical functions of
this layer are as follows:

Z=W'X+b (1)
where X is the input vector, W is the
weight matrix and b is the bias term.

A dropout layer (p = 0.5) to improve
generalization.

This layer was added to mitigate
overfitting, which randomly disables 50% of
the neurons during training, improving the
generalization ability of the model. Finally,
classification is performed using a Softmax
layer, which computes the probability
distribution over all classes for each input. The
Softmax function is defined as follows:

ekZ

P(y=KIx) = SR (2)

where P(y=KkIx) is the probability of class k
and kz is the output for the k-th class. This
robust architecture provides efficient and
accurate FR by leveraging SOTA CNN
components and techniques to deliver high
performance in a variety of settings. A Softmax
classifier for identity recognition across
multiple classes [17], [18].

2.4 Evaluation Metrics

To assess the performance of proposed
model, several key metrics were used. These
metrics are essential for understanding different
aspects of model accuracy and responsiveness:

Recall (R): Is the ratio of true positive
results to the total number of cases that are
actually positive. It measures the model's
ability to detect all relevant instances.

R=TP /(TP +FN) 3)

Precision (p): This metric highlights the
accuracy of the positive predictions made by
the model, crucial for applications where false
positives carry a significant cost.

p=TP /(TP + FP) 4)

F1-score balances precision and recall of
the model, and provide a single metric
summarizes model performance when both

false positives and false negatives are in
concern.
2PR

Fi = PR )

Where: TP (true positives), FP (false
positives), FN (false negatives), TN (true
negatives).

3. Results and Discussion

In the following section, a set of
experiments is conducted to analyze the CNN
configurations. The experimental analysis was
conducted in three successive phases. First,
different CNN architectures were explored by
varying the number and composition of layers
to determine the configuration that yielded the
best performance. Second, once the
architectural design was fixed, a systematic
investigation of key hyperparameters (e.g.,
batch size, learning rate, number of epochs, and
input resolution) was carried out to further
optimize the model. Finally, the best-
performing customized CNN obtained through
these two phases was benchmarked against
SOTA architectures such as ResNet101,
GoogLeNet, and VGG16 in order to assess its
relative accuracy, efficiency, and
computational complexity. This stepwise
procedure ensured a fair and transparent
evaluation of both the internal design choices
and the external competitiveness of the
proposed model.

To ensure robustness, the local dataset was
also incorporated into the training phase
alongside LFW dataset. This arrangement
exposed the network to both public and local
dataset and study the effect of each dataset.
Furthermore, model training was guided by
validation loss curves with early stopping,
rather than a fixed number of epochs, to
guarantee proper convergence and to prevent
undertraining.

3.1 The Impacts of CNN Layers

The performance of different CNN
architectures was compared by varying the
number of layers and evaluate their impact on
FR. The models were trained using the LFW
dataset, which  includes  preprocessing
techniques. However, various metrics were
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analyzed, such as validation accuracy,
precision, and elapsed time, for the training
performance with a fixed hyperparameter (Mini
Batch Size = 32, initial Learn Rate =0.0001,
maxEpochs = 5, and Image Size 64%64, as
shown in table 1, where True Positive Rate

(TPR) = (TP /(TP + FN)).

Table

1.

Performance of customized CNN

architectures with varying numbers of layers on the LFW
dataset, with a Fixed hyperparameter for all models

Model Customized- | Customized- | Customized-
A B C
Number of 7 14 14
Layers
Validation
Accuracy 87.67 83.00 92.00
(%)
E"?‘psed 10 sec 14 sec 18 sec
time
Precision 0.7936 0.6772 0.8000
TPR 0.696 0.68 0.794

The customized-A model displays a basic
CNN confirmation with only 7 layers as
following: [input + convolution (Conv3, 16) +
Batch Normalization (BN) + Rectified Linear
Unit (ReLU) + Fully connected (FC) +
Softmax + output Classification] resulted a
validation accuracy of 87%, demonstrating
rapid learning and good generalization, and the
stable losses indicate minimal overfitting. The
confusion matrix shows that the model does
not always generalize well across categories.
This allows relatively accurate predictions to
be made for certain classes, i.e., predictions are
correct, but predictions for other classes turn
out to be more or less accurate.

In the particular customized-B model, an
additional Conv(3, 32) is added along with an
extra layer to capture more complex features.
This increases the number of layers to 14 and
improves accuracy and robustness. Results
showed that efficient and fast training was
achieved with a validation accuracy of 83%.
Improvements to feature detection or class-
specific changes may be needed, as evidenced
by the confusion matrix, which shows only
moderate accuracy and significant differences
between many classes.

Finally, the Customized-C model (Figure
4) retains the same depth as Customized-B but
increases the number of convolutional filters,
yielding improved validation accuracy. This
model achieved a validation accuracy of 92%,
showing a stable and improving performance
trend over the training epochs. The model's
precision has improved across multiple classes
when compared to the earlier versions. Nearly
all individuals have identified within an
improved accuracy in identifying all classes,
according to confusion matrix. However, the
Models A-C varied multiple components
jointly; a one-factor-at-a-time ablation is left
for future work.

10 Progress (09-F9-2028 21:63:02)

2 A b rg R o
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Figure 4. The Training Progress of the Proposed
Model the Customized-C

The customized models (A, B, and C) were
designed to explore the combined effect of
architecture  depth  and  regularization
components. While this introduces some
inconsistency, the goal was to reflect realistic
CNN  design choices where multiple
components are tuned together. To address the
undertraining concern, the training of the best-
performing customized-C model was extended
to 20 epochs, and the updated loss curves
confirmed convergence, strengthening the
reliability of the reported accuracy as discussed
in the next sections.

3.2 The Impact of Hyperparameter Tuning on
the Model Performance

To advance FR capabilities, it is crucial to
show how adjusting training hyperparameters
affects the performance of Customized-C
model that obtained from table 1 with fixed its
layer. It is important to note that the
hyperparameter tuning experiments presented
in this section were not designed to isolate the
individual impact of each hyperparameter.
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Instead, the adjustments were made jointly in
an exploratory manner with the primary
objective of empirically identifying the best-
performing configuration of the Customized-C
model. This optimal configuration was then
selected as the reference design for subsequent
comparisons  with  SOTA  architectures.
However, the tuning of model hyperparameter
is essential not only for improving accuracy but
also for adapting the model to diverse
environments, ensuring robust performance
under varying conditions.

On one hand, table 2 illustrates the impact
of hyperparameter Adjustments on LFW
dataset and it reports an exploratory
hyperparameter—tuning sequence performed on
the fixed Customized-C architecture. The intent
was not to isolate the effect of each
hyperparameter but to empirically identify a
high-performing configuration to be used in
subsequent comparisons with SOTA models.
Starting with C1l-public, the model exhibited
clear underfitting (41.67% accuracy) due to
very few epochs and a small batch size.
Progressive increases in epochs, batch size, and
input  resolution  (C2-public  —C3-public)
substantially improved learning stability and

accuracy, while further refinements through
lower learning rates and extended training
cycles (C4-public —C5-public) enhanced
generalization. The final  configuration,
Customized-C5-public, achieved the highest
validation accuracy of 93.33%, demonstrating
that incremental and combined tuning of key
hyperparameters can yield a more robust and
reliable model. This optimized version was
therefore selected as the reference design for
subsequent benchmarking against state-of-the-
art models. The results presented in the table
above show the impact of incremental changes
in model parameters on the efficiency of the
FR system. Starting from modified model C1-
public, the validation accuracy increases
significantly as the epoch increases and other
parameters are adjusted. With an improved
strategy combining higher image quality and
lower learning rates, the highest validation
accuracy was achieved 93.33% by modifying
customized-C5-public model. Extended
training and improved FR capabilities are
strongly correlated, and each subsequent
change in training parameters (such as larger
epochs and mini-batch size) produces more
precise and accurate model results.

Table 2. Impact of hyperparameter adjustments (epochs, batch size, learning rate, and image resolution) on the
Customized-C model using the LFW dataset. Note: hyperparameters were adjusted jointly in an exploratory manner to
identify a best-performing configuration (Customized-C5); this table is not intended as a one-factor ablation.

Parameter Customized- | Customized- | Customized- | Customized- | Customized- No. of Lavers
Cl-public C2-public C3-public C4-public C5-public ' Y
MaxEpochs 2 4 20 16 20 Input +
- Conv (3, 64)+
M'”S:i;’:‘tCh 16 32 64 128 64 BN +
— ReLU+ MaxPool +
Initial Learn 0.01 0.001 0.0001 0.00001 0.0001 Conv (3, 128)+
Rate BN +
Image Size 16 x 16 32x32 64 x 64 256 x 256 128 x 128 |ReLU+ MaxPool +
Validation FC (256) +
Accuracy % 41.67 90.33 92.00 81.33 93.33 Dsroﬁom(ofg It:Ct+
- - max
Elapsed time 7 sec 13 sec 18 sec 1min29sec | 1min40 sec CIZssif?cationuI;;er
Precision 0.35418 0.83818 0.76956 0.67543 0.83484 =14

On the other hand, table 3 shows the impact
of hyperparameter adjustments in the same
arrangement as the previous table 2, but using
the local dataset to compare the performance of
the resultant model in two different datasets.
Analyzing two result models reveals a
significant performance discrepancy. For

validation accuracy and precision, the local
dataset consistently exhibits a good performs
comparing to the LFW dataset under
comparable experimental conditions, and to
avoid subject leakage, all frames from a given
identity were kept within the same partition.
However, the higher classification accuracy of
the local dataset compared to the LFW dataset
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is likely due to the homogeneity in the
characteristics of the images within the local
dataset. This high accuracy is advantageous for
applications targeting similar image sets, in
which models trained on homogeneous local
datasets perform well under comparable
conditions but require further validation to
avoid overfitting before deployment in diverse
settings. In addition, the specific adaptation of
the model to the characteristics inherent in the
local dataset can be another because of its
superior accuracy. Since the images were
captured from a controlled set of subjects, the
model is more effectively learning distinctive

features specific to demographic groups, and it
can enhance model performance due to reduced
intra-class variability and focused learning on
relevant features. However, there is a risk of
overfitting, where models may not generalize
well to new or diverse data. especially for the
local dataset. On the other hand, a strict choice
of images was adopted by considering the wide
variety of lighting and angles. In addition, a
preprocessing was used such as cropping faces,
which reduced the radiant and unnecessary
background, and augmentation, which offered
more generalities in the training process.

Table 3. Performance of the Customized-C model on the local dataset under identical hyperparameter variations as
Table 2. Results show consistently higher accuracy due to dataset homogeneity

Model Customized- |Customized- |Customized- |Customized- |Customized- No. of Lavers
ode C1-local C2-local C3-local C4-local C5-local ' y
Max Epochs 2 4 8 16 20 Input +
ini Conv (3, 64)+
M'”S'ilZ’:‘tCh 16 32 64 128 64 BE\, N )
Initial Learn ReLU+ MaxPool +
allea 0.01 0.001 0.0001 0.00001 0.0001 Conv (3, 128)+
Rate BN +
Image Size 16 x 16 32x32 64 x 64 256 x 256 128 x 128 ReLU+ MaxPool +
Validation FC (256) +
Accuracy % 92.00 100 99.00 97.33 99.67 Dropout(0.5)+ FC +
: - ; Softmax + Output
Elapsed time 20 sec 20 sec 26 sec Imin40sec | 1min47sec | o|assification layer
Precision 0.920 1.000 0.990 0.9733 0.9966 =14

Overall, tables 2 and 3 report exploratory
experiments where multiple hyperparameters
(epochs, batch size, learning rate, image
resolution) were varied jointly to simulate
practical tuning scenarios. This approach
highlights the sensitivity of the model to
compound adjustments. A systematic ablation
study, in which one hyperparameter is varied at
a time, can be done for future work to provide
isolated insights.

3.3 Comparison of Customized Model with
SOTA Architectures

Table 4 presents the comparative
evaluation of the customized CNN model
customized-C and the pre-trained models,
including ResNet101, GoogLeNet, and VGG-
16. To standardize complexity reporting, model

size (MB), number of trainable parameters, and
FLOPs were reported. The customized model
with just 14 layers and a size of 29.9 MB,
reached an accuracy of 93.33% on the LFW
dataset, showing that its simpler design and
specific preprocessing methods work well
together.

The deeper pre-trained models, including
ResNet101 (with 101 layers), shows a
significantly low accuracy 65.67% where
increasing the model depth does not guarantee
better results, especially in limited-class
situation. Also, GooglLeNet underperformed
the customized model with an accuracy of
(82.00%). On the other hand, VGG-16 's
accuracy reached up to (96%),with a very large
model size (953 MB), it suffered notable
computational expense.
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When the customized-C model retrained
with a larger images size 224x224, the
accuracy went down to 89.67%, which gave an
indication of the importance to change the
model’s design when changing the input data
size accordingly.

This comparison shows that a well-made,
task-focused CNN model, when paired with
good preprocessing and careful adjustment of
settings, can match or even do better than much
bigger pretrained models in accuracy and
efficiency.

Table 4. Comparative evaluation of the customized-C CNN against SOTA models (ResNet101, GoogLeNet, VGG-
16). Model size is reported in MB. The training parameters and FLOPs for each model was calculated

No Model Number of | Model Size Accuracy Hyperparameters
layers on the Desk (%)
(MB)
Parameters FLOPs
(Millions) (Billions)
1 MaxEpochs=20
14 117 Mini batch Size=64
ized- 33.630 0.73 93.33 Initial
C“Sto(r:“'zed LeamnRate=0.0001
Image Size=[128
128]
102.83 2.23 14 363 89.67 MaxEpochs=20
2 ResNet101 42.450 3.27 101 303 65.67 Mini batch Size=64
Initial Learn
3 | GoogLeNet 5.9786 3.00 22 043 82.00 Rate=0.0001
Image Size=[224
4 VGG-16 134.28 3.09 16 528 96.00 204];
4. Conclusion and future work between accuracy, efficiency, and

This study presented a customized CNN
architecture for face recognition under
challenging conditions of varying illumination
and pose. By systematically refining the
network design and integrating advanced
preprocessing, the proposed model achieved
strong performance while maintaining a
compact size of only 117 MB. When trained
jointly on both the LFW and the locally
collected dataset, the model achieved up to
99.67% accuracy on local data and 93.33%
accuracy on LFW, demonstrating its ability to
generalize across different environments.
Compared with SOTA architectures such as
ResNet101, GoogLeNet, and VGG-16, the
customized CNN achieved a favorable balance

computational cost. The findings highlight
three key insights. First, integrating locally
collected data alongside public benchmarks
enhances robustness and provides realistic
evaluation conditions. Second, carefully
designed lightweight CNNs can achieve
accuracy levels comparable to deeper models
while being more efficient in terms of FLOPs,
parameters, and training time. Third, guiding
training with validation-based early stopping
ensures proper convergence and prevents
undertraining, as confirmed by loss curve
analysis. Future work will explore attention

mechanisms, transformer-based blocks, and
cross-modal learning to further enhance
robustness in unconstrained environment.

These enhancements could further strengthen
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adaptability to unconstrained environments,
making the system more resilient for real-world
deployment in security, healthcare, and other
Al-driven applications.
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