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Face recognition (FR) is a fundamental task in computer vision with applications in security, 

healthcare, and human–computer interaction. Although convolutional neural networks 

(CNNs) have significantly advanced FR performance, existing systems remain highly 

sensitive to variations in illumination, pose, and image quality. Moreover, reliance on 

benchmark datasets alone often limits generalizability to real-world conditions. In this work, 

a customized lightweight CNN architecture was designed to enhance recognition accuracy 

under diverse lighting and pose variations. The approach integrates both the Labeled Faces 

in the Wild (LFW) dataset and a locally collected dataset, ensuring evaluation under 

benchmark and real-world conditions. A robust preprocessing pipeline—including cropping, 

normalization, and augmentation—further strengthens the model’s generalization. To avoid 

undertraining, model optimization was guided by validation loss and early stopping rather 

than fixed epoch counts. Experimental results show that the proposed model achieves 

99.67% accuracy on the local dataset and 93.33% accuracy on LFW, with a compact model 

size of only 117 MB. In addition, the proposed CNN requires 33.33M parameters and 0.73 

GFLOPs, which is substantially lower than ResNet101 (42M, 3.27 GFLOPs) and VGG-16 

(134M, 3.09 GFLOPs), highlighting its efficiency in terms of both model size and 

computational complexity. Compared with state-of-the-art (SOTA) architectures such as 

ResNet101, GoogLeNet and VGG-16, the customized CNN delivers a favorable trade-off 

between accuracy, efficiency, and computational complexity. These results demonstrate that 

carefully designed lightweight CNNs, when combined with local and public datasets, can 

achieve robust face recognition in unconstrained environments, making them suitable for 

deployment in resource-limited real-world applications.   
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1. Introduction 

Face recognition (FR) technology continues 

to evolve dynamically with ongoing research 

and development. Reliable personal identity 

authentication is critical to protecting sensitive 

information. This interdisciplinary technology 

has numerous applications and is utilized in 

various sectors, including security, human-

robot interaction, genetic disorder diagnosis 

from facial features and appearance deformities 

[1], [2]. The protection of personal identity 

authentication methods has declined, and 

incidents such as forged IDs have occurred 

frequently. However, FR systems surpass 

traditional recognition methods in speed and 

efficiency, which is nearly instantaneous 

identification. It also offers a strong element by 

examining a whole feature in the face, making 

it a very secure method in many applications. 

Moreover, these systems' automation lowers 

the need for human intervention, reducing 

https://rjes.iq/index.php/rjes
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operating expenses and human error, despite 

progress, FR still degrades under variable and 

making them a proper choice for numerous 

applications. Moreover, the automation of FR 

systems reduces human intervention, operating 

cost, and human error. Despite such progress, 

FR performance still degrades under variable 

illumination and pose, which motivates the 

present work [3]. FR exhibits prominent 

advantages in particular scenarios, such as 

criminal identification. An FR system does not 

require expensive equipment, in which only 

camera devices can collect facial images to 

train the model using a computer and then the 

system is ready to serve in real-world 

application [4]. However, FR still has 

shortcomings, such as the lighting conditions 

either low or strong light environments, data 

collection issues from privacy and errors 

associated with labelling the samples, and the 

complexity of creating the right data for a 

specific project [5]. Since the 1960, numerous 

FR techniques have been developed, and these 

techniques are often categorized as shallow 

learning methods since they require artificial 

experience to extract sample features and can 

only utilize a few fundamental features of 

images. On the other hand, Neural network-

based techniques can extract more complex 

characteristics, like corner, edge, and texture 

information, and are regarded as deep learning 

techniques [6]. CNNs play an important role in 

the development of FR technology because 

they can efficiently extract facial features from 

images. A large amount of data is required to 

train this network. The size and quality of the 

training data have a critical impact on the 

performance of CNNs. Most datasets are 

limited in quantity and quality; the data may 

not be sufficient to achieve the convergence 

required to train an accurate model. The data 

may contain errors such as mislabeling or 

image quality deviations. Despite these issues, 

CNN-based FR methods have clear advantages. 

These networks independently extract complex 

features from labeled data, and eliminating the 

need for manual feature engineering [7]. CNNs 

provide translation equivariance and, with 

pooling, limited translation invariance (not full 

scale invariance), allowing faces to be 

recognized at different scales despite 

differences in location and size. This feature 

makes CNNs ideal for dealing with variations 

innovations in CNN architectures (e.g., 

AlexNet, GoogLeNet, and ResNet), have 

improved the accuracy of FR systems, which 

demonstrate exceptional performance in 

diverse and challenging environments such as 

complex illumination, changing facial 

expressions, and partial occlusion. As a result, 

CNN-based FR has become an important 

research area, and significant progress has been 

made in both theoretical models and practical 

applications [8]. 

However, FR, as a field of computer vision 

and pattern recognition, has been extensively 

studied in the past few years as one of the most 

active research areas in artificial intelligence, 

where the system designed starts by detecting a 

face and then recognizing it . Researchers have 

developed several recognitions approaches to 

capture discriminative features. Traditional 

techniques typically include two processes: 

high-dimensional feature extraction and 

classifier design. On the other hand, CNN 

models automatically combine the classifier 

and feature extractor in an end-to-end manner 

[9], which significantly advanced FR 

technology. CNN can be adapted to various 

challenges to the real-world applications. In 

comparison to traditional FR techniques, CNN 

models consistently outperform them [10]. 

Researchers have adopted various strategies to 

optimize CNNs. For example, an efficient 

hybrid multi-layer CNN combined with 

Support Vector Machines (SVM) enhances FR 

by handling diverse datasets and reaches an 

accuracy of 99.87% [11]. Moreover, a 

proposed CNN model called RobFaceNet 

achieved balance by incorporating multiple 

features and attention mechanisms, achieving 

95.95% and 92.23% on the CA-LFW and CP-

LFW datasets, respectively, compared to 

95.45% and 92.08% for the very deep ArcFace 

model [12]. Regarding low-resolution image 

issues, Mishra et al. [13]  have utilized 

multiscale parallel deep CNN architectures to 

tackle the difficulties associated with low-

resolution images of faces, offering a solution 
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that enhances accuracy in surveillance 

applications. Furthermore, the authors in [14] 

have designed an algorithm for low-resolution 

images, a crucial aspect of surveillance 

applications, in which it focuses on optimizing 

CNN classifiers to handle the challenges of 

pose and low-resolution imaging. Recent 

literature on DCNNs highlights considerable 

success in static conditions, yet struggles in 

dynamic environments remain prevalent. 

Furthermore, there is no real consideration for 

the computational challenges. This paper 

critically examines these shortcomings, 

particularly in adaptability to lighting and pose 

variations, and introduces an innovative 

approach that effectively addresses these 

challenges. Moreover, to increase the enhanced 

reliability, a local dataset has been created and 

compared with the LFW dataset in various 

scenarios. The design proficiently achieves FR 

in unconstrained settings, addressing 

challenges reported by prior methods. Beyond 

ResNet-101, GoogLeNet, and VGG-16, state-

of-the-art (SOTA) face recognition models 

have been reported in literature to achieve 

superior verification accuracy on large-scale 

datasets. While these were not re-implemented 

in this study, their results are discussed to 

contextualize the performance of the 

customized CNN. 

Despite remarkable progress, existing 

CNN-based face recognition systems still face 

challenges in uncontrolled environments, 

particularly under extreme variations in 

lighting and pose. Moreover, most studies rely 

heavily on benchmark datasets while 

neglecting the importance of integrating local, 

real-world data, which limits generalizability. 

Addressing these gaps, this paper proposes a 

lightweight, customized CNN framework 

specifically optimized for robust performance 

under diverse illumination and pose conditions. 

The proposed approach combines public 

(LFW) and locally collected datasets, advanced 

preprocessing, and systematic architectural 

refinements to balance accuracy, efficiency, 

and robustness. 

The main contributions of this work are 

summarized as follows: 

Customized CNN Design: Development of 

a lightweight deep CNN architecture that 

integrates convolutional, normalization, 

pooling, and dropout layers in a systematic 

manner to improve robustness against lighting 

and pose variations. 

Integration of Local and Public Datasets: 

Novel use of both the Labeled Faces in the 

Wild (LFW) dataset and a locally collected 

dataset, ensuring evaluation and training under 

real-world conditions. 

Advanced Preprocessing Pipeline: 

Implementation of preprocessing techniques 

(cropping, normalization, augmentation, noise 

addition) to enhance model generalization 

while reducing sensitivity to illumination and 

pose variability. 

Comprehensive Experimental Analysis: 

Comparative evaluation of the proposed model 

against SOTA architectures (ResNet101, 

GoogLeNet, VGG-16), supported by detailed 

metrics (accuracy, TPR, FLOPs, parameters, 

and inference/training times). 

Efficiency-Oriented Training Strategy: 

Adoption of validation-guided training (early 

stopping) instead of fixed epochs, ensuring 

convergence while reducing overfitting and 

computational overhead. 

The arrangement of this research is as 

follows: Section 2 describes the tools and 

methodologies of CNN design and 

optimization. Section 3 presents the 

experimental results which demonstrates the 

effectiveness of the proposed approach. 

Finally, Section 4 presents the conclusions and 

outlines directions for future work.  

2. Tools and Methodology 

The methodology of the FR system is 

explained in this part. The approach integrates 

advanced machine learning techniques with a 

customized DCNN design. In addition, an 

effective combination of preprocessing 

methods (resizing, normalization, cropping, 

augmentation) reduces sensitivity to lighting 

and pose variations and enhancing its 

application breadth. The description of the 

hardware and software configurations is as 

follows: 
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2.1 Hardware and Software Utilized for 

Recognition System 

A laptop with the following hardware was 

used for the experiments: Processor: 13th Gen 

Intel(R) Core (TM) i7-13620H, 2.40 GHz; 

RAM: 16.0 GB; GPU: NVIDIA GeForce RTX 

3060, 6GB. The software tool used for 

implementing and testing the FR system was 

MATLAB R2023b. This version of MATLAB 

has an environment for development and 

implementation, including the Deep Learning 

Toolbox for building and training the CNN 

model and other add-ons, such as the Image 

Processing Toolbox, were utilized for data 

preprocessing and visualization. Also, the 

Vision Toolbox’s 

\vision.CascadeObjectDetector was used. The 

study used neural network functions to train 

and validate CNN models. MATLAB's video 

processing tools extracted frames from the 

smartphone's captured videos. Face data were 

captured using a Realme smartphone with a 

camera resolution of 12.5 MP (4:3 aspect 

ratio), and the video recording was HD 1080p, 

30 fps. 

2.2 Data Preparation 

2.2.1 The Local Dataset                   

The local dataset for training and validation 

was built by capturing videos of five 

individuals, each no longer than one minute, 

under different lighting and facial pose 

conditions [15]. The camera was positioned to 

replicate real-world scenarios, capturing frontal 

and slightly angled facial views. Next, the 

frames were extracted from videos using 

MATLAB’s VideoReader function and images 

were saved per subject for training and testing. 

Figure 1(a) shows a sample of the locally 

created dataset. 

Data Augmentation (DA) is a prevalent and 

crucial preprocessing technique for CNN to 

reach significant performance. A MATLAB 

code has been designed to perform DA. It 

applies various transformations to create new 

versions of the original images, thereby 

increasing the size and diversity of the dataset 

up to four times. Figure 1(b) shows a sample of 

a dataset with various augmentation methods. 

Augmentation was applied to the training set 

only; test sets remained unchanged. 

 
Figure 1. (a) Sample of Locally Created Dataset 

Before the Preprocessing, and (b) Sample of a Pre-

processed Local Dataset, Including Changing in Lighting 

Condition, Adding Noise and Rotation [15] 

2.2.2 Public dataset 

The LFW dataset is among the most widely 

used benchmarks for unconstrained face 

recognition [16]. It contains over 13,000 

labeled images collected from the web and 

features a diverse group of people 

photographed under a variety of conditions. 

Given its inherent diversity in poses, lighting, 

and facial expressions, this dataset is ideal for 

evaluating labeled face systems in the wild. For 

this research, a subset of the LFW dataset was 

selected and customized to make it suitable for 

the proposed system in which the identities 

with ≥75 images have been retained, yielding 5 

identities and 375 total images. Selection 

criteria and final counts are reported to ensure 

reproducibility. The selection of the images 

was random for each person, ensuring 

variability in lighting conditions, facial poses, 

and expressions. Preprocessing steps were 

applied to ensure consistency with the CNN 

input and compatibility with the model. The 

dataset was split into two subsets: a training set 

(75%) and a validation set (25%) for evaluating 

the model’s performance with a confusion 

matrix. To further enhance the dataset’s 

variability and robustness, DA was applied to 

the training set only; the test set remained 

untouched to ensure an unbiased evaluation. 

Using a public and recognized dataset enhances 

the credibility of the research and provides a 

benchmark for comparing it with the local one 

that created for the proposed system with 

existing methods. Figure 2 (a) shows a sample 

of the public dataset LFW, and Figure 2 (b) 

shows a sample of LFW dataset with various 

augmentation methods. 
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Figure 2. (a) Sample of Public Dataset (LFW) 

Before the Preprocessing, and (b) Sample of a Pre-

processed Public Dataset, Including Changing in 

Lighting Condition, Adding Noise and Rotation [16] 

2.3 FR system and Network Design  

2.3.1 Steps of FR System 

 The proposed FR system is designed to 

reliably identify individuals under diverse 

lighting and pose conditions. Figure 3 

illustrates the pipeline of the system. A video 

stream is first captured by a standard camera. 

From this stream, facial regions are detected 

using a cascade object detector. The detected 

face images undergo preprocessing steps, 

including cropping, normalization, resizing, 

and data augmentation, to reduce sensitivity to 

environmental variations. 

The preprocessed facial images are then 

passed into the customized CNN model. The 

CNN maps each face to a high-dimensional 

feature embedding, which is subsequently 

compared either through Softmax classification 

(for closed-set recognition) or embedding 

similarity (cosine distance) for verification 

tasks. This ensures that recognition is not 

solely dependent on classification but can 

generalize across identities. The system is 

designed for deployment in secured 

authentication scenarios where only authorized 

individuals are recognized; the term ―secured 

area‖ refers to application domains such as 

restricted office entry, laboratory access, or 

device unlocking. 

 

Figure 3. The Flowchart of the Proposed Face 

Recognition System Showing the Most Important Layers 

in the Customized Model 

2.3.2 Designing the Network 

The proposed DCNN was developed using 

a stepwise design methodology. This means 

that layers were incrementally added, and their 

impact on performance was carefully 

evaluated. The initial architecture began with a 

single convolutional layer, followed by max 

pooling. Successive modifications introduced 

multiple convolutional blocks, batch 

normalization, and dropout layers to improve 

stability and prevent overfitting. This 

systematic, step-by-step design ensured that 

each architectural addition was performance-

driven, striking a balance between accuracy, 

computational cost, and robustness. The 

architecture targets complex facial patterns, 

aiming to improve accuracy and robustness 

under unconstrained conditions. The network 

design is inspired by traditional DCNN 

architectures like AlexNet, and was modified to 

meet task-specific requirements while 

remaining lightweight.  

The final model consists of 14 layers: 

Convolutional blocks (Conv3 with 64, 128, 

and 256 filters) for hierarchical feature 

extraction. 

Batch normalization and ReLU activations 

to stabilize and accelerate training. 

Max-pooling layers to reduce spatial 

complexity while preserving discriminative 

features. 
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A fully connected layer (256 units) to 

integrate extracted features. 

This layer joins the features that have been 

collected to a high-dimensional vector. This is 

the last representation that is used before 

classification. The mathematical functions of 

this layer are as follows: 

                                                    (1) 

where X is the input vector, W is the 

weight matrix and b is the bias term.  

A dropout layer (p = 0.5) to improve 

generalization. 

This layer was added to mitigate 

overfitting, which randomly disables 50% of 

the neurons during training, improving the 

generalization ability of the model. Finally, 

classification is performed using a Softmax 

layer, which computes the probability 

distribution over all classes for each input. The 

Softmax function is defined as follows: 

P(y=k∣x) = 
  
 

∑   
  

  

                                      (2) 

where P(y=k∣x) is the probability of class k 

and kz is the output for the k-th class. This 

robust architecture provides efficient and 

accurate FR by leveraging SOTA CNN 

components and techniques to deliver high 

performance in a variety of settings. A Softmax 

classifier for identity recognition across 

multiple classes [17], [18]. 

2.4 Evaluation Metrics 

To assess the performance of proposed 

model, several key metrics were used. These 

metrics are essential for understanding different 

aspects of model accuracy and responsiveness: 

Recall (R): Is the ratio of true positive 

results to the total number of cases that are 

actually positive. It measures the model's 

ability to detect all relevant instances.  

R = TP / (TP + FN)                                  (3) 

Precision (p): This metric highlights the 

accuracy of the positive predictions made by 

the model, crucial for applications where false 

positives carry a significant cost.  

p = TP / (TP + FP)                                   (4) 

F1-score balances precision and recall of 

the model, and provide a single metric 

summarizes model performance when both 

false positives and false negatives are in 

concern. 

     
   

  
                                                 (5) 

Where: TP (true positives), FP (false 

positives), FN (false negatives), TN (true 

negatives). 

3. Results and Discussion  

In the following section, a set of 

experiments is conducted to analyze the CNN 

configurations. The experimental analysis was 

conducted in three successive phases. First, 

different CNN architectures were explored by 

varying the number and composition of layers 

to determine the configuration that yielded the 

best performance. Second, once the 

architectural design was fixed, a systematic 

investigation of key hyperparameters (e.g., 

batch size, learning rate, number of epochs, and 

input resolution) was carried out to further 

optimize the model. Finally, the best-

performing customized CNN obtained through 

these two phases was benchmarked against 

SOTA architectures such as ResNet101, 

GoogLeNet, and VGG16 in order to assess its 

relative accuracy, efficiency, and 

computational complexity. This stepwise 

procedure ensured a fair and transparent 

evaluation of both the internal design choices 

and the external competitiveness of the 

proposed model. 

To ensure robustness, the local dataset was 

also incorporated into the training phase 

alongside LFW dataset. This arrangement 

exposed the network to both public and local 

dataset and study the effect of each dataset. 

Furthermore, model training was guided by 

validation loss curves with early stopping, 

rather than a fixed number of epochs, to 

guarantee proper convergence and to prevent 

undertraining. 

3.1 The Impacts of CNN Layers  

The performance of different CNN 

architectures was compared by varying the 

number of layers and evaluate their impact on 

FR. The models were trained using the LFW 

dataset, which includes preprocessing 

techniques. However, various metrics were 
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analyzed, such as validation accuracy, 

precision, and elapsed time, for the training 

performance with a fixed hyperparameter (Mini 

Batch Size = 32, initial Learn Rate =0.0001, 

maxEpochs = 5, and Image Size 64×64, as 

shown in table 1, where True Positive Rate 

(TPR) = (TP / (TP + FN)).  
Table 1. Performance of customized CNN 

architectures with varying numbers of layers on the LFW 

dataset, with a Fixed hyperparameter for all models 

Model 
Customized-

A 

Customized-

B 

Customized-

C 

Number of 

Layers 
7 44 44 

Validation 

Accuracy 

(%) 

77.37 83.00 92.00 

Elapsed 

time 
41 sec 14 sec 18 sec 

Precision 0.7936 0.6772 0.8000 

TPR 0.696 0.68 0.794 

The customized-A model displays a basic 

CNN confirmation with only 7 layers as 

following: [input + convolution (Conv3, 16) + 

Batch Normalization (BN) + Rectified Linear 

Unit (ReLU) + Fully connected (FC) + 

Softmax + output Classification] resulted a 

validation accuracy of 87%, demonstrating 

rapid learning and good generalization, and the 

stable losses indicate minimal overfitting. The 

confusion matrix shows that the model does 

not always generalize well across categories. 

This allows relatively accurate predictions to 

be made for certain classes, i.e., predictions are 

correct, but predictions for other classes turn 

out to be more or less accurate.  

In the particular customized-B model, an 

additional Conv(3, 32) is added along with an 

extra layer to capture more complex features. 

This increases the number of layers to 14 and 

improves accuracy and robustness. Results 

showed that efficient and fast training was 

achieved with a validation accuracy of 83%. 

Improvements to feature detection or class-

specific changes may be needed, as evidenced 

by the confusion matrix, which shows only 

moderate accuracy and significant differences 

between many classes. 

Finally, the Customized-C model (Figure 

4) retains the same depth as Customized-B but 

increases the number of convolutional filters, 

yielding improved validation accuracy. This 

model achieved a validation accuracy of 92%, 

showing a stable and improving performance 

trend over the training epochs. The model's 

precision has improved across multiple classes 

when compared to the earlier versions. Nearly 

all individuals have identified within an 

improved accuracy in identifying all classes, 

according to confusion matrix. However, the 

Models A–C varied multiple components 

jointly; a one-factor-at-a-time ablation is left 

for future work.  

 

Figure 4. The Training Progress of the Proposed 

Model the Customized-C 

The customized models (A, B, and C) were 

designed to explore the combined effect of 

architecture depth and regularization 

components. While this introduces some 

inconsistency, the goal was to reflect realistic 

CNN design choices where multiple 

components are tuned together. To address the 

undertraining concern, the training of the best-

performing customized-C model was extended 

to 20 epochs, and the updated loss curves 

confirmed convergence, strengthening the 

reliability of the reported accuracy as discussed 

in the next sections. 

3.2 The Impact of Hyperparameter Tuning on 

the Model Performance  
To advance FR capabilities, it is crucial to 

show how adjusting training hyperparameters 

affects the performance of Customized-C 

model that obtained from table 1 with fixed its 

layer. It is important to note that the 

hyperparameter tuning experiments presented 

in this section were not designed to isolate the 

individual impact of each hyperparameter. 
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Instead, the adjustments were made jointly in 

an exploratory manner with the primary 

objective of empirically identifying the best-

performing configuration of the Customized-C 

model. This optimal configuration was then 

selected as the reference design for subsequent 

comparisons with SOTA architectures. 

However, the tuning of model hyperparameter 

is essential not only for improving accuracy but 

also for adapting the model to diverse 

environments, ensuring robust performance 

under varying conditions.  

On one hand, table 2 illustrates the impact 

of hyperparameter Adjustments on LFW 

dataset and it reports an exploratory 

hyperparameter–tuning sequence performed on 

the fixed Customized-C architecture. The intent 

was not to isolate the effect of each 

hyperparameter but to empirically identify a 

high-performing configuration to be used in 

subsequent comparisons with SOTA models. 

Starting with C1-public, the model exhibited 

clear underfitting (41.67% accuracy) due to 

very few epochs and a small batch size. 

Progressive increases in epochs, batch size, and 

input resolution (C2-public –C3-public) 

substantially improved learning stability and 

accuracy, while further refinements through 

lower learning rates and extended training 

cycles (C4-public –C5-public) enhanced 

generalization. The final configuration, 

Customized-C5-public, achieved the highest 

validation accuracy of 93.33%, demonstrating 

that incremental and combined tuning of key 

hyperparameters can yield a more robust and 

reliable model. This optimized version was 

therefore selected as the reference design for 

subsequent benchmarking against state-of-the-

art models. The results presented in the table 

above show the impact of incremental changes 

in model parameters on the efficiency of the 

FR system. Starting from modified model C1-

public, the validation accuracy increases 

significantly as the epoch increases and other 

parameters are adjusted. With an improved 

strategy combining higher image quality and 

lower learning rates, the highest validation 

accuracy was achieved 93.33% by modifying 

customized-C5-public model. Extended 

training and improved FR capabilities are 

strongly correlated, and each subsequent 

change in training parameters (such as larger 

epochs and mini-batch size) produces more 

precise and accurate model results. 
 

Table 2. Impact of hyperparameter adjustments (epochs, batch size, learning rate, and image resolution) on the 

Customized-C model using the LFW dataset. Note: hyperparameters were adjusted jointly in an exploratory manner to 

identify a best-performing configuration (Customized-C5); this table is not intended as a one-factor ablation. 

Parameter 
Customized-

C1-public 

Customized-

C2-public  

Customized-

C3-public  

Customized-

C4-public  

Customized-

C5-public  
No. of Layers 

MaxEpochs 2 4 21 43 20 Input + 

Conv (3, 64)+ 

BN + 

ReLU  +  MaxPool + 

Conv (3, 128)+ 

BN + 

ReLU  +  MaxPool + 

FC (256) + 

Dropout(0.5)+ FC + 

Softmax + Output 

Classification layer 

= 44 

Mini batch 

Size 
43 32 34 427 64 

Initial Learn 

Rate 
0.14 1.114 1.1114 1.11114 1.1114 

Image Size 16 x 16 32 x 32 64 x 64 256 x 256 128 x 128 

Validation 

Accuracy % 
41.67 90.33 92.11 81.33 93.33 

Elapsed time 7 sec 13 sec 18 sec 1 min 29 sec 1 min 40 sec 

Precision 0.35418 0.83818 0.76956 0.67543 0.83484 

On the other hand, table 3 shows the impact 

of hyperparameter adjustments in the same 

arrangement as the previous table 2, but using 

the local dataset to compare the performance of 

the resultant model in two different datasets. 

Analyzing two result models reveals a 

significant performance discrepancy. For 

validation accuracy and precision, the local 

dataset consistently exhibits a good performs 

comparing to the LFW dataset under 

comparable experimental conditions, and to 

avoid subject leakage, all frames from a given 

identity were kept within the same partition. 

However, the higher classification accuracy of 

the local dataset compared to the LFW dataset 
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is likely due to the homogeneity in the 

characteristics of the images within the local 

dataset. This high accuracy is advantageous for 

applications targeting similar image sets, in 

which models trained on homogeneous local 

datasets perform well under comparable 

conditions but require further validation to 

avoid overfitting before deployment in diverse 

settings. In addition, the specific adaptation of 

the model to the characteristics inherent in the 

local dataset can be another because of its 

superior accuracy. Since the images were 

captured from a controlled set of subjects, the 

model is more effectively learning distinctive 

features specific to demographic groups, and it 

can enhance model performance due to reduced 

intra-class variability and focused learning on 

relevant features. However, there is a risk of 

overfitting, where models may not generalize 

well to new or diverse data. especially for the 

local dataset. On the other hand, a strict choice 

of images was adopted by considering the wide 

variety of lighting and angles. In addition, a 

preprocessing was used such as cropping faces, 

which reduced the radiant and unnecessary 

background, and augmentation, which offered 

more generalities in the training process.  

 

Table 3. Performance of the Customized-C model on the local dataset under identical hyperparameter variations as 

Table 2. Results show consistently higher accuracy due to dataset homogeneity 

Model 
Customized-

C1-local 

Customized-

C2-local 

Customized-

C3-local 

Customized-

C4-local 

Customized-

C5-local 
No. of Layers 

Max Epochs 2 4 7 43 20 
Input + 

Conv (3, 64)+ 

BN + 

ReLU  +  MaxPool + 

Conv (3, 128)+ 

BN + 

ReLU  +  MaxPool + 

FC (256) + 

Dropout(0.5)+ FC + 

Softmax + Output 

Classification layer 

= 44 

Mini batch 

Size 
43 32 34 427 64 

Initial Learn 

Rate 
0.14 1.114 1.1114 1.11114 1.1114 

Image Size 16 x 16 32 x 32 64 x 64 256 x 256 128 x 128 

Validation 

Accuracy % 
92.00 100 99.00 97.33 99.67 

Elapsed time 20 sec 20 sec 26 sec 1 min 40 sec 1 min 47 sec 

Precision 0.920 1.000 0.990 0.9733 0.9966 

Overall, tables 2 and 3 report exploratory 

experiments where multiple hyperparameters 

(epochs, batch size, learning rate, image 

resolution) were varied jointly to simulate 

practical tuning scenarios. This approach 

highlights the sensitivity of the model to 

compound adjustments. A systematic ablation 

study, in which one hyperparameter is varied at 

a time, can be done for future work to provide 

isolated insights. 

3.3 Comparison of Customized Model with 

SOTA Architectures 

Table 4 presents the comparative 

evaluation of the customized CNN model 

customized-C and the pre-trained models, 

including ResNet101, GoogLeNet, and VGG-

16. To standardize complexity reporting, model 

size (MB), number of trainable parameters, and 

FLOPs were reported. The customized model 

with just 14 layers and a size of 29.9 MB, 

reached an accuracy of 93.33% on the LFW 

dataset, showing that its simpler design and 

specific preprocessing methods work well 

together. 

The deeper pre-trained models, including 

ResNet101 (with 101 layers), shows a 

significantly low accuracy 65.67% where 

increasing the model depth does not guarantee 

better results, especially in limited-class 

situation. Also, GoogLeNet underperformed 

the customized model with an accuracy of 

(82.00%). On the other hand, VGG-16 's 

accuracy reached up to (96%),with a very large 

model size (953 MB), it suffered notable 

computational expense. 
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When the customized-C model retrained 

with a larger images size 224×224, the 

accuracy went down to 89.67%, which gave an 

indication of the importance to change the 

model’s design when changing the input data 

size accordingly. 

This comparison shows that a well-made, 

task-focused CNN model, when paired with 

good preprocessing and careful adjustment of 

settings, can match or even do better than much 

bigger pretrained models in accuracy and 

efficiency. 

 

Table 4. Comparative evaluation of the customized-C CNN against SOTA models (ResNet101, GoogLeNet, VGG-

16). Model size is reported in MB. The training parameters and FLOPs for each model was calculated 

No Model 

Parameters 

(Millions) 

FLOPs 

(Billions) 

Number of 

layers 

Model Size 

on the Desk 

(MB) 

Accuracy 

(%) 

Hyperparameters 

1 

Customized-

C 

33.330 0.73 

 

14 

 

117 

93.33 

MaxEpochs=20 

Mini batch Size=64 

Initial 

LearnRate=1.1114 

Image Size=[128 

128] 

102.83 2.23 14 363 89.67 MaxEpochs=20 

Mini batch Size=64 

Initial Learn 

Rate=1.1114 

Image Size=[224 

224]; 

2 ResNet101 42.450 

 

3.27 

 

101 303 65.67 

3 GoogLeNet 5.9786 3.00 22 043 82.00 

4 VGG-16 
134.28 3.09 

16 528 96.00 

4. Conclusion and future work 

This study presented a customized CNN 

architecture for face recognition under 

challenging conditions of varying illumination 

and pose. By systematically refining the 

network design and integrating advanced 

preprocessing, the proposed model achieved 

strong performance while maintaining a 

compact size of only 117 MB. When trained 

jointly on both the LFW and the locally 

collected dataset, the model achieved up to 

99.67% accuracy on local data and 93.33% 

accuracy on LFW, demonstrating its ability to 

generalize across different environments. 

Compared with SOTA architectures such as 

ResNet101, GoogLeNet, and VGG-16, the 

customized CNN achieved a favorable balance 

between accuracy, efficiency, and 

computational cost. The findings highlight 

three key insights. First, integrating locally 

collected data alongside public benchmarks 

enhances robustness and provides realistic 

evaluation conditions. Second, carefully 

designed lightweight CNNs can achieve 

accuracy levels comparable to deeper models 

while being more efficient in terms of FLOPs, 

parameters, and training time. Third, guiding 

training with validation-based early stopping 

ensures proper convergence and prevents 

undertraining, as confirmed by loss curve 

analysis. Future work will explore attention 

mechanisms, transformer-based blocks, and 

cross-modal learning to further enhance 

robustness in unconstrained environment. 

These enhancements could further strengthen 
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adaptability to unconstrained environments, 

making the system more resilient for real-world 

deployment in security, healthcare, and other 

AI-driven applications. 
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