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ABSTRACT

e The effect of ALOs-SiO: nanopowder on
machining  stainless steel 304L was
experimentally investigated.

¢ MRR, EWR, and Ra were measured to
evaluate the machining performance using
nanopowder-mixed EDM.

e RSM was applied to model the relationship
between inputs and outputs in the NPMEDM
process.

o Surface response optimization increased MRR
by 13% and reduced EWR and Ra by 33.3%

Electro-Discharge Machining (EDM) is a unique manufacturing method. Recently
developed thermo-electric methods include Nano Powder-Mixed Electric
Discharge Machining (NPMEDM), which suspends metallic Nanopowder in a
dielectric. This study examines how Al2O3 -SiO2 Nanopowder concentration and
mixing ratio affect EDM dielectric fluid surface integrity (outputs) on stainless
steel 304L. Material Removal Rate (MRR), Electrode Wear Rate (EWR), and
surface roughness (Ra) are used to evaluate machining efficiency. Nanofluid has
much better heat conductivity than dielectrics, enhancing material removal.
Material Removal Rate rises with discharge current. At Run No. 26, increasing
AlLO; particle proportion with 35 A discharge current, 2 g/l particle concentration,
200 ps pulse on time, and 50 ps pulse off time increases material removal rate by

13%. Increasing discharge currents lowers Ra. Lowering discharge current to 20
A, particle concentration to 3 g/l, pulse on time to 150 ps, and pulse off time to 75
us lowered aluminium oxide particle composition to 50%, increasing Ra by 4.5%
at Run No. 37. Increased discharge currents lower EWR. By increasing discharge
current to 25 A, particle concentration to 4 g/, pulse on time to 200 ps, and pulse
off time to 100 ps, aluminium oxide particle composition was reduced to 40%,

and 4.5%, respectively.

Keywords:

Electrical Discharge Machining
Stainless Steel 304L

NPMEDM leading to a 33.3% rise in EWR at Run No. 50 using Design Expert 11 software.
A_1203 Current 37.8%, pulse on 12.6%, nanopowder concentration 3%, and pulse off
SiO2 25.85% are needed for MRR. The mixing ratio parameter does not affect MRR.

EWR needs 25.5% current and 25.6% nanopowder. Ra depends on nanopowder
concentration, peak current at 4.5%, pulse-off duration at 20.24%, current-pulse
duration at 7.6%, and current-pulse off duration at 37.9%.

1. Introduction

Most people today rely on EDM for complex jobs requiring tough materials such as stainless steel 304L machining. The
invention of NPMEDM has resulted from adding nanoparticles of Al-Os or SiO- to the dielectric in the process, which improves
heat distribution, the flow of sparks, and overall EDM machining results [1]. Even though adding nanopowder to MMW is known
to improve MRR and Ra, experts still do not fully understand how input values such as nanopowder dosage, mix ratio, current,
and pulse durations impact EWR and the quality of the surface [2]. The condition of surfaces and the wear of tools contrast in
different ways as the Al.0s—SiO2 nanopowder compositions change, and errors still occur between experiment runs. For instance,
the material removal rate may improve when you use extra discharge current and a higher amount of nanopowder. Still, the
etching time of the substrate sometimes increases or the finish on the surface degrades, depending on various conditions. There
seems to be a relationship here that has not been used for industrial purposes as much, and may depend on different situations.
In addition, the effect of nanopowder mixing ratio on EDM results is less understood, and there is insufficient evidence about its
importance [3].

Hence, we need to look into how the amount and structure of Al-20s—SiO: nanopowder, EDM process settings, and other
variables influence stainless steel 304L by using Design Expert software. Doing such analysis is crucial for improving the
trustworthiness, productivity, and continuous improvements in mean residence time, equipment waste ratio, and reliability.
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Electricity significantly enhanced the MRR while diminishing the EWR and SR. Effectively leveraging the capabilities of diverse
unconventional machining processes requires the meticulous selection of the most suitable strategy for a specific application [4].
EDM is one of the most widely utilized unique machining processes. This process has effectively replaced previous techniques
for cutting hard materials. Historically, the EDM method was restricted to the machining of electrically conductive materials;
however, advancements in technology today allow for the machining of ceramics and composites. It produces intricate shapes,
irregular proportions, elaborate decorations, and minuscule apertures [5]. The evaluation of EDM performance is conducted
using MRR (material removal rate), EWR (electrode wear rate), SR (surface roughness), and other machining responses [6].
EDM is utilized across multiple sectors, such as gear manufacture, mold and die fabrication, aerospace, automotive,
biotechnology, sports, electronics, medical, jewelry, and toys, with enhancements achieved through the incorporation of SiO2-
graphite nanopowder to augment performance [7-11]. The impact of mixing powder into the dielectric fluid on the efficiency of
the EDM process was examined by several researchers [12-24]. The process is known as powder mix electrical discharge
machining, or PMEDM. Tungsten [20, 21], chromium [22], titanium [23,24], silicon [16,17], silicon carbide [18,19], graphite
[14,15], aluminum [12,13], and other powders have been tried. According to these experiments, the EDM dielectric's machining
efficiency, surface finish, and material removal rate are all enhanced by adding powder. The size of the particles may range from
micro to nano. Some EDM experiments have employed CNT and nanopowder mixed dielectric. Use nanopowders from CNTs
and other materials. Application possibilities for carbon nanotubes are vast. Strong, stiff, durable, and electrically and thermally
conductive. Multilayer graphite tubes make up MWCNTs. This research aimed to determine how CNT and nanopowder mixed
dielectric fluids affect EDM performance. Electrical discharge machined SKD-11 surface properties were examined about
dielectric fluid particle size. Powder additives: aluminum, chromium, copper, and silicon carbide. Smaller particles (70-80 nm)
produce better surfaces. Smaller particles produced a thicker recast layer [25].

The study examined the influence of powder additives suspended in dielectric fluid on crater features during micro-electrical
discharge machining of stainless steel. Daphne Cut HL-25 dielectric fluid and SiC nanopowder (45-55 nm) were utilized.
Transferring charges between the tool and the workpiece was reduced, leading to a uniform depth and diminished crater size. A
smaller crater containing a greater volume of re-solidified material was identified within the crater chamber [26], and the effect
of nanopowder suspended in dielectric fluid on the surface roughness of AISI 420 stainless mold steel during micro-EDM was
investigated. Idemitsu Daphne Cut HL25-S dielectric fluid, silicon carbide, and aluminum oxide particulates were utilized. The
tool electrode consisted of tungsten. Surface roughness was reduced utilizing SiC and Al,O3 microparticles [27]. The AISI D2
tool steel's surface properties were analyzed using the EDM technique. Machining was performed using a copper electrode and
single-walled carbon nanotubes (SWCNT) suspended in kerosene dielectric. It was disclosed that workpieces machined with
SWCNT-infused dielectric exhibited superior surface quality and a reduced incidence of microcracks. Configuring the machine
parameters to low pulse energy yielded an exceptional machined nano finish [28]. The study examined the enhancement of
surface properties in cemented tungsten carbide micro-EDMs by incorporating graphite nanopowder into the dielectric. A
tungsten tool and an oil dielectric known as "Total FINA ELF EDM3" were utilized. Surface quality and material removal rate
were enhanced, while the tool wear rate diminished. The increased spark gap improved surface topography and crater distribution
[29]. The investigation focused on nano graphite powder suspended in kerosene dielectric during the micro-electrical discharge
machining of silver-tungsten workpieces. The tool's material was tungsten, with a particle size of 55 nm. Improvements in surface
quality and machining duration were identified. The nano graphite powder dispersion particle size resulted in a significant spark
gap, reducing electric discharge power density and diminishing explosive force [30]. The efficacy of EDM operations in milling
Inconel 718 was examined utilizing kerosene dielectric infused with titanium carbide nanopowder. A brass implement was
utilized for machining. The incorporation of nanopowder enhanced material removal rate (MRR) while reducing tool wear rate
(TWR) [31] utilizing multi-walled carbon nanotubes (MWCNTSs) in the dielectric fluid for machining Al-10% SiCp metal matrix
composites (MMCs) during EDM. Copper was utilized as a tooling material throughout the machining process. Incorporating
MWCNTs into the dielectric fluid significantly enhanced the material removal rate (MRR) and surface quality [32]. Adding
carbon nanotubes to the oil flux ELF2 dielectric during Ti-6A1-4V EDM was studied. This experiment used copper tools. Using
carbon nanotubes with dielectric materials reduced surface microcracks. CNTs reduced MRR, TWR, and SR [33]. EDM using a
dielectric and Al,O3; nanopowder was tested for grinding Inconel 825. MRR and surface roughness increased significantly when
nanopowder was added to deionised water dielectric fluid. A copper machining tool. In industry, cheap Al.O3 powder works
well [34]. Graphite nanopowder-infused EDM fluid dielectric affects Inconel 718 micro-wire electrical discharge machining
[35].

Nanofluids consist of dielectric particles with dimensions ranging from 1 to 100 nanometers. Nanoparticles possess a
singular characteristic: a high surface area to volume ratio, dimensionally dependent physical characteristics, and reduced kinetic
energy. The most fascinating feature of nanofluids is that a minimal addition of nanoparticles leads to a tenfold enhancement in
thermal conductivity above theoretical expectations. Incorporating 0.3 vol.% copper nanoparticles into ethylene glycol enhanced
its thermal conductivity by 40% [36]. Heat transfer fluids (HTFs) are utilized in diverse industrial and municipal applications,
including air conditioning, transportation, energy provision, and electronic cooling. Water, oils, glycols, and fluorocarbons
exemplify earlier heat transfer fluids with low thermal conductivities. Efforts in research and development were undertaken to
enhance the thermal conductivity of liquids. Solid metallic substances like silver, copper, and iron, along with nonmetallic
materials such as alumina, CuQO, SiC, and carbon nanotubes, exhibit far greater thermal conductivities than earlier heat transfer
fluids, which incorporated solid particles of micron or millimeter dimensions with base fluids or slurries. Large solid particles,
conversely, cause surface abrasion, microchannel blockage, pipeline corrosion, and heightened pressure loss, thus restricting
potential uses [37]. Surface polishing utilizing nanopowder decreased the average surface roughness. The machined surface
exhibited no minute fractures. Inconel superalloys are nickel-based alloys employed in high-pressure and high-temperature
applications, including gas turbines, electric power generation systems, nuclear reactors, and high-temperature chemical vessels
[38]. Numerous studies investigate the impact of nanoparticle incorporation on SR. Al,O3 and silicon carbide nanoparticles were
found to reduce the surface roughness of stainless steel micro-electrical discharge machining[39,40].
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This study focuses on the highly challenging material stainless steel 304L. Machining this material using conventional
methods may damage the tool and induce internal stresses in the workpiece. The research also investigates how Electrical
Discharge Machining (EDM) addresses these issues. By optimizing the input process parameters, the study also aims to enhance
the material removal rate (MRR), reduce surface roughness, and minimize the electrode wear rate (EWR).

2. Materials and methods

2.1 Workpiece characterization and machining

Stainless steel 304L was used in this study as a workpiece. Nanoparticles were made from aluminum oxide (Al,O3) and
silicon dioxide (SiO,). They use a 1 - 5 g/l concentration and a mix fraction of 30 - 70% Al,O3; with SiO balanced to integrate
with kerosene dielectric. Figure 1a shows the workpiece dimensions (25.4 mm diameter x 5 mm thickness). Kerosene is utilized
as a dielectric fluid. Figure 1b shows how the tests are carried out using a cylindrical copper electrode with a diameter of 16 mm
and a length of 40 mm.

25.4 mm

et

Us}

(€Y (b)

Figure 1: a) Workpiece before machining (25.4 mm diameter x Smm Thickness) b) Copper electrode
(16 mm diameter x 40 mm length)

EDM is a precise manufacturing technology for shaping hard, electrically conducting materials. Traditional machining
employs mechanical cutting, but EDM uses electrical sparks to dissolve material. Tool and workpiece electrodes are submerged
in dielectric fluid. A voltage causes regulated electrical discharges between the electrodes, generating intense heat that melts and
vaporizes small parts of the workpiece-cooling and flushing trash with dielectric fluid. Sinker, wire, and hole drilling EDM
machines exist. Mould and die makers utilize sinker EDM to build complicated cavities using a shaped electrode. Wire EDM,
which uses a thin wire electrode, cuts accurate forms well. Hole drilling EDM makes deep, tiny holes in turbine blades and other
hard materials. EDM can manufacture extremely hard materials without mechanical stress and generate complicated shapes. Its
slower removal rates and electrically conductive material limits are drawbacks. Despite these drawbacks, EDM is popular in
businesses that need precise machining of difficult parts. The machining properties of stainless steel 304L are investigated
utilizing the electric discharge machining (EDM) process. The current study's tests were carried out on a numerically controlled
electric discharge machine with the model number [CM 323+50N (CHAMBER EDM)] (Taiwanese origin). Fifty trials were
conducted with identical input process settings and conditions for NPMEDM. The results were discussed using measured
material removal rate, electrode wear rate, and surface roughness values. Figure 2 depicts the machined workpiece.

254 mm
16 mm

Figure 2: Workpiece after machining
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Table 1 demonstrates complete measurements and thermo-physical properties of the selected electrode. Table 2 shows the
chemical composition of the workpiece (stainless steel 304L) and the electrode characteristics. This experiment was done by
mixing 20-nm aluminum oxide particles and 50-nm silicon dioxide with a kerosene dielectric. Table 3 shows some of the critical
and effective Nanopowder specifications used in the NPMEDM process.

Table 1: Specifications and Thermophysical properties of the copper electrode

Diameter of tool (mm) 16

Tool length (mm) 40
Specific heat capacity (J/kg-°C) 385
Thermal conductivity (W/m-°C) 385
Thermal diffusivity (m?/s) 1.11 x 10*
Density (Kg/m?) 8960
Melting point (°C) 1085
Thermal expansion coefficient at 20 °C (/°C) 16.5 x 10

Table 2: Chemical composition of stainless steel 304 L

Chemical element Cr Ni Mn Cu Si P Ni C S Fe
% Composition 18.37 8.19 1.8 0.58 0.54 0.039 0.037 0.021 0.019 Balance

Table 3: The effective physical properties of nanoparticles in NPMEDM

Nanoparticles Density(g/cm?) Thermal Conductivity Electrical Resistivity Particle size (nm)
(W/cmK) (nQ.cm)

AlLO3 1.8 5 10 50

SiO2 2.4 1.3 108-1012 50

Machining experiments using the response surface methodology (RSM) are conducted using the Design Expert 11. The
study's input parameters included the electric discharge current, particle concentration, pulse on/off period, and nanoparticle
mixing percentage. There were five levels of testing for each parameter. Table 4 contains a list of parameters and their respective
ranges. Response characteristics include surface roughness (Ra), electrode wear rate (EWR), and material removal rate (MRR).
The weight loss method was used to compute the MRR and EWR. The SR was measured using the Pocket Surf (Mahr
FEDERAL) device tester (American origin), which averages three measurements from the cutting surface in different directions.
Additionally, alumi num oxide Nanopowder is used in studies as a basis for determining particle composition percentage. The
low-voltage mode EDM machine was used for all experiments.

Table 4: Parameters and their levels

Levels
No. Parameters 1 2 3 4 5
1 Pulse off time (us) 25 50 75 100 125
2 Pulse on time (ps) 50 100 150 200 250
3 Peak current (A) 20 25 30 35 40
4 Mix of powder (% Al203) 30 40 50 60 70
5 Concentration (g/1) 1 2 3 4 5

3. Equipment of measurement

3.1 Weight balance

The weight of the workpiece and electrode was determined using a high-precision balance, and its specifications are
demonstrated in Table 5. The apparatus has a capacity of 300 grams and an accuracy of 0.001 grams and belongs to the Brand
Model JM-B (German origin).

Table 5: Specification of the Weight Balance

Specification Value

Max. Capacity 220 g
Readability 0.1 mg
Repeatability 0.1 mg
Weighing pan area 80 mm diameter

Equations 1 and 2 compute the material removal rate (g/min) and electrode wear rate (g/min) due to machining time,
respectively.

InitialWeightofwork—FinalWeightofwork
MRR = ghtof ghtof

(1
1069

MachiningTime



Qasim A. Sachit et al. Engineering and Technology Journal 43 (12) (2025) 1066-1083

__ InitialWeightofElectrode—FinalWeightofElectrode

EWR

2

MachiningTime

3.2 Measurements of (Ra) and pocket surf
Surface roughness, measured by the center line average (R.), is the average deviation of the roughness profile from the center
line. Ra is expressed in Equation 3.

_ 1

Ry =7 [y(x)dx 3)

where, /: the sample length, y: the height of peaks and valleys of the roughness profile, x: the profile direction.
Surface roughness (Ra) was measured using a portable stylus-type profilometer. Table 6 contains the specifications of the
Pocket Surf (Mahr FEDERAL) device (American origin).

Table 6: Specification of the roughness apparatus measurement

Specification Value
Dimension 140 mm X 76 mm x 25 mm
Weight 435¢g

Ra 0.03 um to 6.35 pm
Ry 0.2 ymto 25.3 pm
Rmax 0.2 pm to 25.3 pm
Rz 0.2 pm to 25.3 um

Measuring Ranges

Display Resolution 0.01 pm
Measurement accuracy Meets ASME-B461, ISO, DIN standards, and MIL specifications.
Digital Readout LCD with “Battery low” signal; “H” and “L” (measured value out-of-range).

3.3 Statistical analysis for NPMEDM process

The goodness of the second-order model and the evaluation of the dominant parameters of all output characteristics of the
machining process were implemented according to (ANOVA) technique. ANOVA is used to test the resulting hypotheses at a
confidence level of 95%. The Fisher statistical test (F-test) was adopted to determine the significance of the parameters. The
maximum levels of the F-test indicate the more influential parameter, and the p-value for the F-statistic represents the probability
of the measured data. If the p-value < 0.05, the parameter has a statistically significant influence. The percentage of contribution
of individual parameters can be determined from the ANOVA table by the following expression, Equation 4 [41]:

Sum of Square of Variation

Percentage contribution (C %) = x 100 4)

Total Sum of Square of Variation

4. Results and discussion

4.1 RSM and regression model for MRR, EWR, and Ra

Response Surface Methodology (RSM) is a statistical technique to tackle complex multiple-response industrial problems.
Response results are examined using the response surface methodology. The experimental protocols were created using Central
Composite Design (CCD) concepts. Fifty full factorial experiments were carried out using the RSM design matrix developed.
Peak current (Ip), pulse-on time (Pon), pulse-oft time (Pofr), powder concentration, and mixing ratio of powder are the five input
process factors that are investigated in this study. Each of these parameters has been investigated at five different levels for
testing. Measures including Material Removal Rate (MRR), Electrode Wear Rate (EWR), and Surface Roughness (SR) have
been carried out using the response surface methodology. "Design Experts 11" is a highly renowned statistical software used to
assess the responses in this discipline [42]. The relationship between the input variables and response characteristics of the
machining process was determined and analyzed based on Regression analysis. A Non-linear equation represented the relation
that connects the input parameters with the responses in the regression analysis. Depending on the experimental output values,
RSM developed mathematical models, and the general 2nd-order model was developed and adopted in the present work.
Equations (5), (6), and (7), shown below illustrate the mathematical models for the output required performance measures:

Ra =5.45534 + 0.1626xA + 0.00925xB + 0.34645xC + 0.12425xD + —0.06555xE +
—0.236937 x AB + 0.53xAC + —0.012125xAD + —0.0090625x AE + —0.139375xBC +
—0.0035xBD + 0.0073125xBE + 0.0069375xCD + —0.009125x CE + 0.009125 x DE %)

Sqrt(MRR) = 0.368258 + 0.041593x A + 0.0240059 x B + —0.0343912x C + —0.00193682xD +
0.011716 x E (6)

WR = 0.004826 + 0.00127xA + —2e—05xB + —0.00073xC + 0.000165xD + 0.001555x E
(7
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where, A: Current, B: Pulse on, C: Pulse off, D: Nanopowder Concentration, E: Nanopowder Mixing Ratio Al,O3 %-balanced
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Equations determined the predicted MRR, EWR, and Ra values 4, 5, and 6. Based on the outputs, the precision of predicting
the developed model appeared acceptable. Tables 7, 8, and 9 show the results of fifty runs' material removal rate, electrode wear
rate, and surface roughness. Figures 3(a), 3(c), and 3(e) present the actual versus predicted values. The average probability plots
for each mathematical model were performed as shown in the previous figures. Figures 3(b), 3(d), and 3(f) depict the average
probability of the machining characteristics, which are utilized to check the normality assumption and the normal distribution of
errors. Table 7 notes that the highest MRR is at Run No. 26 by 0.5449 g/min when the current (35 A), pulse on time (200 ps),
pulse off time (50 ps), powder concentration (2 g/L), and mixing ratio (60% Al,Os - 40% SiO»). Through Table 8, we notice that
the lowest EWR is at Run No. 50 by 0.0006 g/min when the current (25 A), pulse on time (200 ps), pulse off time (100 ps),
powder concentration (4 g/L), and mixing ratio (40% Al,Os - 60% SiO»). Finally, from Table 9, we note that the lowest Ra is at
Run No. 37 by (3.954 pm) when the current (20 A), pulse on time (150 us), pulse off time (75 ps), powder concentration (3 g/L),
and mixing ratio (50% ALOs - 50% Si0O,). The ratio of the standard deviation to the mean is known as the Coefficient of
Variation, or CV. With an increasing coefficient of variation, the degree of dispersion around the mean increases. Generally, a
percentage is used to express it. It enables comparison between distributions of values whose measurement scales are
incomparable when no units are involved. The CV connects the estimate's value to the estimate's standard deviation when
estimated values are given. The estimate is more accurate, and the coefficient of variation value is lower. CV (0.01-0.10): the
result is excellent, (0.11-0.20): acceptable, (0.21-0.30): Poor result. The predicted MRR, EWR, and Ra values were determined
by Equations (5), (6), and (7). Based on the outputs, the precision of predicting the developed model appeared acceptable.

4.2 Prediction Accuracy of MRR, EWR, and Ra

Table 7 presents the prediction accuracy of the square root of Material Removal Rate (MRR) for the NPMEDM process,
based on 50 experimental runs. Various parameters were adjusted, including peak current (Ip), pulse-on time (Ton), pulse-off
time (Toff), powder concentration, and the mixture ratio of Al-Os to balanced SiO-. The results show that the model’s predicted
MRR values are generally very close to the experimental values, with most error ratios between experimental and predicted
results hovering around 1, indicating high prediction accuracy. Although most runs exhibit errors within a 5% margin, a few
runs, notably Run 7, Run 11, Run 20, and Run 37, show larger deviations, suggesting that the model's prediction may be less
precise under certain conditions. The highest experimental Sqrt(MRR) value observed was 0.5449 g/min during Run 26, typically
achieved at higher current levels and longer pulse-on times. It is noted that a higher percentage of Al-Os in the powder mixture
(50%-60%) slightly enhances the material removal rate. A higher percentage of Al-Os in the powder mixture slightly enhances
the material removal rate (MRR) because Al2Os particles possess higher hardness, toughness, and thermal conductivity than SiO:
particles [42]. During the NPMEDM process, the suspended Al:Os particles help stabilize and intensify the electrical discharges
between the tool and the workpiece by acting as conductive bridges [43,44]. This results in stronger and more consistent sparks,
leading to more effective erosion of the workpiece material [45]. Additionally, the superior thermal conductivity of Al.Os
promotes efficient heat distribution across the machining zone, supporting continuous melting and material removal. In contrast,
a higher content of SiO:, being softer and less conductive, tends to absorb some of the spark energy, reducing machining
efficiency. Therefore, increasing the Al.Os proportion in the powder mixture improves the overall machining performance by
facilitating faster and deeper material removal [46]. Figures 3(a) and 3(b) give a predictable and real MMR.

Table 8 presents the prediction accuracy of the Electrode Wear Rate (EWR) for the NPMEDM process, based on 50
experimental runs involving different machining parameters such as peak current (Ip), pulse-on time (Ton), pulse-off time (TofY),
powder concentration, and the Al2Os:Si02 powder mix ratio. The experimental and predicted EWR values are compared, and the
error ratio (Exp./Pred.) is calculated to assess the prediction performance. Overall, the prediction model shows a reasonable
degree of accuracy, although the variation in error is slightly larger compared to the previous MRR prediction table. The error
values in most cases range between 0.7 and 1.3, with a few exceptions like Run 16, where the error reaches 1.6349, indicating a
larger mismatch. In general, the model can predict EWR trends with moderate accuracy. Still, there are notable deviations under
certain parameter settings, particularly when the machining conditions involve lower currents and specific powder compositions.
It can be inferred that electrode wear prediction is more sensitive to variations in process parameters compared to material
removal rate prediction, and slight changes in energy input and particle characteristics can lead to considerable differences in
electrode wear behavior.

Electrode wear prediction is more sensitive to variations in process parameters than material removal rate prediction because
electrode wear depends on the amount of energy delivered and how that energy is absorbed by the electrode material itself[47].
Unlike material removal from the workpiece, which is mainly driven by consistent spark erosion, electrode wear is influenced
by many more delicate factors such as localized heating, melting points, thermal conductivity, and the chemical reactivity of the
electrode surface with the powder particles and dielectric fluid. Even small changes in peak current, pulse-on time, or the type
and concentration of powder particles can significantly alter the energy density at the electrode surface, leading to uneven wear
rates [48,49]. Additionally, certain powders like Al:Os and SiO: can either shield the electrode from excessive heat or intensify
localized sparking, further complicating the wear behavior. Therefore, because electrode wear involves complex thermal,
chemical, and electrical interactions, its prediction tends to be more sensitive and less stable than the relatively more
straightforward process of material removal from the workpiece [50]. Figures 3(c) and 3(d) give a predictable and real EWR.
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Table 7: Prediction Accuracy of Sqrt (MRR) for NPMEDM process

Run Ip(A) Pon(us)  Posr Con. Mix of ALO3%-  Exp. Sqrt Pred. MRR Error
(us) (g/L) Balanced SiO: (MRR) (g/min) (g/min) Exp./Pred.

1 30 250 75 3 50 0.3743 0.4163 0.8992
2 35 100 50 4 40 0.3999 0.4066 0.9835
3 30 150 75 5 50 0.3626 0.3644 0.9952
4 35 100 100 2 40 0.3216 0.3417 0.9411
5 30 150 75 3 50 0.3501 0.3683 0.9508
6 25 200 100 2 60 0.3391 0.3299 1.0278
7 35 100 100 4 60 0.3589 0.3612 0.9935
8 35 200 50 2 40 0.5077 0.4585 1.1075
9 30 150 75 3 50 0.3471 0.3683 0.9426
10 40 150 75 3 50 0.4007 0.4514 0.8877
11 30 50 75 3 50 0.3814 0.3202 1.1911
12 35 200 100 4 40 0.3818 0.3858 0.9897
13 30 150 75 3 30 0.3320 0.3448 0.9627
14 30 150 75 3 50 0.3593 0.3683 0.9757
15 25 100 50 4 60 0.3195 0.3468 0.9213
16 30 150 25 3 50 0.3865 0.4370 0.8844
17 30 150 125 3 50 0.3268 0.2995 1.0913
18 35 200 100 2 40 0.3828 0.3897 0.9822
19 35 100 50 4 60 0.5184 0.4300 1.2055
20 30 150 75 3 50 0.3496 0.3683 0.9493
21 30 150 75 3 50 0.3555 0.3683 0.9654
22 35 100 50 2 60 0.4294 0.4339 0.9897
23 25 100 50 4 40 0.3151 0.3234 0.9744
24 35 200 100 2 60 0.4105 0.4131 0.9936
25 30 150 75 1 50 0.3705 0.3721 0.9957
26 35 200 50 2 60 0.5449 0.4819 1.1307
27 25 200 100 4 60 0.3300 0.3261 1.0121
28 25 100 50 2 60 0.3426 0.3507 0.9770
29 35 200 100 4 60 0.4272 0.4092 1.0439
30 35 100 50 2 40 0.4016 0.4105 0.9785
31 30 150 75 3 50 0.3524 0.3683 0.9570
32 25 100 100 4 60 0.2724 0.2780 0.9797
33 25 100 100 4 40 0.2687 0.2546 1.0553
34 25 100 100 2 40 0.2685 0.2585 1.0388
35 25 200 50 4 40 0.3808 0.3714 1.0253
36 35 100 100 2 60 0.3480 0.3651 0.9531
37 20 150 75 3 50 0.3270 0.2851 1.1469
38 35 200 50 4 40 0.5075 0.4546 1.1165
39 35 200 50 4 60 0.4770 0.4780 0.9978
40 25 100 100 2 60 0.2902 0.2819 1.0293
41 30 150 75 3 50 0.3499 0.3683 0.9500
42 30 150 75 3 50 0.3545 0.3683 0.9628
43 35 100 100 4 40 0.3211 0.3378 0.9505
44 25 200 50 2 60 0.4100 0.3987 1.0283
45 25 200 50 4 60 0.3562 0.3948 0.9022
46 25 200 100 2 40 0.3165 0.3065 1.0328
47 30 150 75 3 70 0.3722 0.3917 0.9501
48 25 200 50 2 40 0.3805 0.3753 1.0140
49 25 100 50 2 40 0.3170 0.3273 0.9687
50 25 200 100 4 40 0.3148 0.3026 1.0402
Mean 1.0008
Std. Dev. 0.0710
C.V 0.0710

Table 9 presents the prediction accuracy of the surface roughness (Ra) for the NPMEDM process across 50 experimental
runs, varying parameters such as peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), powder concentration, and
AlL203:Si02 powder mixture ratio. Comparing the experimental and predicted Ra values shows that the prediction model performs
with generally high accuracy. Most error ratios (Exp./Pred.) are very close to 1, typically between 0.8 and 1.05, indicating strong
agreement between experimental and predicted results. Overall, the results indicate that the surface roughness prediction is
reliable, and the model captures the influence of the process parameters well. This also implies that surface roughness, in this
NPMEDM setup, behaves more predictably than EWR, with smaller deviations from model predictions. The small variations
observed might be attributed to minor effects of powder concentration and discharge energy, which affect surface characteristics
like micro-crack density and molten material re-solidification [10].
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Table 8: Prediction Accuracy of EWR for NPMEDM process

Run Ip(A) Pon Potr Con. Mix of ALO3% Exp. EWR Pred. Error
(ns) (us) (/L) - balanced SiO> (g/min) EWR (g/min) Exp./Pred.

1 30 250 75 3 50 0.0041 0.0048 0.8542
2 35 100 50 4 40 0.0067 0.0055 1.2182
3 30 150 75 5 50 0.0060 0.0052 1.1538
4 35 100 100 2 40 0.0074 0.0057 1.2982
5 30 150 75 3 50 0.0057 0.0048 1.1875
6 25 200 100 2 60 0.0050 0.0042 1.1905
7 35 100 100 4 60 0.0060 0.0071 0.8451
8 35 200 50 2 40 0.0012 0.0011 1.0909
9 30 150 75 3 50 0.0057 0.0048 1.1875
10 40 150 75 3 50 0.0010 0.0014 0.7143
11 30 50 75 3 50 0.0009 0.0011 0.8182
12 35 200 100 4 40 0.0035 0.004 0.8750
13 30 150 75 3 30 0.0052 0.0047 1.1064
14 30 150 75 3 50 0.0059 0.0048 1.2292
15 25 100 50 4 60 0.0047 0.006 0.7833
16 30 150 25 3 50 0.0103 0.0063 1.6349
17 30 150 125 3 50 0.0008 0.0012 0.6667
18 35 200 100 2 40 0.0039 0.0036 1.0833
19 35 100 50 4 60 0.0091 0.0086 1.0581
20 30 150 75 3 50 0.0058 0.0048 1.2083
21 30 150 75 3 50 0.0059 0.0048 1.2292
22 35 100 50 2 60 0.0086 0.0082 1.0488
23 25 100 50 4 40 0.0015 0.0019 0.7895
24 35 200 100 2 60 0.0083 0.0067 1.2388
25 30 150 75 1 50 0.0023 0.0024 0.9583
26 35 200 50 2 60 0.0103 0.0102 1.0098
27 25 200 100 4 60 0.0051 0.0053 0.9623
28 25 100 50 2 60 0.0046 0.0047 0.9787
29 35 200 100 4 60 0.0086 0.0084 1.0238
30 35 100 50 2 40 0.0075 0.0073 1.0274
31 30 150 75 3 50 0.0059 0.0058 1.0172
32 25 100 100 4 60 0.0035 0.0036 0.9722
33 25 100 100 4 40 0.0015 0.0015 1.0000
34 25 100 100 2 40 0.0016 0.0015 1.0667
35 25 200 50 4 40 0.0007 0.0008 0.8750
36 35 100 100 2 60 0.0059 0.0058 1.0172
37 20 150 75 3 50 0.0042 0.0043 0.9767
38 35 200 50 4 40 0.0011 0.0012 0.9167
39 35 200 50 4 60 0.0106 0.0105 1.0095
40 25 100 100 2 60 0.0034 0.0032 1.0625
41 30 150 75 3 50 0.0058 0.0057 1.0175
42 30 150 75 3 50 0.0059 0.0058 1.0172
43 35 100 100 4 40 0.0066 0.0065 1.0154
44 25 200 50 2 60 0.0063 0.0065 0.9692
45 25 200 50 4 60 0.0065 0.0062 1.0484
46 25 200 100 2 40 0.0007 0.0008 0.8750
47 30 150 75 3 70 0.0065 0.0067 0.9701
48 25 200 50 2 40 0.0007 0.0006 1.1667
49 25 100 50 2 40 0.0017 0.0016 1.0625
50 25 200 100 4 40 0.0006 0.0005 1.2000
Mean 1.0345

Std. Dev. 0.1664

CV 0.1608

The results imply that surface roughness (Ra) behaves more predictably compared to electrode wear rate (EWR) in the
NPMEDM setup because the deviations between the experimental and predicted values for Ra are consistently small, with most
errors close tol [51]. This suggests that surface roughness is primarily governed by the controlled input parameters (such as
discharge current, pulse durations, and powder concentration) in a systematic and repeatable way [52]. In contrast, EWR is
influenced by more complex, less predictable factors such as localized electrode erosion, thermal stresses, and chemical reactions
during sparking, which can introduce random variability that the model cannot easily capture [53]. As a result, Ra shows a more
stable and direct relationship with the process settings, leading to smaller deviations from model predictions. At the same time,
EWR remains more erratic and harder to predict accurately [54].
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Table 9: Prediction Accuracy of Ra for the NPMEDM process

Run I,(A) Pon (ps) Potr (us) Con. (g/L) Mix of Al203% - Exp. Pred. Ra Error
balanced SiO2 Ra (um) (um) Exp./Pred.

1 30 250 75 3 50 4.527 5.474 0.827
2 35 100 50 4 40 4.949 5.002 0.989
3 30 150 75 5 50 5.589 5.704 0.980
4 35 100 100 2 40 6.801 6.839 0.994
5 30 150 75 3 50 5.712 5.455 1.047
6 25 200 100 2 60 5.185 5.009 1.035
7 35 100 100 4 60 6.752 6.902 0.978
8 35 200 50 2 40 4.407 4.619 0.954
9 30 150 75 3 50 5.498 5.455 1.008
10 40 150 75 3 50 6.289 5.781 1.088
11 30 50 75 3 50 5.361 5.437 0.986
12 35 200 100 4 40 6.499 6.310 1.030
13 30 150 75 3 30 5.777 5.586 1.034
14 30 150 75 3 50 5.488 5.455 1.006
15 25 100 50 4 60 5.048 5.178 0.975
16 30 150 25 3 50 4.827 4.762 1.014
17 30 150 125 3 50 4.954 6.148 0.806
18 35 200 100 2 40 6.318 6.097 1.036
19 35 100 50 4 60 4.820 4.875 0.989
20 30 150 75 3 50 5.564 5.455 1.020
21 30 150 75 3 50 5.637 5.455 1.033
22 35 100 50 2 60 4.622 4.639 0.996
23 25 100 50 4 40 5.163 5.269 0.980
24 35 200 100 2 60 6.177 5.926 1.042
25 30 150 75 1 50 4.874 5.207 0.936
26 35 200 50 2 60 4311 4.484 0.961
27 25 200 100 4 60 5.465 5.307 1.030
28 25 100 50 2 60 4.830 4.894 0.987
29 35 200 100 4 60 6.389 6.176 1.035
30 35 100 50 2 40 4.737 4.803 0.986
31 30 150 75 3 50 5.602 5.455 1.027
32 25 100 100 4 60 5418 5.085 1.065
33 25 100 100 4 40 5.523 5.213 1.059
34 25 100 100 2 40 5.222 4.938 1.058
35 25 200 50 4 40 6.293 6.019 1.046
36 35 100 100 2 60 6.433 6.639 0.969

37 20 150 75 3 50 3.954 4.130 0.9574
38 35 200 50 4 40 4.607 4.804 0.959
39 35 200 50 4 60 4.500 4.706 0.956
40 25 100 100 2 60 5.127 4.774 1.074
41 30 150 75 3 50 5.552 5.455 1.018
4?2 30 150 75 3 50 5.519 5.455 1.012
43 35 100 100 4 40 6.866 7.066 0.972
44 25 200 50 2 60 5.975 5.687 1.051
45 25 200 50 4 60 6.184 5.957 1.038
46 25 200 100 2 40 5.333 5.144 1.037
47 30 150 75 3 70 5.501 5.324 1.033
48 25 200 50 2 40 6.082 5.785 1.051
49 25 100 50 2 40 4.941 5.022 0.984
50 25 200 100 4 40 5.565 5.405 1.030

Mean 1.0036

Std. Dev. 0.0525

.V 0.0523

4.3 ANOVA Test for MRR, EWR, and Ra

Table 10 and Figure 4 present the ANOVA test results for the MRR output parameter. This table and figure include the
Mean Square, Sum of Squares, degrees of freedom (df), F-value, and P-value. The mean square value can be calculated by
dividing the sum of the squared values of each output characteristic by the degrees of freedom (df). The F-value was calculated
by dividing the Mean Square of the terms by the Mean Square of the residuals.

Table 10: ANOVA test for MRR Response

Source Sum of Squares df Mean Square F-value p-value
Model 0.1452 5 0.0290 33.79 <0.0001
A-Current 0.0692 1 0.0692 80.52 <0.0001
B-Pulse on 0.0231 1 0.0231 26.82 <0.0001
C-Pules off 0.0473 1 0.0473 55.05 <0.0001
D-Concentration 0.0002 1 0.0002 0.1746 0.6781
E-Mix of Al%-Si 0.0055 1 0.0055 6.39 0.0152
Residual 0.0378 44 0.0009

Lack of Fit 0.0377 37 0.0010 65.26 <0.0001
Pure Error 0.0001 7 0.0000

Cor Total 0.1830 49
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The model is considered significant due to its F-value of 33.79. The substantial F-value possesses a 0.01% likelihood of
being attributable to random variation. Model terms are deemed significant when P-values are below 0.0500. A (Current), B
(Pulse duration), C (Pulse cessation duration), and E (Mixing ratio) are significant parameters of the model. The model terms
are insignificant if the value exceeds 0.1000. Model reduction may enhance your model if it has numerous insignificant terms,
except those necessary for preserving hierarchy. The F-value of 65.26 signifies a considerable lack of fit. A substantial Lack of
Fit F-value has a 0.01% likelihood of being attributable to random variation. A substantial lack of fit is unfavorable as the model
must conform adequately.

Figure 4 illustrates that the primary influencing component affecting MRR is current, with a contribution percentage of
37.810%. The percentages for the other parameters were 12.595% for pulse on and 20.850% for pulse off, respectively. The
current is the predominant factor influencing the enhancement of the metal removal rate, as previously stated. An increase in
current results in a greater concentration of energy in the operational zone, thereby augmenting the likelihood of metal melting
and subsequent removal. This process necessitates a substantial pulse on time, coupled with an adequate pulse off time, to
facilitate the expulsion of molten metal from the operational area prior to re-solidification.

40
37.810
30
A-Current
25.850
B-Pulse on
20
20.744
C-Pules off
10 12.595 m E-Mix of Al%-

Si

0 [30007]

Contribution %
Figure 4: The contribution of parameters to MRR

Table 11 and Figure 5 present the ANOVA test results for the Ra output parameter. These tables and figures include the
Mean Square, Sum of Squares, degrees of freedom (df), F-value, and P-value. The mean square value can be calculated by
dividing the sum of the squared values of each output characteristic by the degrees of freedom (df). The F-value was calculated
by dividing the Mean Square of the terms by the Mean Square of the residuals.

Table 11: ANOVA test for Ra Response

Source Sum of Squares df Mean Square F-value p-value
Model 18.07 15 1.20 7.25 <0.0001
A-Current 1.06 1 1.06 6.37 0.0165
B-Pulse on 0.0034 1 0.0034 0.0206 0.8867
C-Pules off 4.80 1 4.80 28.91 <0.0001
D-Concentration 0.6175 1 0.6175 3.72 0.0622
E-Mix of Al%-Si 0.1719 1 0.1719 1.03 0.3162
AB 1.80 1 1.80 10.82 0.0023
AC 8.99 1 8.99 54.12 <0.0001
AD 0.0047 1 0.0047 0.0283 0.8673
AE 0.0026 1 0.0026 0.0158 0.9006
BC 0.6216 1 0.6216 3.74 0.0614
BD 0.0004 1 0.0004 0.0024 0.9615
BE 0.0017 1 0.0017 0.0103 0.9197
CD 0.0015 1 0.0015 0.0093 0.9239
CE 0.0027 1 0.0027 0.0160 0.9000
DE 0.0027 1 0.0027 0.0160 0.9000
Residual 5.65 34 0.1661

Lack of Fit 5.61 27 0.2076 35.87 <0.0001
Pure Error 0.0405 7 0.0058

Cor Total 23.72 49

The model is considered significant due to its F-value of 7.25. The substantial F-value has a 0.01% likelihood of being
attributable to random variation. Model terms are deemed significant when P-values are below 0.0500. A (Current), C (Pulse off
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time), AB (Current interaction with Pulse on time), and AC (Current interaction with Pulse off time) are significant terms in the
model. The model terms are insignificant if the value exceeds 0.1000. Model reduction may enhance your model if it has
numerous insignificant terms, except those necessary for preserving hierarchy. The F-value of 35.87 signifies a considerable lack
of fit. A substantial Lack of Fit F-value has a 0.01% likelihood of being attributed to random variation. A substantial lack of fit
is unfavorable as the model must conform appropriately.

Figure 5 indicates that pulse off is the most significant parameter influencing Ra, contributing 20.239%. The contributions
of the other parameters are 7.573% for current interaction with pulse on and 37.893% for current interaction with pulse off. The
primary factor influencing surface roughness is the pulse duration; an increase in this duration results in a decrease in surface
roughness, as previously stated, because it facilitates the expulsion of molten metal from the operational region, enhancing
surface leveling and diminishing the pulse duration results in the elimination of pits that may form on the treated surface, hence
lowering surface roughness, particularly when employing a lower current intensity.

40
30 A-Current
C-Pules off
24.613 D-Concentration
20
20.239 AB
mAC
10 m BC
Residual

7.573

4.458 2.603
0 I

Contribution %
Figure 5: The percentage contribution of parameters to Ra

Table 12 and Figure 6 present the ANOVA test results for the EWR output parameter. These tables and figures include the
Mean Square, Sum of Squares, degrees of freedom (df), F-value, and P-value. The mean square value can be calculated by
dividing the sum of the squared values of each output characteristic by the degrees of freedom (df). The F-value was calculated
by dividing the Mean Square of the terms by the Mean Square of the residuals.

Table 12: ANOVA for EWR Response

Source Sum of Squares df Mean Square F-value p-value
Model 0.0002 5 0.0000 7.80 <0.0001
A-Current 0.0001 1 0.0001 13.70 0.0006
B-Pulse on 1.600E-08 1 1.600E-08 0.0034 0.9538
C-Pules off 0.0000 1 0.0000 4.53 0.0390
D-Concentration 1.089E-06 1 1.089E-06 0.2313 0.6329
E-Mix of Al%-Si 0.0001 1 0.0001 20.55 < 0.0001
Residual 0.0002 44 4.708E-06

Lack of Fit 0.0002 37 5.597E-06 712.33 <0.0001
Pure Error 5.500E-08 7 7.857E-09

Cor Total 0.0004 49

The model is considered significant due to its F-value of 7.80. The substantial F-value has a 0.01% likelihood of being
attributable to random variation. Model terms are deemed significant when P-values fall below 0.0500. A (Current), C (Pulse off
time), and E (Mixing ratio) are significant parameters in this context. The model terms are irrelevant if the value exceeds 0.1000.
Model reduction may enhance your model if it has numerous insignificant terms, except those necessary for preserving hierarchy.
The significant lack of fit is evidenced by an F-value of 712.33. A substantial Lack of Fit F-value has a 0.01% likelihood of
being attributable to random variation. A substantial lack of fit is unfavorable, as the model is required to conform.

Figure 6 illustrates that the primary factors affecting EWR were the current and powder mixing ratios, each contributing
25.589% to the overall outcome. The current is the predominant component influencing the tool's wear rate due to its
concentration in the operational zone. Nonetheless, we observe the influence of additional factors with equivalent effects, namely
concentration and mixing rate. An increase in concentration results in more particles being transported to the operational area,
thereby transferring a larger charge, adversely impacting the tool's wear rate. Similarly, the quality of these particles also exerts
a comparable negative influence, as previously indicated in the results.
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Figure 6: The percentage contribution of parameters to EWR

4.4 Parametric analysis of MRR, EWR, and Ra

The peak current (Ip), pulse duration (Pon), pulse interval (Poff), nanopowder concentration, and nanopowder mixing ratio.
Various factors have been examined to determine their influence on the Material Removal Rate (MRR) in the application of
NPMEDM for modifying stainless steel 304L surfaces. Utilize statistical software to generate 3D contour diagrams. Three-
dimensional response contour diagrams offer adequate information concerning the relationship between input process parameters
and material removal rate (MRR). This study employs response surface methodology (RSM) to examine the influence of
nanopowder concentration and mixing ratio on the maximum material removal rate (MRR), while maintaining the values of
three other parameters constant. Figure 7(a) illustrates that the constants are Ip (35 Amperes), Pon (200 microseconds), and the
default value Poff (50 microseconds) in the 3D contour graphic.

The MRR consistently rises to its peak value when the concentration of Al,O; reaches 2 g/L and the mixing ratio is elevated

to 60%. An explanation for the observed boost in Material Removal Rate (MRR) following the alteration in mixing ratio, which
subsequently elevates the quantity of Al,Oz nanoparticles, is that a greater amount of energy may be accessible for discharge
within the sparking region. This increased energy availability promotes the melting and evaporation of work materials. The 40%
mixing ratio of Al,O3 adversely affects the Material Removal Rate (MRR) due to the minimal discharge energy delivered to the
surface area at a low concentration (2 g/L), while maintaining the default parameters of Ip (25 Amp.), Pon (100 ps), and Poff
(100 ps). Figure 7(b) is a three-dimensional contour diagram illustrating this. The concentration of nanopowder, mixing ratio,
peak current (Ip), pulse on time (Pon), and pulse off time (Poff). They have all been examined to ascertain their potential influence
on the Surface Roughness (Ra) when the surface of stainless steel 304L is changed using NPMEDM. 3D contour diagrams are
generated using the statistical program. Three-dimensional response contour diagrams offer adequate information concerning
the relationship between input process parameters and Ra. This work employs response surface methodology (RSM) to examine
the influence of Nanopowder concentration and mixing ratio on the maximum surface roughness (Ra), while maintaining the
values of the other three parameters: Ip (35 Amp.), Pon (100 ps), and Poff (100 ps), as illustrated in Figure 7(c).
The Ra consistently escalates to its peak value when the concentration of Al,Oj3 reaches four g/L and the mixing ratio is elevated
to 40%. The elevated Ra following the alteration in the mixing ratio, which raises the quantity of AI203 nanoparticles, is due to
additional energy being accessible for discharge within the sparking region. This increased energy availability promotes the
melting and evaporation of work materials. Figure 7(d) 3D contour diagram distinctly demonstrates the impact of a 50% Al,O3
mixing ratio on Ra at its minimum value, since the discharge energy imparted to the surface area is negligible and corresponds
with a reduction in concentration to (3 g/L). The values of Ip (20 Amperes), Pon (150 microseconds), and Poff (75 microseconds)
remain at their normal settings.

Response surface methodology (RSM) is employed in Figure 7(e) to generate a 3D contour diagram illustrating the impact
of nanopowder concentration and nanopowder mixing ratio on EWR, while keeping the default levels of Ip, Pon, and Poff at 35
Amp, 200 ps, and 50 ps, respectively. The correlation between Nanopowder concentration and mixing ratio indicates that the
maximum EWR varies with the mixing ratio up to 60%, corroborating the hypothesis that, at a fixed concentration (4 g/L), a
sustained increase in EWR is expected. The elevated expulsion energy associated with a larger mixing ratio of Al,Os, which
facilitates the melting and vaporization of materials and tool components in the machining area, is often correlated with the
observed increase in (EWR) at increased concentrations. The concentration and mixing ratio of nanopowder dictate the energy
released during the electromagnetic dipole moment NPMEDM. Consequently, the region is demonstrating a significant
maximum. Nanoparticles possess the highest discharge energy value. Figure 7(f) presents a three-dimensional contour plot
demonstrating the reduced electrode wear rate observed with a decreased mixing ratio of Al,O3 (40%), while sustaining the Ip
(25 Amp), Pon (200 ps), and Poff (100 us). This low EWR value, while maintaining a concentration of 4 g/L, can be elucidated
by noting that a reduction in the discharge energy conveyed by nanoparticles corresponds with a drop in the quantity of electrode
material that is melted and evaporated.
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5. Conclusion

This study analyzes the output responses of Electrical Discharge Machining (EDM), including Surface Roughness (SR),
Material Removal Rate (MRR), and Electrode Wear Rate (EWR), for conventional EDM and Nano-Particle-Mixed EDM
(NPMEDM). Al203 and SiO2 nanoparticles exhibit electrical conductivity and physical properties that diminish the breakdown
strength of kerosene and reduce spark delay time, while the material removal rate increases with the concentration of
nanoparticles in the kerosene dielectric fluid. This results in the thermal conductivity of nanofluid being significantly greater
than traditional dielectrics, enhancing the material removal rate. It has been observed that the Material Removal Rate (MRR)
increases with higher discharge currents. Enhancing the proportion of AI203 particles during a discharge current of 35 A, with
a particle concentration of 2 g/, a pulse on time of 200 ps, and a pulse off time of 50 ps, results in a 13% improvement in the
material removal rate at Run No. 26. Ra diminishes with increased discharge currents; by lowering the discharge current to 20
A, the particle concentration to 3 g/l, the pulse on time to 150 ps, and the pulse off time to 75 us, the relative composition of
aluminum oxide particles is reduced to 50%, yielding an approximate 4.5% enhancement in Ra at Run No. 37. The EWR
diminishes with elevated discharge currents; by augmenting the discharge current to 25 A, the particle concentration to 4 g/1, the
pulse on time to 200 ps, and the pulse off time to 100 ps, the relative composition of aluminum oxide particles is reduced to
40%, yielding an approximate 33.3% enhancement in EWR at Run No. 50, as determined experimentally using the Design Expert
11 software. The critical variables for MRR are current at 37.8%, pulse on at 12.6%, nanopowder concentration at 3%, and pulse
off at 25.85%. The mixing ratio parameter exerts no significant influence on MRR. The critical elements for EWR are the current
at 25.5% and the Nanopowder mixing ratio at 25.6%. The critical determinants for Ra include nanopowder concentration, peak
current at 4.5%, pulse-off duration at 20.24%, current-pulse duration at 7.6%, and current-pulse off duration at 37.9%.

These findings suggest that NPMEDM can boost productivity, surface quality, and tool life, making it viable for industrial
use. Future research should investigate using TiO2 or CuO nanoparticles and advanced optimisation methods like RSM or Genetic
Algorithms to balance machining efficiency and quality. Studies should also include microstructural and hardness investigations
of surface integrity in workpiece materials other than stainless steel 304L. Nanoparticle-enhanced dielectric fluid stability,
environmental safety, and scalability require long-term investigations. Finally, real-time monitoring and sophisticated control
systems could improve EDM uniformity and adaptability, enabling intelligent, next-generation production.
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