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H I G H L I G H T S  
 

A B S T R A C T  

• The effect of Al₂O₃-SiO₂ nanopowder on 

machining stainless steel 304L was 

experimentally investigated. 

• MRR, EWR, and Ra were measured to 

evaluate the machining performance using 

nanopowder-mixed EDM. 

• RSM was applied to model the relationship 

between inputs and outputs in the NPMEDM 

process. 

• Surface response optimization increased MRR 

by 13% and reduced EWR and Ra by 33.3% 

and 4.5%, respectively. 

 Electro-Discharge Machining (EDM) is a unique manufacturing method. Recently 

developed thermo-electric methods include Nano Powder-Mixed Electric 

Discharge Machining (NPMEDM), which suspends metallic Nanopowder in a 

dielectric. This study examines how Al2O3 -SiO2 Nanopowder concentration and 

mixing ratio affect EDM dielectric fluid surface integrity (outputs) on stainless 

steel 304L. Material Removal Rate (MRR), Electrode Wear Rate (EWR), and 

surface roughness (Ra) are used to evaluate machining efficiency. Nanofluid has 

much better heat conductivity than dielectrics, enhancing material removal. 

Material Removal Rate rises with discharge current. At Run No. 26, increasing 

Al2O3 particle proportion with 35 A discharge current, 2 g/l particle concentration, 

200 µs pulse on time, and 50 µs pulse off time increases material removal rate by 

13%. Increasing discharge currents lowers Ra. Lowering discharge current to 20 

A, particle concentration to 3 g/l, pulse on time to 150 µs, and pulse off time to 75 

µs lowered aluminium oxide particle composition to 50%, increasing Ra by 4.5% 

at Run No. 37. Increased discharge currents lower EWR. By increasing discharge 

current to 25 A, particle concentration to 4 g/l, pulse on time to 200 µs, and pulse 

off time to 100 µs, aluminium oxide particle composition was reduced to 40%, 

leading to a 33.3% rise in EWR at Run No. 50 using Design Expert 11 software. 

Current 37.8%, pulse on 12.6%, nanopowder concentration 3%, and pulse off 

25.85% are needed for MRR. The mixing ratio parameter does not affect MRR. 

EWR needs 25.5% current and 25.6% nanopowder. Ra depends on nanopowder 

concentration, peak current at 4.5%, pulse-off duration at 20.24%, current-pulse 

duration at 7.6%, and current-pulse off duration at 37.9%. 
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1. Introduction 

Most people today rely on EDM for complex jobs requiring tough materials such as stainless steel 304L machining. The 
invention of NPMEDM has resulted from adding nanoparticles of Al₂O₃ or SiO₂ to the dielectric in the process, which improves 
heat distribution, the flow of sparks, and overall EDM machining results [1]. Even though adding nanopowder to MMW is known 
to improve MRR and Ra, experts still do not fully understand how input values such as nanopowder dosage, mix ratio, current, 
and pulse durations impact EWR and the quality of the surface [2].  The condition of surfaces and the wear of tools contrast in 
different ways as the Al₂O₃–SiO₂ nanopowder compositions change, and errors still occur between experiment runs. For instance, 
the material removal rate may improve when you use extra discharge current and a higher amount of nanopowder. Still, the  
etching time of the substrate sometimes increases or the finish on the surface degrades, depending on various conditions. There 
seems to be a relationship here that has not been used for industrial purposes as much, and may depend on different situations. 
In addition, the effect of nanopowder mixing ratio on EDM results is less understood, and there is insufficient evidence about its 
importance [3]. 

Hence, we need to look into how the amount and structure of Al₂O₃–SiO₂ nanopowder, EDM process settings, and other 
variables influence stainless steel 304L by using Design Expert software. Doing such analysis is crucial for improving the 
trustworthiness, productivity, and continuous improvements in mean residence time, equipment waste ratio, and reliability. 
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Electricity significantly enhanced the MRR while diminishing the EWR and SR. Effectively leveraging the capabilities of diverse 
unconventional machining processes requires the meticulous selection of the most suitable strategy for a specific application [4]. 
EDM is one of the most widely utilized unique machining processes. This process has effectively replaced previous techniques 
for cutting hard materials. Historically, the EDM method was restricted to the machining of electrically conductive materials; 
however, advancements in technology today allow for the machining of ceramics and composites. It produces intricate shapes, 
irregular proportions, elaborate decorations, and minuscule apertures [5]. The evaluation of EDM performance is conducted 
using MRR (material removal rate), EWR (electrode wear rate), SR (surface roughness), and other machining responses [6]. 
EDM is utilized across multiple sectors, such as gear manufacture, mold and die fabrication, aerospace, automotive, 
biotechnology, sports, electronics, medical, jewelry, and toys, with enhancements achieved through the incorporation of SiO2-
graphite nanopowder to augment performance [7-11]. The impact of mixing powder into the dielectric fluid on the efficiency of 
the EDM process was examined by several researchers [12-24]. The process is known as powder mix electrical discharge 
machining, or PMEDM. Tungsten [20, 21], chromium [22], titanium [23,24], silicon [16,17], silicon carbide [18,19], graphite 
[14,15], aluminum [12,13], and other powders have been tried. According to these experiments, the EDM dielectric's machining 
efficiency, surface finish, and material removal rate are all enhanced by adding powder. The size of the particles may range from 
micro to nano. Some EDM experiments have employed CNT and nanopowder mixed dielectric. Use nanopowders from CNTs 
and other materials. Application possibilities for carbon nanotubes are vast. Strong, stiff, durable, and electrically and thermally 
conductive. Multilayer graphite tubes make up MWCNTs. This research aimed to determine how CNT and nanopowder mixed 
dielectric fluids affect EDM performance. Electrical discharge machined SKD-11 surface properties were examined about 
dielectric fluid particle size. Powder additives: aluminum, chromium, copper, and silicon carbide. Smaller particles (70-80 nm) 
produce better surfaces. Smaller particles produced a thicker recast layer [25]. 

The study examined the influence of powder additives suspended in dielectric fluid on crater features during micro-electrical 
discharge machining of stainless steel. Daphne Cut HL-25 dielectric fluid and SiC nanopowder (45-55 nm) were utilized. 
Transferring charges between the tool and the workpiece was reduced, leading to a uniform depth and diminished crater size. A 
smaller crater containing a greater volume of re-solidified material was identified within the crater chamber [26], and the effect 
of nanopowder suspended in dielectric fluid on the surface roughness of AISI 420 stainless mold steel during micro-EDM was 
investigated. Idemitsu Daphne Cut HL25-S dielectric fluid, silicon carbide, and aluminum oxide particulates were utilized. The 
tool electrode consisted of tungsten. Surface roughness was reduced utilizing SiC and Al2O3 microparticles [27]. The AISI D2 
tool steel's surface properties were analyzed using the EDM technique. Machining was performed using a copper electrode and 
single-walled carbon nanotubes (SWCNT) suspended in kerosene dielectric. It was disclosed that workpieces machined with 
SWCNT-infused dielectric exhibited superior surface quality and a reduced incidence of microcracks. Configuring the machine 
parameters to low pulse energy yielded an exceptional machined nano finish [28]. The study examined the enhancement of 
surface properties in cemented tungsten carbide micro-EDMs by incorporating graphite nanopowder into the dielectric. A 
tungsten tool and an oil dielectric known as "Total FINA ELF EDM3" were utilized. Surface quality and material removal rate 
were enhanced, while the tool wear rate diminished. The increased spark gap improved surface topography and crater distribution 
[29]. The investigation focused on nano graphite powder suspended in kerosene dielectric during the micro-electrical discharge 
machining of silver-tungsten workpieces. The tool's material was tungsten, with a particle size of 55 nm. Improvements in surface 
quality and machining duration were identified. The nano graphite powder dispersion particle size resulted in a significant spark 
gap, reducing electric discharge power density and diminishing explosive force [30]. The efficacy of EDM operations in milling 
Inconel 718 was examined utilizing kerosene dielectric infused with titanium carbide nanopowder. A brass implement was 
utilized for machining. The incorporation of nanopowder enhanced material removal rate (MRR) while reducing tool wear rate 
(TWR) [31] utilizing multi-walled carbon nanotubes (MWCNTs) in the dielectric fluid for machining Al-10% SiCp metal matrix 
composites (MMCs) during EDM. Copper was utilized as a tooling material throughout the machining process. Incorporating 
MWCNTs into the dielectric fluid significantly enhanced the material removal rate (MRR) and surface quality [32]. Adding 
carbon nanotubes to the oil flux ELF2 dielectric during Ti-6Al-4V EDM was studied. This experiment used copper tools. Using 
carbon nanotubes with dielectric materials reduced surface microcracks. CNTs reduced MRR, TWR, and SR [33]. EDM using a 
dielectric and Al2O3 nanopowder was tested for grinding Inconel 825. MRR and surface roughness increased significantly when 
nanopowder was added to deionised water dielectric fluid. A copper machining tool. In industry, cheap Al2O3 powder works 
well [34]. Graphite nanopowder-infused EDM fluid dielectric affects Inconel 718 micro-wire electrical discharge machining 
[35].  

Nanofluids consist of dielectric particles with dimensions ranging from 1 to 100 nanometers. Nanoparticles possess a 
singular characteristic: a high surface area to volume ratio, dimensionally dependent physical characteristics, and reduced kinetic 
energy. The most fascinating feature of nanofluids is that a minimal addition of nanoparticles leads to a tenfold enhancement in 
thermal conductivity above theoretical expectations. Incorporating 0.3 vol.% copper nanoparticles into ethylene glycol enhanced 
its thermal conductivity by 40% [36]. Heat transfer fluids (HTFs) are utilized in diverse industrial and municipal applications, 
including air conditioning, transportation, energy provision, and electronic cooling. Water, oils, glycols, and fluorocarbons 
exemplify earlier heat transfer fluids with low thermal conductivities. Efforts in research and development were undertaken to 
enhance the thermal conductivity of liquids. Solid metallic substances like silver, copper, and iron, along with nonmetallic 
materials such as alumina, CuO, SiC, and carbon nanotubes, exhibit far greater thermal conductivities than earlier heat transfer 
fluids, which incorporated solid particles of micron or millimeter dimensions with base fluids or slurries. Large solid particles, 
conversely, cause surface abrasion, microchannel blockage, pipeline corrosion, and heightened pressure loss, thus restricting 
potential uses [37]. Surface polishing utilizing nanopowder decreased the average surface roughness. The machined surface 
exhibited no minute fractures. Inconel superalloys are nickel-based alloys employed in high-pressure and high-temperature 
applications, including gas turbines, electric power generation systems, nuclear reactors, and high-temperature chemical vessels 
[38]. Numerous studies investigate the impact of nanoparticle incorporation on SR. Al2O3 and silicon carbide nanoparticles were 
found to reduce the surface roughness of stainless steel micro-electrical discharge machining[39,40]. 
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This study focuses on the highly challenging material stainless steel 304L. Machining this material using conventional 
methods may damage the tool and induce internal stresses in the workpiece. The research also investigates how Electrical 
Discharge Machining (EDM) addresses these issues. By optimizing the input process parameters, the study also aims to enhance 
the material removal rate (MRR), reduce surface roughness, and minimize the electrode wear rate (EWR). 

2. Materials and methods 

2.1 Workpiece characterization and machining  

Stainless steel 304L was used in this study as a workpiece. Nanoparticles were made from aluminum oxide (Al2O3) and 
silicon dioxide (SiO2). They use a 1 - 5 g/l concentration and a mix fraction of 30 - 70% Al2O3 with SiO2 balanced to integrate 
with kerosene dielectric. Figure 1a shows the workpiece dimensions (25.4 mm diameter x 5 mm thickness). Kerosene is utilized 
as a dielectric fluid. Figure 1b shows how the tests are carried out using a cylindrical copper electrode with a diameter of 16 mm 
and a length of 40 mm. 

 
(a) 

 
(b) 

Figure 1: a) Workpiece before machining (25.4 mm diameter x 5mm Thickness) b) Copper electrode 

                                    (16 mm diameter x 40 mm length) 

 

EDM is a precise manufacturing technology for shaping hard, electrically conducting materials. Traditional machining 

employs mechanical cutting, but EDM uses electrical sparks to dissolve material. Tool and workpiece electrodes are submerged 

in dielectric fluid. A voltage causes regulated electrical discharges between the electrodes, generating intense heat that melts and 

vaporizes small parts of the workpiece-cooling and flushing trash with dielectric fluid. Sinker, wire, and hole drilling EDM 

machines exist. Mould and die makers utilize sinker EDM to build complicated cavities using a shaped electrode. Wire EDM, 

which uses a thin wire electrode, cuts accurate forms well. Hole drilling EDM makes deep, tiny holes in turbine blades and other 

hard materials. EDM can manufacture extremely hard materials without mechanical stress and generate complicated shapes. Its 

slower removal rates and electrically conductive material limits are drawbacks. Despite these drawbacks, EDM is popular in 

businesses that need precise machining of difficult parts. The machining properties of stainless steel 304L are investigated 

utilizing the electric discharge machining (EDM) process. The current study's tests were carried out on a numerically controlled 

electric discharge machine with the model number [CM 323+50N (CHAMBER EDM)] (Taiwanese origin). Fifty trials were 

conducted with identical input process settings and conditions for NPMEDM. The results were discussed using measured 

material removal rate, electrode wear rate, and surface roughness values. Figure 2 depicts the machined workpiece. 

 

Figure 2: Workpiece after machining 
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Table 1 demonstrates complete measurements and thermo-physical properties of the selected electrode. Table 2 shows the 

chemical composition of the workpiece (stainless steel 304L) and the electrode characteristics. This experiment was done by 

mixing 20-nm aluminum oxide particles and 50-nm silicon dioxide with a kerosene dielectric. Table 3 shows some of the critical 

and effective Nanopowder specifications used in the NPMEDM process. 

Table 1: Specifications and Thermophysical properties of the copper electrode 

Diameter of tool (mm) 16 

Tool length (mm) 40 

Specific heat capacity (J/kg-ºC) 385 

Thermal conductivity (W/m-ºC) 385 

Thermal diffusivity (m2/s) 1.11 × 10-4 

Density (Kg/m³) 8960 

Melting point (ºC) 1085 

Thermal expansion coefficient at 20 ºC (/ºC) 16.5 × 10-6 

Table 2: Chemical composition of stainless steel 304 L 

Chemical element Cr Ni Mn Cu Si P Ni C S Fe 

% Composition 18.37 8.19 1.8 0.58 0.54 0.039 0.037 0.021 0.019 Balance 

Table 3: The effective physical properties of nanoparticles in NPMEDM 

Nanoparticles Density(g/cm3) Thermal Conductivity 

(W/cmK) 

Electrical Resistivity 

(µΩ.cm) 

Particle size (nm) 

Al2O3 1.8 5 104 50 

SiO2 2.4 1.3 108-1012 50 

Machining experiments using the response surface methodology (RSM) are conducted using the Design Expert 11. The 

study's input parameters included the electric discharge current, particle concentration, pulse on/off period, and nanoparticle 

mixing percentage. There were five levels of testing for each parameter. Table 4 contains a list of parameters and their respective 

ranges. Response characteristics include surface roughness (Ra), electrode wear rate (EWR), and material removal rate (MRR). 

The weight loss method was used to compute the MRR and EWR. The SR was measured using the Pocket Surf (Mahr 

FEDERAL) device tester (American origin), which averages three measurements from the cutting surface in different directions. 

Additionally, alumi  num oxide Nanopowder is used in studies as a basis for determining particle composition percentage. The 

low-voltage mode EDM machine was used for all experiments. 

Table 4: Parameters and their levels 

 Levels 

No. Parameters 1 2 3 4 5 

1 Pulse off time (µs) 25 50 75 100 125 

2 Pulse on time (µs) 50 100 150 200 250 

3 Peak current (A) 20 25 30 35 40 

4 Mix of powder (% Al2O3) 30 40 50 60 70 

5 Concentration (g/l) 1 2 3 4 5 

3. Equipment of measurement       

3.1 Weight balance 

The weight of the workpiece and electrode was determined using a high-precision balance, and its specifications are 

demonstrated in Table 5. The apparatus has a capacity of 300 grams and an accuracy of 0.001 grams and belongs to the Brand 

Model JM-B (German origin). 

Table 5: Specification of the Weight Balance 

Specification Value 

Max. Capacity  220 g 

Readability  0.1 mg 

Repeatability  0.1 mg 

Weighing pan area   80 mm diameter  
  

Equations 1 and 2 compute the material removal rate (g/min) and electrode wear rate (g/min) due to machining time, 

respectively. 

 𝑀𝑅𝑅 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑜𝑓𝑤𝑜𝑟𝑘−𝐹𝑖𝑛𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑜𝑓𝑤𝑜𝑟𝑘

𝑀𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒
 (1) 
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 𝐸𝑊𝑅 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑜𝑓𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒−𝐹𝑖𝑛𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑜𝑓𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

𝑀𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒
 (2) 

3.2 Measurements of (Ra) and pocket surf 

Surface roughness, measured by the center line average (Ra), is the average deviation of the roughness profile from the center 

line. Ra is expressed in Equation 3. 

 𝑅𝑎 =
1

𝑙
∫ 𝑦(𝑥)𝑑𝑥 (3) 

where, l: the sample length, y: the height of peaks and valleys of the roughness profile, x: the profile direction. 

Surface roughness (Ra) was measured using a portable stylus-type profilometer. Table 6 contains the specifications of the 

Pocket Surf (Mahr FEDERAL) device (American origin). 

Table 6: Specification of the roughness apparatus measurement 

Specification Value 

Dimension 140 mm × 76 mm × 25 mm 

Weight 435 g 

Measuring Ranges 

Ra 0.03 µm to 6.35 µm 

Ry 0.2 µm to 25.3 µm 

Rmax 0.2 µm to 25.3 µm 

Rz 0.2 µm to 25.3 µm 

Display Resolution 0.01 µm 

Measurement accuracy Meets ASME-B461, ISO, DIN standards, and MIL specifications. 

Digital Readout LCD with “Battery low” signal; “H” and “L” (measured value out-of-range). 

3.3 Statistical analysis for NPMEDM process 

The goodness of the second-order model and the evaluation of the dominant parameters of all output characteristics of the 

machining process were implemented according to (ANOVA) technique. ANOVA is used to test the resulting hypotheses at a 

confidence level of 95%. The Fisher statistical test (F-test) was adopted to determine the significance of the parameters. The 

maximum levels of the F-test indicate the more influential parameter, and the p-value for the F-statistic represents the probability 

of the measured data. If the p-value ≤ 0.05, the parameter has a statistically significant influence. The percentage of contribution 

of individual parameters can be determined from the ANOVA table by the following expression, Equation 4 [41]: 

 Percentage contribution (C %) =
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
× 100 (4) 

4. Results and discussion 

4.1 RSM and regression model for MRR, EWR, and Ra 

Response Surface Methodology (RSM) is a statistical technique to tackle complex multiple-response industrial problems. 

Response results are examined using the response surface methodology. The experimental protocols were created using Central 

Composite Design (CCD) concepts. Fifty full factorial experiments were carried out using the RSM design matrix developed. 

Peak current (Ip), pulse-on time (Pon), pulse-off time (Poff), powder concentration, and mixing ratio of powder are the five input 

process factors that are investigated in this study. Each of these parameters has been investigated at five different levels for 

testing. Measures including Material Removal Rate (MRR), Electrode Wear Rate (EWR), and Surface Roughness (SR) have 

been carried out using the response surface methodology. "Design Experts 11" is a highly renowned statistical software used to 

assess the responses in this discipline [42]. The relationship between the input variables and response characteristics of the 

machining process was determined and analyzed based on Regression analysis. A Non-linear equation represented the relation 

that connects the input parameters with the responses in the regression analysis. Depending on the experimental output values, 

RSM developed mathematical models, and the general 2nd-order model was developed and adopted in the present work. 

Equations (5), (6), and (7), shown below illustrate the mathematical models for the output required performance measures: 

Ra = 5.45534 +  0.1626 x A +  0.00925 x B +  0.34645 x C +  0.12425 x D +  −0.06555 x E +
 −0.236937 x AB +  0.53 x AC + −0.012125 x AD +  −0.0090625 x AE +  −0.139375 x BC +
 −0.0035 x BD +  0.0073125 x BE +  0.0069375 x CD + −0.009125 x CE +  0.009125 x DE (5) 

 Sqrt(MRR) = 0.368258 +  0.041593 x A +  0.0240059 x B + −0.0343912 x C +  −0.00193682 x D +
 0.011716 x E  (6) 

 WR = 0.004826 +  0.00127 x A +  −2e − 05 x B + −0.00073 x C +  0.000165 x D +  0.001555 x E
 (7) 
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where, A: Current, B: Pulse on, C: Pulse off, D: Nanopowder Concentration, E: Nanopowder Mixing Ratio Al2O3 %-balanced 

SiO2. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3: a) Predicted vs. Actual (Experiment) MRR b) Normal vs. Externally studentized residuals MRR c) Predicted vs. Actual  

         (Experiment) EWR d) Normal vs. Externally studentized residuals EWR e) Predicted vs. Actual (Experiment) Ra  

         f) Normal vs. Externally studentized residuals Ra 
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Equations determined the predicted MRR, EWR, and Ra values 4, 5, and 6. Based on the outputs, the precision of predicting 

the developed model appeared acceptable. Tables 7, 8, and 9 show the results of fifty runs' material removal rate, electrode wear 

rate, and surface roughness. Figures 3(a), 3(c), and 3(e) present the actual versus predicted values. The average probability plots 

for each mathematical model were performed as shown in the previous figures. Figures 3(b), 3(d), and 3(f) depict the average 

probability of the machining characteristics, which are utilized to check the normality assumption and the normal distribution of 

errors. Table 7 notes that the highest MRR is at Run No. 26 by 0.5449 g/min when the current (35 A), pulse on time (200 µs), 

pulse off time (50 µs), powder concentration (2 g/L), and mixing ratio (60% Al2O3 - 40% SiO2). Through Table 8, we notice that 

the lowest EWR is at Run No. 50 by 0.0006 g/min when the current (25 A), pulse on time (200 µs), pulse off time (100 µs), 

powder concentration (4 g/L), and mixing ratio (40% Al2O3 - 60% SiO2). Finally, from Table 9, we note that the lowest Ra is at 

Run No. 37 by (3.954 µm) when the current (20 A), pulse on time (150 µs), pulse off time (75 µs), powder concentration (3 g/L), 

and mixing ratio (50% Al2O3 - 50% SiO2). The ratio of the standard deviation to the mean is known as the Coefficient of 

Variation, or CV. With an increasing coefficient of variation, the degree of dispersion around the mean increases. Generally, a 

percentage is used to express it. It enables comparison between distributions of values whose measurement scales are 

incomparable when no units are involved. The CV connects the estimate's value to the estimate's standard deviation when 

estimated values are given. The estimate is more accurate, and the coefficient of variation value is lower. CV (0.01–0.10): the 

result is excellent, (0.11-0.20): acceptable, (0.21-0.30): Poor result. The predicted MRR, EWR, and Ra values were determined 

by Equations (5), (6), and (7). Based on the outputs, the precision of predicting the developed model appeared acceptable. 

4.2 Prediction Accuracy of MRR, EWR, and Ra 

Table 7 presents the prediction accuracy of the square root of Material Removal Rate (MRR) for the NPMEDM process, 

based on 50 experimental runs. Various parameters were adjusted, including peak current (Ip), pulse-on time (Ton), pulse-off 

time (Toff), powder concentration, and the mixture ratio of Al₂O₃ to balanced SiO₂. The results show that the model’s predicted 

MRR values are generally very close to the experimental values, with most error ratios between experimental and predicted 

results hovering around 1, indicating high prediction accuracy. Although most runs exhibit errors within a 5% margin, a few 

runs, notably Run 7, Run 11, Run 20, and Run 37, show larger deviations, suggesting that the model's prediction may be less 

precise under certain conditions. The highest experimental Sqrt(MRR) value observed was 0.5449 g/min during Run 26, typically 

achieved at higher current levels and longer pulse-on times. It is noted that a higher percentage of Al₂O₃ in the powder mixture 

(50%-60%) slightly enhances the material removal rate. A higher percentage of Al₂O₃ in the powder mixture slightly enhances 

the material removal rate (MRR) because Al₂O₃ particles possess higher hardness, toughness, and thermal conductivity than SiO₂ 

particles [42]. During the NPMEDM process, the suspended Al₂O₃ particles help stabilize and intensify the electrical discharges 

between the tool and the workpiece by acting as conductive bridges [43,44]. This results in stronger and more consistent sparks, 

leading to more effective erosion of the workpiece material [45]. Additionally, the superior thermal conductivity of Al₂O₃ 

promotes efficient heat distribution across the machining zone, supporting continuous melting and material removal. In contrast, 

a higher content of SiO₂, being softer and less conductive, tends to absorb some of the spark energy, reducing machining 

efficiency. Therefore, increasing the Al₂O₃ proportion in the powder mixture improves the overall machining performance by 

facilitating faster and deeper material removal [46]. Figures 3(a) and 3(b) give a predictable and real MMR.  

Table 8 presents the prediction accuracy of the Electrode Wear Rate (EWR) for the NPMEDM process, based on 50 

experimental runs involving different machining parameters such as peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), 

powder concentration, and the Al₂O₃:SiO₂ powder mix ratio. The experimental and predicted EWR values are compared, and the 

error ratio (Exp./Pred.) is calculated to assess the prediction performance. Overall, the prediction model shows a reasonable 

degree of accuracy, although the variation in error is slightly larger compared to the previous MRR prediction table. The error 

values in most cases range between 0.7 and 1.3, with a few exceptions like Run 16, where the error reaches 1.6349, indicating a 

larger mismatch. In general, the model can predict EWR trends with moderate accuracy. Still, there are notable deviations under 

certain parameter settings, particularly when the machining conditions involve lower currents and specific powder compositions. 

It can be inferred that electrode wear prediction is more sensitive to variations in process parameters compared to material 

removal rate prediction, and slight changes in energy input and particle characteristics can lead to considerable differences in 

electrode wear behavior. 

Electrode wear prediction is more sensitive to variations in process parameters than material removal rate prediction because 

electrode wear depends on the amount of energy delivered and how that energy is absorbed by the electrode material itself[47]. 

Unlike material removal from the workpiece, which is mainly driven by consistent spark erosion, electrode wear is influenced 

by many more delicate factors such as localized heating, melting points, thermal conductivity, and the chemical reactivity of the 

electrode surface with the powder particles and dielectric fluid. Even small changes in peak current, pulse-on time, or the type 

and concentration of powder particles can significantly alter the energy density at the electrode surface, leading to uneven wear 

rates [48,49]. Additionally, certain powders like Al₂O₃ and SiO₂ can either shield the electrode from excessive heat or intensify 

localized sparking, further complicating the wear behavior. Therefore, because electrode wear involves complex thermal, 

chemical, and electrical interactions, its prediction tends to be more sensitive and less stable than the relatively more 

straightforward process of material removal from the workpiece [50]. Figures 3(c) and 3(d) give a predictable and real EWR.  
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Table 7: Prediction Accuracy of Sqrt (MRR) for NPMEDM process 

Run Ip(A) Pon(µs) Poff 

(µs) 

Con. 

(g/L) 

Mix of Al2O3%- 

Balanced SiO2 

Exp. Sqrt 

(MRR) (g/min) 

Pred. MRR 

(g/min) 

Error 

Exp./Pred. 

1 30 250 75 3 50 0.3743 0.4163 0.8992 

2 35 100 50 4 40 0.3999 0.4066 0.9835 

3 30 150 75 5 50 0.3626 0.3644 0.9952 

4 35 100 100 2 40 0.3216 0.3417 0.9411 

5 30 150 75 3 50 0.3501 0.3683 0.9508 

6 25 200 100 2 60 0.3391 0.3299 1.0278 

7 35 100 100 4 60 0.3589 0.3612 0.9935 

8 35 200 50 2 40 0.5077 0.4585 1.1075 

9 30 150 75 3 50 0.3471 0.3683 0.9426 

10 40 150 75 3 50 0.4007 0.4514 0.8877 

11 30 50 75 3 50 0.3814 0.3202 1.1911 

12 35 200 100 4 40 0.3818 0.3858 0.9897 

13 30 150 75 3 30 0.3320 0.3448 0.9627 

14 30 150 75 3 50 0.3593 0.3683 0.9757 

15 25 100 50 4 60 0.3195 0.3468 0.9213 

16 30 150 25 3 50 0.3865 0.4370 0.8844 

17 30 150 125 3 50 0.3268 0.2995 1.0913 

18 35 200 100 2 40 0.3828 0.3897 0.9822 

19 35 100 50 4 60 0.5184 0.4300 1.2055 

20 30 150 75 3 50 0.3496 0.3683 0.9493 

21 30 150 75 3 50 0.3555 0.3683 0.9654 

22 35 100 50 2 60 0.4294 0.4339 0.9897 

23 25 100 50 4 40 0.3151 0.3234 0.9744 

24 35 200 100 2 60 0.4105 0.4131 0.9936 

25 30 150 75 1 50 0.3705 0.3721 0.9957 

26 35 200 50 2 60 0.5449 0.4819 1.1307 

27 25 200 100 4 60 0.3300 0.3261 1.0121 

28 25 100 50 2 60 0.3426 0.3507 0.9770 

29 35 200 100 4 60 0.4272 0.4092 1.0439 

30 35 100 50 2 40 0.4016 0.4105 0.9785 

31 30 150 75 3 50 0.3524 0.3683 0.9570 

32 25 100 100 4 60 0.2724 0.2780 0.9797 

33 25 100 100 4 40 0.2687 0.2546 1.0553 

34 25 100 100 2 40 0.2685 0.2585 1.0388 

35 25 200 50 4 40 0.3808 0.3714 1.0253 

36 35 100 100 2 60 0.3480 0.3651 0.9531 

37 20 150 75 3 50 0.3270 0.2851 1.1469 

38 35 200 50 4 40 0.5075 0.4546 1.1165 

39 35 200 50 4 60 0.4770 0.4780 0.9978 

40 25 100 100 2 60 0.2902 0.2819 1.0293 

41 30 150 75 3 50 0.3499 0.3683 0.9500 

42 30 150 75 3 50 0.3545 0.3683 0.9628 

43 35 100 100 4 40 0.3211 0.3378 0.9505 

44 25 200 50 2 60 0.4100 0.3987 1.0283 

45 25 200 50 4 60 0.3562 0.3948 0.9022 

46 25 200 100 2 40 0.3165 0.3065 1.0328 

47 30 150 75 3 70 0.3722 0.3917 0.9501 

48 25 200 50 2 40 0.3805 0.3753 1.0140 

49 25 100 50 2 40 0.3170 0.3273 0.9687 

50 25 200 100 4 40 0.3148 0.3026 1.0402 

       Mean 1.0008 

       Std. Dev. 0.0710 

       C.V 0.0710 

Table 9 presents the prediction accuracy of the surface roughness (Ra) for the NPMEDM process across 50 experimental 

runs, varying parameters such as peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), powder concentration, and 

Al₂O₃:SiO₂ powder mixture ratio. Comparing the experimental and predicted Ra values shows that the prediction model performs 

with generally high accuracy. Most error ratios (Exp./Pred.) are very close to 1, typically between 0.8 and 1.05, indicating strong 

agreement between experimental and predicted results. Overall, the results indicate that the surface roughness prediction is 

reliable, and the model captures the influence of the process parameters well. This also implies that surface roughness, in this 

NPMEDM setup, behaves more predictably than EWR, with smaller deviations from model predictions. The small variations 

observed might be attributed to minor effects of powder concentration and discharge energy, which affect surface characteristics 

like micro-crack density and molten material re-solidification [10]. 
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Table 8: Prediction Accuracy of EWR for NPMEDM process 

Run Ip(A) Pon 

(µs) 

Poff 

(µs) 

Con. 

(g/L) 

Mix of Al2O3% 

- balanced SiO2 

Exp. EWR 

(g/min) 

Pred. 

EWR (g/min) 

Error 

Exp./Pred. 

1 30 250 75 3 50 0.0041 0.0048 0.8542 

2 35 100 50 4 40 0.0067 0.0055 1.2182 

3 30 150 75 5 50 0.0060 0.0052 1.1538 

4 35 100 100 2 40 0.0074 0.0057 1.2982 

5 30 150 75 3 50 0.0057 0.0048 1.1875 

6 25 200 100 2 60 0.0050 0.0042 1.1905 

7 35 100 100 4 60 0.0060 0.0071 0.8451 

8 35 200 50 2 40 0.0012 0.0011 1.0909 

9 30 150 75 3 50 0.0057 0.0048 1.1875 

10 40 150 75 3 50 0.0010 0.0014 0.7143 

11 30 50 75 3 50 0.0009 0.0011 0.8182 

12 35 200 100 4 40 0.0035 0.004 0.8750 

13 30 150 75 3 30 0.0052 0.0047 1.1064 

14 30 150 75 3 50 0.0059 0.0048 1.2292 

15 25 100 50 4 60 0.0047 0.006 0.7833 

16 30 150 25 3 50 0.0103 0.0063 1.6349 

17 30 150 125 3 50 0.0008 0.0012 0.6667 

18 35 200 100 2 40 0.0039 0.0036 1.0833 

19 35 100 50 4 60 0.0091 0.0086 1.0581 

20 30 150 75 3 50 0.0058 0.0048 1.2083 

21 30 150 75 3 50 0.0059 0.0048 1.2292 

22 35 100 50 2 60 0.0086 0.0082 1.0488 

23 25 100 50 4 40 0.0015 0.0019 0.7895 

24 35 200 100 2 60 0.0083 0.0067 1.2388 

25 30 150 75 1 50 0.0023 0.0024 0.9583 

26 35 200 50 2 60 0.0103 0.0102 1.0098 

27 25 200 100 4 60 0.0051 0.0053 0.9623 

28 25 100 50 2 60 0.0046 0.0047 0.9787 

29 35 200 100 4 60 0.0086 0.0084 1.0238 

30 35 100 50 2 40 0.0075 0.0073 1.0274 

31 30 150 75 3 50 0.0059 0.0058 1.0172 

32 25 100 100 4 60 0.0035 0.0036 0.9722 

33 25 100 100 4 40 0.0015 0.0015 1.0000 

34 25 100 100 2 40 0.0016 0.0015 1.0667 

35 25 200 50 4 40 0.0007 0.0008 0.8750 

36 35 100 100 2 60 0.0059 0.0058 1.0172 

37 20 150 75 3 50 0.0042 0.0043 0.9767 

38 35 200 50 4 40 0.0011 0.0012 0.9167 

39 35 200 50 4 60 0.0106 0.0105 1.0095 

40 25 100 100 2 60 0.0034 0.0032 1.0625 

41 30 150 75 3 50 0.0058 0.0057 1.0175 

42 30 150 75 3 50 0.0059 0.0058 1.0172 

43 35 100 100 4 40 0.0066 0.0065 1.0154 

44 25 200 50 2 60 0.0063 0.0065 0.9692 

45 25 200 50 4 60 0.0065 0.0062 1.0484 

46 25 200 100 2 40 0.0007 0.0008 0.8750 

47 30 150 75 3 70 0.0065 0.0067 0.9701 

48 25 200 50 2 40 0.0007 0.0006 1.1667 

49 25 100 50 2 40 0.0017 0.0016 1.0625 

50 25 200 100 4 40 0.0006 0.0005 1.2000 

       Mean 1.0345 

       Std. Dev. 0.1664 

       C.V 0.1608 

The results imply that surface roughness (Ra) behaves more predictably compared to electrode wear rate (EWR) in the 

NPMEDM setup because the deviations between the experimental and predicted values for Ra are consistently small, with most 

errors close to1 [51]. This suggests that surface roughness is primarily governed by the controlled input parameters (such as 

discharge current, pulse durations, and powder concentration) in a systematic and repeatable way [52]. In contrast, EWR is 

influenced by more complex, less predictable factors such as localized electrode erosion, thermal stresses, and chemical reactions 

during sparking, which can introduce random variability that the model cannot easily capture [53]. As a result, Ra shows a more 

stable and direct relationship with the process settings, leading to smaller deviations from model predictions. At the same time, 

EWR remains more erratic and harder to predict accurately [54]. 
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Table 9: Prediction Accuracy of Ra for the NPMEDM process 

Run Ip (A) Pon (µs) Poff (µs) Con. (g/L) Mix of Al2O3% -

balanced SiO2 

Exp. 

Ra (µm) 

Pred. Ra 

(µm) 

Error 

Exp./Pred. 
1 30 250 75 3 50 4.527 5.474 0.827 
2 35 100 50 4 40 4.949 5.002 0.989 
3 30 150 75 5 50 5.589 5.704 0.980 
4 35 100 100 2 40 6.801 6.839 0.994 
5 30 150 75 3 50 5.712 5.455 1.047 
6 25 200 100 2 60 5.185 5.009 1.035 
7 35 100 100 4 60 6.752 6.902 0.978 
8 35 200 50 2 40 4.407 4.619 0.954 
9 30 150 75 3 50 5.498 5.455 1.008 
10 40 150 75 3 50 6.289 5.781 1.088 
11 30 50 75 3 50 5.361 5.437 0.986 
12 35 200 100 4 40 6.499 6.310 1.030 
13 30 150 75 3 30 5.777 5.586 1.034 
14 30 150 75 3 50 5.488 5.455 1.006 
15 25 100 50 4 60 5.048 5.178 0.975 
16 30 150 25 3 50 4.827 4.762 1.014 
17 30 150 125 3 50 4.954 6.148 0.806 
18 35 200 100 2 40 6.318 6.097 1.036 
19 35 100 50 4 60 4.820 4.875 0.989 
20 30 150 75 3 50 5.564 5.455 1.020 
21 30 150 75 3 50 5.637 5.455 1.033 
22 35 100 50 2 60 4.622 4.639 0.996 
23 25 100 50 4 40 5.163 5.269 0.980 
24 35 200 100 2 60 6.177 5.926 1.042 
25 30 150 75 1 50 4.874 5.207 0.936 
26 35 200 50 2 60 4.311 4.484 0.961 
27 25 200 100 4 60 5.465 5.307 1.030 
28 25 100 50 2 60 4.830 4.894 0.987 
29 35 200 100 4 60 6.389 6.176 1.035 
30 35 100 50 2 40 4.737 4.803 0.986 
31 30 150 75 3 50 5.602 5.455 1.027 
32 25 100 100 4 60 5.418 5.085 1.065 
33 25 100 100 4 40 5.523 5.213 1.059 
34 25 100 100 2 40 5.222 4.938 1.058 
35 25 200 50 4 40 6.293 6.019 1.046 
36 35 100 100 2 60 6.433 6.639 0.969 
37 20 150 75 3 50 3.954 4.130 0.9574 
38 35 200 50 4 40 4.607 4.804 0.959 
39 35 200 50 4 60 4.500 4.706 0.956 
40 25 100 100 2 60 5.127 4.774 1.074 
41 30 150 75 3 50 5.552 5.455 1.018 
42 30 150 75 3 50 5.519 5.455 1.012 
43 35 100 100 4 40 6.866 7.066 0.972 
44 25 200 50 2 60 5.975 5.687 1.051 
45 25 200 50 4 60 6.184 5.957 1.038 
46 25 200 100 2 40 5.333 5.144 1.037 
47 30 150 75 3 70 5.501 5.324 1.033 
48 25 200 50 2 40 6.082 5.785 1.051 
49 25 100 50 2 40 4.941 5.022 0.984 
50 25 200 100 4 40 5.565 5.405 1.030 
       Mean 1.0036 
       Std. Dev. 0.0525 
       C.V 0.0523 

4.3 ANOVA Test for MRR, EWR, and Ra 

Table 10 and Figure 4 present the ANOVA test results for the MRR output parameter. This table and figure include the 

Mean Square, Sum of Squares, degrees of freedom (df), F-value, and P-value. The mean square value can be calculated by 

dividing the sum of the squared values of each output characteristic by the degrees of freedom (df). The F-value was calculated 

by dividing the Mean Square of the terms by the Mean Square of the residuals.  

Table 10: ANOVA test for MRR Response 

Source Sum of Squares df Mean Square F-value p-value 

Model 0.1452 5 0.0290 33.79 < 0.0001 

A-Current 0.0692 1 0.0692 80.52 < 0.0001 

B-Pulse on 0.0231 1 0.0231 26.82 < 0.0001 

C-Pules off 0.0473 1 0.0473 55.05 < 0.0001 

D-Concentration 0.0002 1 0.0002 0.1746 0.6781 

E-Mix of Al%-Si 0.0055 1 0.0055 6.39 0.0152 

Residual 0.0378 44 0.0009   

Lack of Fit 0.0377 37 0.0010 65.26 < 0.0001 

Pure Error 0.0001 7 0.0000   

Cor Total 0.1830 49    
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The model is considered significant due to its F-value of 33.79. The substantial F-value possesses a 0.01% likelihood of 

being attributable to random variation. Model terms are deemed significant when P-values are below 0.0500. A (Current), B 

(Pulse duration), C (Pulse cessation duration), and E (Mixing ratio) are significant parameters of the model. The model terms 

are insignificant if the value exceeds 0.1000. Model reduction may enhance your model if it has numerous insignificant terms,  

except those necessary for preserving hierarchy. The F-value of 65.26 signifies a considerable lack of fit. A substantial Lack of 

Fit F-value has a 0.01% likelihood of being attributable to random variation. A substantial lack of fit is unfavorable as the model 

must conform adequately. 

Figure 4 illustrates that the primary influencing component affecting MRR is current, with a contribution percentage of 

37.810%. The percentages for the other parameters were 12.595% for pulse on and 20.850% for pulse off, respectively. The 

current is the predominant factor influencing the enhancement of the metal removal rate, as previously stated. An increase in 

current results in a greater concentration of energy in the operational zone, thereby augmenting the likelihood of metal melting 

and subsequent removal. This process necessitates a substantial pulse on time, coupled with an adequate pulse off time, to 

facilitate the expulsion of molten metal from the operational area prior to re-solidification. 

 
Figure 4: The contribution of parameters to MRR 

Table 11 and Figure 5 present the ANOVA test results for the Ra output parameter. These tables and figures include the 

Mean Square, Sum of Squares, degrees of freedom (df), F-value, and P-value. The mean square value can be calculated by 

dividing the sum of the squared values of each output characteristic by the degrees of freedom (df). The F-value was calculated 

by dividing the Mean Square of the terms by the Mean Square of the residuals.  

Table 11: ANOVA test for Ra Response 

Source Sum of Squares df Mean Square F-value p-value 

Model 18.07 15 1.20 7.25 < 0.0001 

A-Current 1.06 1 1.06 6.37 0.0165 

B-Pulse on 0.0034 1 0.0034 0.0206 0.8867 

C-Pules off 4.80 1 4.80 28.91 < 0.0001 

D-Concentration 0.6175 1 0.6175 3.72 0.0622 

E-Mix of Al%-Si 0.1719 1 0.1719 1.03 0.3162 

AB 1.80 1 1.80 10.82 0.0023 

AC 8.99 1 8.99 54.12 < 0.0001 

AD 0.0047 1 0.0047 0.0283 0.8673 

AE 0.0026 1 0.0026 0.0158 0.9006 

BC 0.6216 1 0.6216 3.74 0.0614 

BD 0.0004 1 0.0004 0.0024 0.9615 

BE 0.0017 1 0.0017 0.0103 0.9197 

CD 0.0015 1 0.0015 0.0093 0.9239 

CE 0.0027 1 0.0027 0.0160 0.9000 

DE 0.0027 1 0.0027 0.0160 0.9000 

Residual 5.65 34 0.1661   

Lack of Fit 5.61 27 0.2076 35.87 < 0.0001 

Pure Error 0.0405 7 0.0058   

Cor Total 23.72 49    

The model is considered significant due to its F-value of 7.25. The substantial F-value has a 0.01% likelihood of being 

attributable to random variation. Model terms are deemed significant when P-values are below 0.0500. A (Current), C (Pulse off 
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time), AB (Current interaction with Pulse on time), and AC (Current interaction with Pulse off time) are significant terms in the 

model. The model terms are insignificant if the value exceeds 0.1000. Model reduction may enhance your model if it has 

numerous insignificant terms, except those necessary for preserving hierarchy. The F-value of 35.87 signifies a considerable lack 

of fit. A substantial Lack of Fit F-value has a 0.01% likelihood of being attributed to random variation. A substantial lack of fit 

is unfavorable as the model must conform appropriately. 

Figure 5 indicates that pulse off is the most significant parameter influencing Ra, contributing 20.239%. The contributions 

of the other parameters are 7.573% for current interaction with pulse on and 37.893% for current interaction with pulse off. The 

primary factor influencing surface roughness is the pulse duration; an increase in this duration results in a decrease in surface 

roughness, as previously stated, because it facilitates the expulsion of molten metal from the operational region, enhancing 

surface leveling and diminishing the pulse duration results in the elimination of pits that may form on the treated surface, hence 

lowering surface roughness, particularly when employing a lower current intensity. 

 
Figure 5: The percentage contribution of parameters to Ra 

Table 12 and Figure 6 present the ANOVA test results for the EWR output parameter. These tables and figures include the 

Mean Square, Sum of Squares, degrees of freedom (df), F-value, and P-value. The mean square value can be calculated by 

dividing the sum of the squared values of each output characteristic by the degrees of freedom (df). The F-value was calculated 

by dividing the Mean Square of the terms by the Mean Square of the residuals.  

Table 12: ANOVA for EWR Response 

Source Sum of Squares df Mean Square F-value p-value 

Model 0.0002 5 0.0000 7.80 < 0.0001 

A-Current 0.0001 1 0.0001 13.70 0.0006 

B-Pulse on 1.600E-08 1 1.600E-08 0.0034 0.9538 

C-Pules off 0.0000 1 0.0000 4.53 0.0390 

D-Concentration 1.089E-06 1 1.089E-06 0.2313 0.6329 

E-Mix of Al%-Si 0.0001 1 0.0001 20.55 < 0.0001 

Residual 0.0002 44 4.708E-06   

Lack of Fit 0.0002 37 5.597E-06 712.33 < 0.0001 

Pure Error 5.500E-08 7 7.857E-09   

Cor Total 0.0004 49    

The model is considered significant due to its F-value of 7.80. The substantial F-value has a 0.01% likelihood of being 

attributable to random variation. Model terms are deemed significant when P-values fall below 0.0500. A (Current), C (Pulse off 

time), and E (Mixing ratio) are significant parameters in this context. The model terms are irrelevant if the value exceeds 0.1000. 

Model reduction may enhance your model if it has numerous insignificant terms, except those necessary for preserving hierarchy. 

The significant lack of fit is evidenced by an F-value of 712.33. A substantial Lack of Fit F-value has a 0.01% likelihood of 

being attributable to random variation. A substantial lack of fit is unfavorable, as the model is required to conform. 

Figure 6 illustrates that the primary factors affecting EWR were the current and powder mixing ratios, each contributing 

25.589% to the overall outcome. The current is the predominant component influencing the tool's wear rate due to its 

concentration in the operational zone. Nonetheless, we observe the influence of additional factors with equivalent effects, namely 

concentration and mixing rate. An increase in concentration results in more particles being transported to the operational area, 

thereby transferring a larger charge, adversely impacting the tool's wear rate. Similarly, the quality of these particles also exerts 

a comparable negative influence, as previously indicated in the results. 
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Figure 6: The percentage contribution of parameters to EWR 

4.4 Parametric analysis of MRR, EWR, and Ra  

The peak current (Ip), pulse duration (Pon), pulse interval (Poff), nanopowder concentration, and nanopowder mixing ratio. 

Various factors have been examined to determine their influence on the Material Removal Rate (MRR) in the application of 

NPMEDM for modifying stainless steel 304L surfaces. Utilize statistical software to generate 3D contour diagrams. Three-

dimensional response contour diagrams offer adequate information concerning the relationship between input process parameters 

and material removal rate (MRR). This study employs response surface methodology (RSM) to examine the influence of 

nanopowder concentration and mixing ratio on the maximum material removal rate (MRR), while maintaining the values of 

three other parameters constant. Figure 7(a) illustrates that the constants are Ip (35 Amperes), Pon (200 microseconds), and the 

default value Poff (50 microseconds) in the 3D contour graphic.  

The MRR consistently rises to its peak value when the concentration of Al2O3 reaches 2 g/L and the mixing ratio is elevated 

to 60%. An explanation for the observed boost in Material Removal Rate (MRR) following the alteration in mixing ratio, which 

subsequently elevates the quantity of Al2O3 nanoparticles, is that a greater amount of energy may be accessible for discharge 

within the sparking region. This increased energy availability promotes the melting and evaporation of work materials. The 40% 

mixing ratio of Al2O3 adversely affects the Material Removal Rate (MRR) due to the minimal discharge energy delivered to the 

surface area at a low concentration (2 g/L), while maintaining the default parameters of Ip (25 Amp.), Pon (100 µs), and Poff  

(100 µs). Figure 7(b) is a three-dimensional contour diagram illustrating this. The concentration of nanopowder, mixing ratio, 

peak current (Ip), pulse on time (Pon), and pulse off time (Poff). They have all been examined to ascertain their potential influence 

on the Surface Roughness (Ra) when the surface of stainless steel 304L is changed using NPMEDM. 3D contour diagrams are 

generated using the statistical program. Three-dimensional response contour diagrams offer adequate information concerning 

the relationship between input process parameters and Ra. This work employs response surface methodology (RSM) to examine 

the influence of Nanopowder concentration and mixing ratio on the maximum surface roughness (Ra), while maintaining the 

values of the other three parameters: Ip (35 Amp.), Pon (100 µs), and Poff (100 µs), as illustrated in Figure 7(c). 

The Ra consistently escalates to its peak value when the concentration of Al2O3 reaches four g/L and the mixing ratio is elevated 

to 40%. The elevated Ra following the alteration in the mixing ratio, which raises the quantity of Al2O3 nanoparticles, is due to 

additional energy being accessible for discharge within the sparking region. This increased energy availability promotes the 

melting and evaporation of work materials. Figure 7(d) 3D contour diagram distinctly demonstrates the impact of a 50%  Al2O3  

mixing ratio on Ra at its minimum value, since the discharge energy imparted to the surface area is negligible and corresponds 

with a reduction in concentration to (3 g/L). The values of Ip (20 Amperes), Pon (150 microseconds), and Poff (75 microseconds) 

remain at their normal settings. 

Response surface methodology (RSM) is employed in Figure 7(e) to generate a 3D contour diagram illustrating the impact 

of nanopowder concentration and nanopowder mixing ratio on EWR, while keeping the default levels of Ip, Pon, and Poff at 35 

Amp, 200 µs, and 50 µs, respectively. The correlation between Nanopowder concentration and mixing ratio indicates that the 

maximum EWR varies with the mixing ratio up to 60%, corroborating the hypothesis that, at a fixed concentration (4 g/L), a 

sustained increase in EWR is expected. The elevated expulsion energy associated with a larger mixing ratio of Al2O3, which 

facilitates the melting and vaporization of materials and tool components in the machining area, is often correlated with the 

observed increase in (EWR) at increased concentrations. The concentration and mixing ratio of nanopowder dictate the energy 

released during the electromagnetic dipole moment NPMEDM. Consequently, the region is demonstrating a significant 

maximum. Nanoparticles possess the highest discharge energy value. Figure 7(f) presents a three-dimensional contour plot 

demonstrating the reduced electrode wear rate observed with a decreased mixing ratio of Al2O3 (40%), while sustaining the Ip 

(25 Amp), Pon (200 µs), and Poff (100 µs). This low EWR value, while maintaining a concentration of 4 g/L, can be elucidated 

by noting that a reduction in the discharge energy conveyed by nanoparticles corresponds with a drop in the quantity of electrode 

material that is melted and evaporated. 
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Figure 7: a) Maximum MRR vs. Concentrated and mixed Nanopowder contour diagram b) Minimum MRR vs. Concentrated and  

         mixed Nanopowder contour diagram c) Maximum Ra vs. Concentrated and mixed Nanopowder contour diagram 

         d)Minimum Ra vs. Concentrated and mixed Nanopowder contour diagram e) Maximum EWR vs. Concentrated and mixed 

         Nanopowder contour diagram f)Minimum EWR vs. Concentrated and mixed Nanopowder contour diagram 
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5. Conclusion 

This study analyzes the output responses of Electrical Discharge Machining (EDM), including Surface Roughness (SR), 

Material Removal Rate (MRR), and Electrode Wear Rate (EWR), for conventional EDM and Nano-Particle-Mixed EDM 

(NPMEDM).  Al2O3 and SiO2  nanoparticles exhibit electrical conductivity and physical properties that diminish the breakdown 

strength of kerosene and reduce spark delay time, while the material removal rate increases with the concentration of 

nanoparticles in the kerosene dielectric fluid. This results in the thermal conductivity of nanofluid being significantly greater 

than traditional dielectrics, enhancing the material removal rate. It has been observed that the Material Removal Rate (MRR) 

increases with higher discharge currents. Enhancing the proportion of   Al2O3 particles during a discharge current of 35 A, with 

a particle concentration of 2 g/l, a pulse on time of 200 µs, and a pulse off time of 50 µs, results in a 13% improvement in the 

material removal rate at Run No. 26. Ra diminishes with increased discharge currents; by lowering the discharge current to 20 

A, the particle concentration to 3 g/l, the pulse on time to 150 µs, and the pulse off time to 75 µs, the relative composition of 

aluminum oxide particles is reduced to 50%, yielding an approximate 4.5% enhancement in Ra at Run No. 37. The EWR 

diminishes with elevated discharge currents; by augmenting the discharge current to 25 A, the particle concentration to 4 g/l, the 

pulse on time to 200 µs, and the pulse off time to 100 µs, the relative composition of aluminum oxide particles is reduced to 

40%, yielding an approximate 33.3% enhancement in EWR at Run No. 50, as determined experimentally using the Design Expert 

11 software. The critical variables for MRR are current at 37.8%, pulse on at 12.6%, nanopowder concentration at 3%, and pulse 

off at 25.85%. The mixing ratio parameter exerts no significant influence on MRR. The critical elements for EWR are the current 

at 25.5% and the Nanopowder mixing ratio at 25.6%. The critical determinants for Ra include nanopowder concentration, peak 

current at 4.5%, pulse-off duration at 20.24%, current-pulse duration at 7.6%, and current-pulse off duration at 37.9%. 

These findings suggest that NPMEDM can boost productivity, surface quality, and tool life, making it viable for industrial 

use. Future research should investigate using TiO₂ or CuO nanoparticles and advanced optimisation methods like RSM or Genetic 

Algorithms to balance machining efficiency and quality.  Studies should also include microstructural and hardness investigations 

of surface integrity in workpiece materials other than stainless steel 304L.  Nanoparticle-enhanced dielectric fluid stability, 

environmental safety, and scalability require long-term investigations.  Finally, real-time monitoring and sophisticated control 

systems could improve EDM uniformity and adaptability, enabling intelligent, next-generation production. 
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