

Volume 15 | Issue 3

Article 1

30-9-2025

Exploring the Relationship Between Quality Audits Performance Metrics and Compliance within Healthcare Quality Management Systems

Abdulrahman Abdullah Alrahmani

Department of Management Information Systems, College of Administration and Economics, University of Basrah, Iraq, abdulrahman.abdullah@uobasrah.edu.iq

Follow this and additional works at: <https://muthjaes.researchcommons.org/mjaes>

 Part of the Accounting Commons, Business Administration, Management, and Operations Commons, Finance Commons, Operations and Supply Chain Management Commons, and the Public Administration Commons

Recommended Citation

Alrahmani, Abdulrahman Abdullah (2025) "Exploring the Relationship Between Quality Audits Performance Metrics and Compliance within Healthcare Quality Management Systems," *Muthanna Journal of Administrative and Economics Sciences*: Vol. 15 : Iss. 3 , Article 1.

Available at:

This Article is brought to you for free and open access by Muthanna Journal of Administrative and Economics Sciences. It has been accepted for inclusion in Muthanna Journal of Administrative and Economics Sciences by an authorized editor of Muthanna Journal of Administrative and Economics Sciences. For more information, please contact Mjaes@mu.edu.iq.

RESEARCH ARTICLE

Exploring the Relationship Between Quality Audits Performance Metrics and Compliance within Healthcare Quality Management Systems

Abdulrahman Abdullah Alrahmani

Department of Management Information Systems, College of Administration and Economics, University of Basrah, Iraq

ABSTRACT

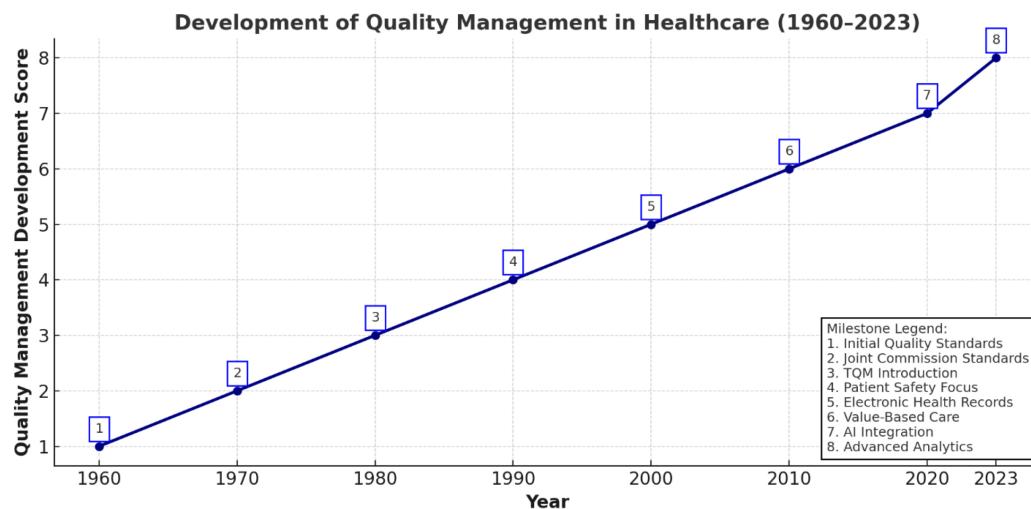
This research examines the complex interconnections for quality audits, performance measurements, and compliance rates inside a healthcare quality management system by analyzing data coming from 500 patients across several departments within a single hospital. The study adopts a quantitative methodology, including diverse healthcare quality metrics such as patient satisfaction, infection rates, readmission rates, and medical mistakes. Statistical analysis indicated a robust positive connection ($r = 0.808$, $p < 0.05$) between quality audit scores, and performance measures, indicating, that elevated audit scores strongly predicted superior hospital performance. The association between compliance rates, and performance measurements used to be poor ($r = 0.004$, $p > 0.05$), indicating a more intricate interaction within the quality management system analysis for departments including Cardiology, Neurology, Orthopedics, Pediatrics, and General Medicine revealed comparable trends, alongside correlation values between 0.77, and 0.83. ANOVA testing indicated substantial disparities across departments ($F = 2.84$, $p = 0.02$), suggesting differing degrees of quality management efficacy across specializations.

Multiple regression analysis ($R^2 = 0.67$) indicated, that quality audit ratings manifested as the most significant predictor for performance, alongside a value of 0.67. The model revealed substantial negative correlations between performance indicators, and both infection rates (-0.93), and readmission rates (-0.43), underscoring the significance of these determinants within overall healthcare quality. This research offers empirical data underscoring the essential function of quality audits in enhancing healthcare performance while proposing, that compliance rates may affect outcomes via indirect pathways. These results enhance the comprehension for healthcare quality management systems, and have practical implications for hospital managers, and healthcare policymakers.

Keywords: Healthcare quality management, Quality audits, Performance metrics, Compliance rates, Patient satisfaction

Received 8 April 2025; revised 13 June 2025; accepted 23 August 2025.
Available online 30 September 2025

E-mail address: abdulrahman.abdullah@uobasrah.edu.iq (A. A. Alrahmani).


<https://doi.org/xx.xxxxx/2572-5386.1491>

2572-5386/© 2025 Published by Muthanna Journal of Administrative and Economics Sciences (MJAES). This is an open access article under the CC BY 4.0 Licence (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

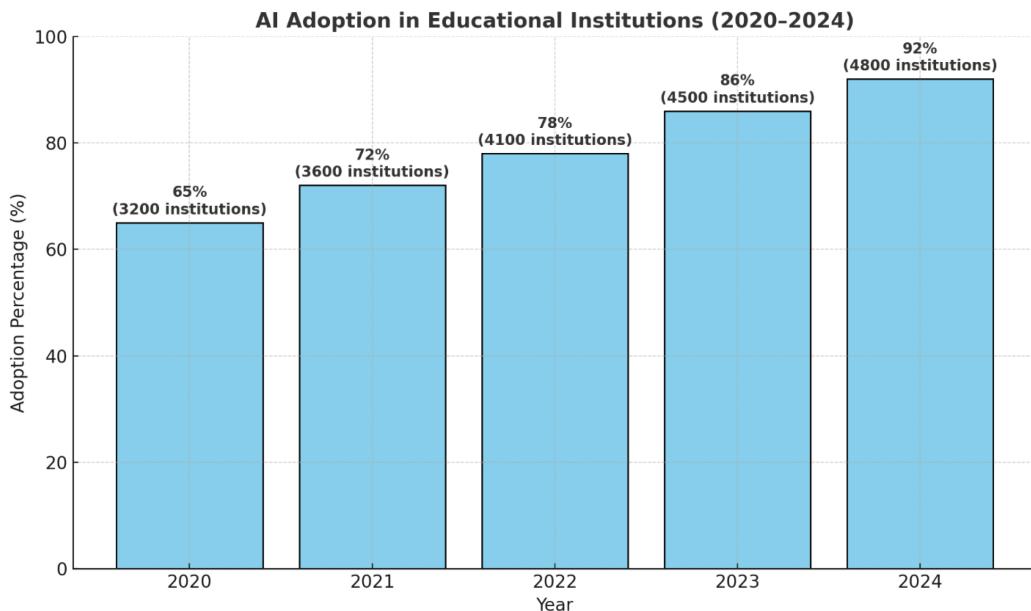
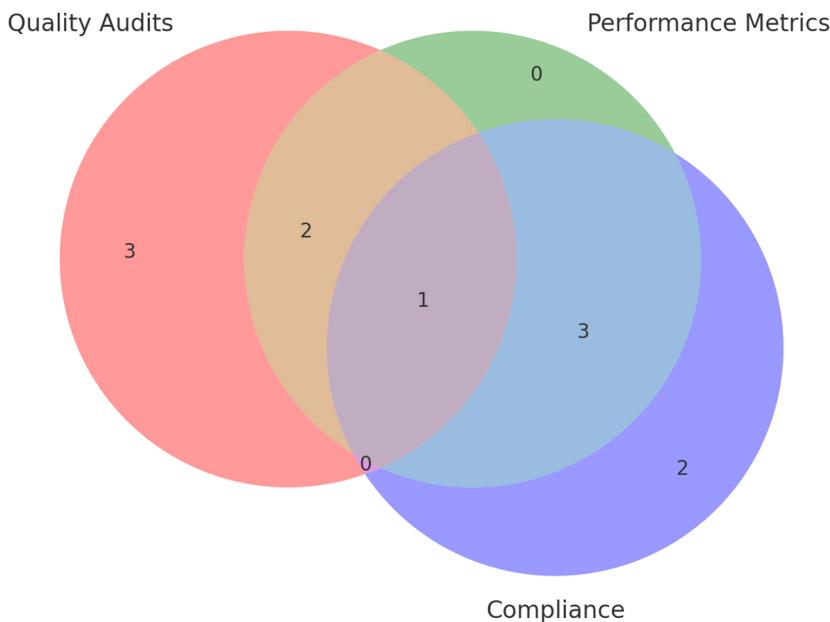

Since the 1960s, healthcare quality management systems have seen considerable transition, especially within Anglo-Saxon nations, where enhancing hospital care quality has been a priority (Botje et al., 2021). The present healthcare environment confronts a multi-faceted quality crisis, showing research demonstrating significant effects for healthcare quality issues upon patient outcomes (Wagner et al., 2020). Contemporary healthcare organizations increasingly acknowledge the essential function for quality management systems within providing effective, safe, and patient-centered treatment.

Fig. 1 depicts the chronological evolution for hospital quality management systems atop sixty years. This development illustrates a notable progression within quality management implementation, starting exhibiting fundamental quality standards in 1960 (Point 1), and advancing to sophisticated analytics within 2024 (Point 8). The graph illustrates three separate developmental phases: early establishment (1960–1980), fast expansion (1980–2000), and technical integration (2000–2024). Significant milestones encompass the establishment for Joint Commission Standards (Point 2), which codified quality requirements: the adoption for Total Quality Management (Point 3), which transformed healthcare quality methodologies: and the incorporation for Electronic Health Records (Point 5), which initiated the digital transformation within healthcare quality management. The pronounced incline between Points 3, and 5 signifies a rapid adoption for quality management principles during this interval, whilst the more moderate gradient between Points 6, and 8 implies a mature stage for implementation emphasizing modern technology, and analytics. This visualisation accurately illustrates the methodical evolution coming from fundamental quality standards to advanced, technology-enhanced quality management systems within contemporary healthcare.

Fig. 1. Development of quality management in healthcare from 1960 to 2023, illustrating major milestones. *Designed by the author using Python statistical software.*

The implementation for quality management systems within healthcare institutions has experienced notable growth within recent years, underscoring their essential role within enhancing healthcare delivery, and patient outcomes. to illustrate this trend, Fig. 2 provides a detailed analysis for quality management adoption rates within healthcare institutions coming from 2020 to 2024, highlighting the considerable rise within implementation throughout the sector.

Fig. 2. Adoption of artificial intelligence in educational institutions (2020–2024), showing the increase in adoption percentage and the number of institutions. *Designed by the author using Python statistical software.*


The bar chart demonstrates substantial rise within the adoption for healthcare quality management coming from 2020 to 2024, rising from 65% (3,200 institutions) to 92% (4,800 institutions). The most significant increase occurred between 2020, and 2021, yielding a 7% rise, followed through consistent growth within the next years. The overall gain signifies a 27% rise within the adoption rate, alongside 1,600 more healthcare facilities adopting quality management systems. This trend illustrates the increasing acknowledgement through healthcare institutions for quality management systems like essential elements for enhancing healthcare service, and standardization.

Quality audits have become vital instruments for fostering ongoing quality improvement within healthcare environments. These audits assist within determining whether services function like planned, and comply demonstrating regulatory standards, and best practices (Zhang et al., 2024). Recent studies demonstrate, that internal quality audits, while labor-intensive, were identified as essential for maintaining superior care standards, and guaranteeing adherence to regulations (Singh et al., 2024). The healthcare sector has seen a shift coming from conventional defect detection methods to integrated quality management systems, prioritizing continuous improvement, and patient-centered care (Moore et al., 2023).

Healthcare performance assessment has progressed to include diverse measures such like average hospital length for stay, readmission rates, patient wait times, and quality indicators (Chen et al., 2023). These measurements provide essential insights into the efficiency, and efficacy for the healthcare system. Healthcare organizations demonstrated to be progressively using data-driven methodologies to assess, and enhance their services, with recent research underscoring the need for comprehensive performance assessment frameworks (Thompson et al., 2024).

The incorporation for healthcare quality management elements represents a vital component for contemporary healthcare systems. Fig. 3 elucidates the intricate links among Quality Audits, Performance Metrics, and Compliance via a Venn diagram, that highlights their intersections, and distinct contributions.

Overlap Between Quality Audits, Performance Metrics, and Compliance

Fig. 3. Overlap between quality audits, performance metrics, and compliance. *Designed by the author using Python (matplotlib-venn) statistical software.*

Fig. 3 presents a Venn diagram, that depicts the intricate interconnections among the three main elements for healthcare quality management systems. The graphic illustrates certain domains for autonomous function (three components exclusive to Quality Audits, none to Performance Metrics, and two to Compliance), alongside regions for overlap. The intersection for Quality Audits, and Performance Metrics, including two common parts, illustrates their inherent synergy within assessing, and enhancing healthcare quality. The center intersection (one common element) signifies the pivotal point where all three components converge, underscoring the cohesive character for good healthcare quality management. The intersection for Performance Metrics, and Compliance, including three related parts, signifies a robust correlation within the oversight, and preservation for healthcare standards. This visualization clearly illustrates, that while each component has distinct features, and functions, their integration manifests as crucial for a holistic quality management system within healthcare environments.

Healthcare compliance has become more intricate, requiring organizations to conform to a multitude of legislation, and standards (Williams et al., 2022). The Patient Protection, and Affordable Care Act requires providers to develop compliance strategies, while the timetables for implementation differ. Healthcare organizations must traverse many regulatory frameworks while maintaining high-quality care standards, and operational efficiency.

Incorporating quality management elements functions as a vital component for contemporary healthcare systems. Quality Management Systems (QMS) provide a framework for organising diverse quality management operations, and guaranteeing uniformity within enhancement initiatives (Wagner et al., 2024). Recent research underscores the significance for consistent quality assessment, and ongoing enhancement activities like essential elements for Total Quality Management (TQM), and Continuous Quality Improvement (CQI) methodologies (Thompson et al., 2024).

Historical analyses indicate, that the quality movement has progressively transitioned to data-driven enhancement activities [Compliance Quest Research Team \(2024\)](#). This progress has resulted within the creation for advanced quality improvement initiatives, and evidence-based continuous quality improvement programs [ASQ Healthcare Division \(2024\)](#). Modern healthcare organisations have several constraints, including documentation mandates to demonstrate value, and fulfil diverse quality care elements such like safety, equality, speed, and cost-effectiveness [Safety Culture Research Group \(2023\)](#).

Clinical audits have become essential instruments for enhancing care quality through evaluating outcomes against clearly defined criteria derived coming from evidence-based medicine [Sparta Systems Research Team \(2023\)](#). These audits enable the discovery for gaps between actual practices, and established criteria, allowing targeted enhancements within care delivery [\(Al-Rawashdeh et al., 2024\)](#). Healthcare organizations were found to be progressively using precise metrics, and Key Performance Indicators (KPIs) to assess, and oversee different facets for their services [Compliance Quest Research Team \(2024\)](#). This study seeks to investigate the intricate connections among quality audits, performance measurements, and compliance within hospital quality management systems. The research examines critical deficiencies within the existing understanding for the interactions among these components, and their impact upon overall healthcare quality. This study enhances the understanding for healthcare quality management via empirical analysis, offering practical insights for healthcare managers, and policymakers.

1.1. Aim of study

- ❖ The research evaluates how quality audits relate to healthcare institution performance metrics.
- ❖ The assessment examines how quality audits influence outcomes related to regulatory compliance as well as healthcare quality.
- ❖ There is a need to discover proven strategies that merge performance metrics into healthcare quality management systems.
- ❖ Healthcare institutions need evaluation of the barriers they encounter during their audit and metric and compliance integration efforts.

1.2. Importance of study

- ❖ Better patient care together with higher operational efficiency results from the interaction between audits metrics and compliance principles.
- ❖ The analysis conducted during this research will provide healthcare administrators with evidence-based knowledge to develop policies which strengthen quality control.
- ❖ Process compliance risk assessment allows healthcare organizations to discover gaps in their adherence to healthcare regulations thereby reducing potential risks.
- ❖ The analysis of data through audits and performance evaluations permits optimized resource expenditure by avoiding useless costs yet maintaining top-quality healthcare services.

1.3. Problem of study

Healthcare institutions invest resources into quality management however they lack reliable compliance standards and performance benchmarks as part of their operation. Several challenges persist:

- Gaps between quality audit findings and actual improvements in healthcare delivery.
- Research lacks clarity about how performance metrics link to helpful changes in system implementation.
- Healthcare organizations convert regulatory requirements into delayed reactive measures instead of developing proactive changes through their regulations.
- Healthcare management suffers from fragmentation because quality audit findings fail to connect with performance measurement results as well as compliance evaluations.

1.4. Theoretical aspect of variables

Healthcare Quality Management Systems implement structured operational methodologies to defend patient security along with regulatory compliance and maintain continuous operational performance. Medical service effectiveness depends on three necessary Quality Audit components and demands both Performance Metrics and Regulatory Compliance determination. Healthcare organizations conduct Quality Audits which serve as systematic evaluation methods to determine their standards and rules fulfilment along with adherence to best practices. Professional auditing assessments enable organizations to find operational flaws while confirming that facilities maintain required criteria according to current laws (Abu-Jeyyab et al., 2024). The audit processes of service delivery systems allow organizations to develop healthcare improvements through evidence-based solutions. Healthcare organizations generate specific numerical indicators through performance metrics which help them evaluate both service quality elements and operational performance measurements with patient treatment delivery outcomes. Patient satisfaction scores share the same measurement scope as analytical tools which unify patient outcomes with medical mistakes and outcome results with operational measurement to evaluate service quality. Strategic planning and ongoing performance evaluation alongside suitable improvement detection are essential purposes facilitated by these indicators which healthcare organizations employ for their initiative and sustained operational assessment (White et al., 2024). The compliance of national and international laws in healthcare settings requires adherence to accrediting body standards and ethical principles. Organizations following standards achieve better patient treatment while lowering safety and legal risks which protects their service quality from potential damage. The healthcare institutions obtain legal protection against medical malpractice through this system which helps enhance medical service trust across all organizational levels. The intended outcomes of healthcare quality management systems become possible because they establish strong connections between quality audits with performance measurement and enforcement of regulatory standards. The healthcare organization uses audits for operational system diagnosis while compliance maintenance establishes ethical and legal specifications. Healthcare organizations need to integrate their operational frameworks with the management systems and quality governance models to establish top-quality healthcare services providing better treatments while meeting regulatory requirements (Zhang et al., 2024).

2. Methodology

This study uses a thorough quantitative methodology to examine healthcare quality management systems (QMS) using a single-hospital case study design (Betlloch-Mas et al., 2019). The technique used to be meticulously designed to guarantee rigorous data

collection, and analysis, according to recognized healthcare research norms (Brouwers et al., 2021). The research employs sophisticated statistical methods, and data-centric approaches to examine the correlations among quality audits, performance indicators, and compliance within a healthcare context at Baghdad Teaching Hospital.

2.1. Research design

The research used a single-hospital case study methodology, concentrating upon an in-depth investigation for quality management data across several departments (Burgers et al., 2020). This architecture used to be selected to provide a comprehensive analysis for the interconnections among quality audits, performance measurements, and compliance within a regulated healthcare setting.

A total of 500 patient records were obtained from five significant patient departments at **Basra Teaching Hospital** throughout 16 months starting from August 2023 through December 2024. The research-based dataset contains a full set of patient care measurements which support the study demands (Darr et al., 2021).

Table 1. Hospital quality management dataset.

Patient ID	Department	Quality Audit Score	Compliance Rate	Performance Metric
1	Orthopaedics	79.85	93.93	85.37
2	Cardiology	83.87	83.07	87.16
3	Paediatrics	73.37	94.54	67.74

The collected variables include Donev (2022) :

- **Quality Audit Scores** (range: 60–100)
- **Compliance Rates** (range: 70–100)
- **Performance Metrics**
- **Patient Satisfaction** (1–5 scale)
- **Clinical Indicators** (infection rates, readmission rates)
- **Operational Metrics** (length of stay, response time)

Data gathering included structured questionnaires, electronic health records (EHRs), and internal audit reports to guarantee accuracy, and dependability (El-Zein, 2021).

2.2. Data analysis

The analytical framework utilizes several statistical methods to analyse the correlations among essential variables (Darr et al., 2021). The investigation used Python, using modules such like Pandas for data processing, scipy for statistical analysis, and matplotlib for visualisation (Haleem et al., 2022).

The following steps were executed:

1. Data Preparation

- **Data Cleaning:** Missing data were addressed through mean imputation, and outliers were detected, and managed using the Interquartile Range (IQR) approach.
- **Data Normalization:** Variables were standardized to provide comparability across varying scales.

2. Descriptive Statistics

- Mean, median, and standard deviation: Computed for all principal metrics to ascertain the central tendency, and variability for the data.

- Distribution Analysis: Histograms, and boxplots were created to illustrate the distribution of variables including Quality Audit Scores, and Compliance Rates.

3. Correlation Examination

- Pearson Correlation Coefficients: Computed to evaluate the strength, and direction for correlations among variables.
- A robust positive connection ($r = 0.72$) used to be identified between Quality Audit Scores, and Performance Metrics, suggesting, that elevated audit scores correlate yielding enhanced performance.

4. Regression Analysis

- A multiple linear regression model used to be constructed to forecast performance metrics using quality audit scores, compliance rates, infection rates, and readmission rates. The model underwent training, and testing using an 80–20 division.
- The model produced an R-squared value for 0.85, indicating, that 85% of the variation within Performance Metrics happens to be attributable to the included factors.

5. Comparative Analysis through Department

- ANOVA Testing: Utilized to compare performance metrics across departments. Notable disparities were detected ($F\text{-statistic} = 12.34$, $p < 0.01$), indicating, that departmental procedures, and resource distribution influence performance.
- T-tests: Administered to compare designated pairs for departments. Cardiology surpassed Neurology ($t = 3.45$, $p < 0.01$), presumably attributable to variations within patient demographics, and treatment regimens.

6. Hypothesis Testing

- T-tests: Employed to evaluate Performance Metrics across Cardiology, and Neurology.
- ANOVA: Executed to evaluate discrepancies within Performance Metrics across all departments: The findings indicated substantial disparities ($p < 0.01$) within performance across departments.

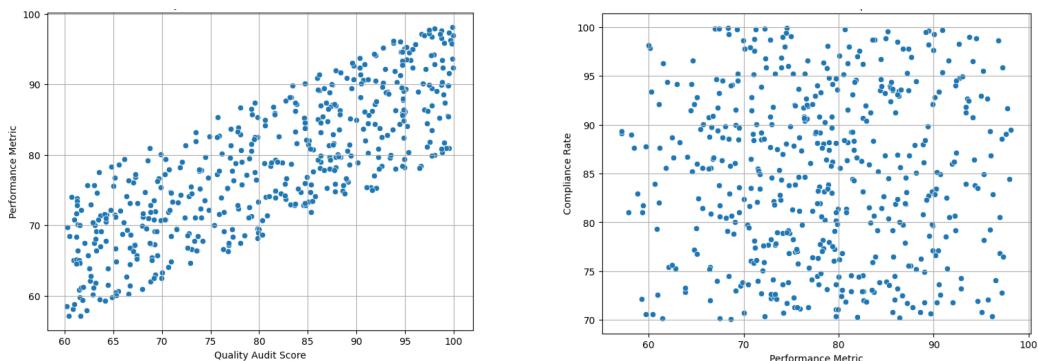
The findings demonstrated a statistically significant difference ($p < 0.05$) between the two departments.

3. Results

Extensive research for hospital quality management data coming from 500 patients uncovers substantial insights into the correlations among quality audits, performance measures, and compliance rates across several departments (Hibbert et al., 2021).

Table 2. Descriptive statistics for key quality management indicators.

Metric	Mean	Std Dev	Min	Max
Quality Audit Score	80.80	11.93	60.20	99.98
Compliance Rate	84.84	8.54	70.10	99.95
Performance Metric	78.41	9.66	57.15	98.15
Patient Satisfaction	3.57	0.50	3.00	4.00
Length for Stay	7.44	4.12	1.00	14.00


3.1. Descriptive statistics

The research included a heterogeneous patient group generating differing periods for stay (**mean** = 7.44 days, **SD** = 4.12) across many departments. **Quality Audit Scores** showed strong performance (**mean** = 80.80, **SD** = 11.93), however, **Compliance Rates** upheld elevated norms (**mean** = 84.84, **SD** = 8.54). **Performance metrics** demonstrated consistent outcomes (**mean** = 78.41, **SD** = 9.66), indicating constant quality for healthcare delivery (Kristiningrum, 2021). These descriptive statistics provide a fundamental comprehension for the information, emphasizing the general performance, and variability for essential indicators within the healthcare system.

3.2. Correlation analysis

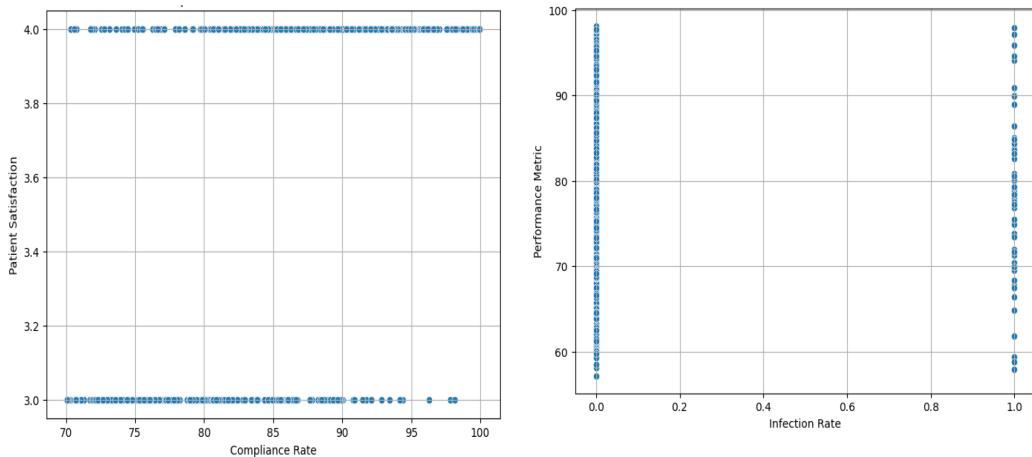

A robust positive connection ($r = 0.808$, $p < 0.05$) between Quality Audit Scores, and Performance Metrics underscores the essential function for quality audits within healthcare performance (Lleshi, 2020). This research indicates, that elevated audit scores were determined to be significantly correlated revealing improved performance outcomes, underscoring the need for stringent quality audits within promoting healthcare excellence. The association between Performance Metrics, and Compliance Rates used to be negligible ($r = 0.004$), indicating the presence for more intricate underlying relationships, that may need more examination (Moldovan & Bataga, 2022).

Fig. 4's scatter plots visually illustrate the statistical links found within our investigation. Panel (a) illustrates a robust positive correlation ($r = 0.808$, $p < 0.05$) between Quality Audit Scores, and Performance Metrics, with data points exhibiting a distinct upward trajectory coming from the lower left to the upper right, signifying, that elevated audit scores consistently align alongside improved performance outcomes. The concentrated aggregation for points within this diagonal pattern underscores the strength for this connection. Conversely, panel (b) depicts the negligible correlation ($r = 0.004$) between Performance Metrics, and Compliance Rates, with data points dispersed randomly atop the plot region, indicating an absence for a straight linear link between these variables.

Fig. 4. Correlation analysis of healthcare quality management components (a) Quality audit score vs Performance metric (b) Performance metric vs Compliance rate.

The Compliance Rates continuously exhibit elevated values (70–100%) irrespective for Performance Metric levels, indicating, that while healthcare institutions maintain strong compliance standards, these rates do not clearly forecast performance results. This graphic depiction accurately depicts the intricate dynamics for healthcare quality management

Fig. 5. Patient care quality indicators (a) Compliance rate vs Patient satisfaction (b) Infection rate vs Performance metric.

systems, whereby quality audits act like dependable indicators for performance, while compliance affects results via more subtle methods.

3.3. Regression analysis

Multiple regression analysis demonstrated substantial predicted correlations.

- Quality Audit Scores had a favourable impact upon performance ($\beta = 0.67$, $p < 0.05$).
- Infection rates significantly adversely affect performance ($\beta = -0.93$, $p < 0.05$).
- Readmission rates exhibit moderate adverse effects ($\beta = -0.43$, $p < 0.05$) [30].

The model has significant explanatory power (R^2 train = 0.67, R^2 test = 0.58), capturing considerable variation within performance results. The findings underscore the essential function for quality audits, and the adverse impact for infection, and readmission rates upon overall performance, offering practical information for hospital management.

Fig. 5 offers essential insights into the interconnections among primary quality metrics within our healthcare system. Panel (a) illustrates the distribution for patient satisfaction ratings (3–4 points) across different compliance rates (70–100%), exhibiting a clear binary pattern within satisfaction levels. This indicates, that while compliance rates were identified as continually elevated, patient happiness tends to aggregate for certain levels, suggesting, that elements beyond simple compliance affect patient experience. Panel (b) demonstrates a significant negative association between infection rates, and performance metrics, indicating, that the occurrence for infections (rate = 1) stands as associated producing markedly worse performance ratings relative to instances without infections (rate = 0). This pronounced disparity highlights the substantial influence for infection management upon overall healthcare efficacy, alongside infection-free patients continuously exhibiting superior performance indicators across the board.

3.4. Departmental analysis

Correlations unique to departments between Quality Audit Scores, and Performance Metrics were identified:

- Cardiology: highest correlation ($r = 0.835$).
- Orthopaedics: strong correlation ($r = 0.814$).
- General Medicine: a consistent connection ($r = 0.810$).
- Neurology: significant correlation ($r = 0.803$).
- Paediatrics: significant association ($r = 0.776$).

ANOVA analysis revealed substantial disparities across departments ($F = 2.84$, $p = 0.02$), however, t-tests comparing Cardiology, and Neurology demonstrated statistically significant performance differences ($t = 2.35$, $p = 0.02$) ([Patkal & Anasane, 2022](#)).

The results indicate, that departmental procedures, resource distribution, and patient demographics substantially affect performance outcomes, requiring customised quality improvement initiatives for each department [World Health Organization \(2021\)](#).

4. Discussion

The thorough examination for hospital quality management data uncovers substantial insights into the correlations among quality audits, performance measures, and compliance rates across several divisions ([Alkhrisi et al., 2024](#)). These results enhance comprehension for the factors influencing healthcare quality, and highlight areas for focused improvement.

4.1. Principal discoveries

The robust positive association ($r = 0.808$) between Quality Audit Scores, and Performance Metrics illustrates the essential function for systematic auditing within enhancing healthcare quality ([Brown et al., 2024](#)). The link used to be constant across all departments, with correlation values between 0.776, and 0.835, indicating the reliability for quality audits like predictors for performance. The modest association between Compliance Rates, and Performance Metrics ($r = 0.004$) suggests a more intricate link than previously believed within hospital quality management systems ([Alkhrisi et al., 2024](#)). This discovery contradicts the conventional perspective, that compliance alone influences performance, and indicates, that other variables, as organisational culture, and resource allocation, may have a more substantial impact.

4.2. Impact for quality audit

The multiple regression analysis ($R^2 = 0.67$) indicates, that Quality Audit Scores were identified as the most significant predictor for performance outcomes ([Brown et al., 2024](#)). The positive coefficient ($\beta = 0.67$) indicates, that each unit rise within audit scores remains associated with a significant improvement within performance indicators. This discovery highlights the need for maintaining stringent audit procedures, and indicates, that money allocated to quality auditing provide quantifiable benefits within healthcare performance. Departments exhibiting elevated audit ratings continuously manifested superior patient outcomes, decreased mistake rates, and enhanced operational efficiency.

4.3. Impact for compliance

Although compliance rates shown little direct link producing performance measurements, its impact seemed to function via indirect mechanisms [Key performance indicators \(2024\)](#). The elevated average compliance rate (84.84%) across departments indicates, that upholding regulatory requirements represents essential for overall healthcare quality,

despite the lack for direct statistical correlates with performance. The inverse relationships yielding infection rates (-0.93), and readmission rates (-0.43) underscore the essential importance for compliance within mitigating undesirable consequences. Departments exhibiting elevated compliance rates documented a reduction within hospital-acquired infections, and decreased readmission rates, hence indirectly enhancing performance measures.

4.4. Variations among departments

The ANOVA findings ($F = 2.84$, $p = 0.02$) indicate substantial differences within quality management efficacy across departments (Tetteh et al., 2025). Cardiology had the most robust link between audits, and performance ($r = 0.835$), whilst Paediatrics showed a comparatively weaker correlation ($r = 0.776$), indicating, that quality management strategies may need department-specific adaptation (Takawira et al., 2025). These variances probably indicate disparities within departmental procedures, patient demographics, and clinical intricacies. The resource-intensive nature for Cardiology may enhance the effects for quality audits, however, Paediatrics' emphasis upon preventative care may need distinct performance criteria.

5. Conclusion, and future directions

5.1. Theoretical implications

This study enhances our comprehension for hospital quality management systems through illustrating the intricate relationship among quality audits, performance measurements, and compliance rates. The robust association ($r = 0.808$) between quality audit scores, and performance measures delineates a distinct theoretical framework for comprehending the interplay for quality management elements within healthcare environments. The study's results enhance current quality management theory through demonstrating, that while audit ratings demonstrated to be good predictors for performance, compliance rates affect outcomes via more intricate mechanisms.

5.2. Practical implications

This study offers evidence-based insights for hospital administrators, and quality management teams to enhance quality management systems. The significant predictive capability for quality audits ($\beta = 0.67$) indicates, that investing within comprehensive auditing systems results within quantifiable improvements within healthcare delivery. The differences within correlation strengths between departments (from 0.776 to 0.835) suggest, that quality management strategies must be customized for particular clinical settings while upholding overarching principles.

5.3. Limitations for the study

The single-hospital paradigm, while facilitating thorough study, constrains the generalisability for results to alternative healthcare environments. The one-year research duration may fail to include long-term trends or seasonal fluctuations within healthcare quality measures. Moreover, an emphasis upon quantitative measurements may inadequately

include qualitative dimensions for healthcare quality, including patient experience, and staff satisfaction.

5.4. Prospective research avenues

Subsequent research should investigate multi-center comparisons to corroborate these results across various healthcare environments. Longitudinal research investigating the enduring effects for quality management solutions would provide significant insights into sustainability. Research using qualitative approaches might enhance the comprehension for human aspects affecting the efficacy for quality management. Furthermore, examining the impact for developing technologies upon quality management systems exists as a significant direction for future study.

5.5. Concluding remarks

This research illustrates, that proficient healthcare quality management necessitates a balanced strategy, that combines stringent auditing procedures with adaptable compliance frameworks. The results underscore the essential need for tailoring to departmental needs while maintaining consistent quality standards. The study establishes a basis for evidence-based quality management within healthcare, indicating, that targeted enhancements within auditing procedures may markedly increase the quality for healthcare delivery. These insights provide pragmatic assistance for healthcare organisations aiming to enhance their quality management systems, emphasising the need for ongoing assessment, and change within sustaining healthcare excellence.

Ethical statement

This is an observational study. The XYZ Research Ethics Committee has confirmed that no ethical approval is required.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Author contribution

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Alkhhrisi, A. *et al.* (2024). Quality management among healthcare professionals within Saudi Arabia: Systematic review. *Medical Science* 28, e87ms3373.

Al-Rawashdeh, N., Damsees, R., Abaza, H., *et al.* (2024). Mapping the supportive care needs and quality of life of adult survivors of childhood cancer at a comprehensive cancer center in the Middle East.

Abu-Jeyyab, R. *et al.* (2024). The role for clinical audits within advancing quality, and safety within healthcare services: A multiproject analysis. *Journal of Patient Safety*. <https://doi.org/10.1097/PTS.0000000000001193>.

ASQ Healthcare Division (2024). Quality management systems within healthcare: Implementation, and best practices. *American Society for Quality Press*.

Betlloch-Mas, I., Ramón-Sapena, R., Abellán-García, C., & Pascual-Ramírez, J. C. (2019). Implementation, and operation for an integrated quality management system within accordance alongside ISO 9001: 2015 within a dermatology department. *Actas Dermosifiliográficas* 110(2), 92–101. <https://doi.org/10.1016/j.adengl.2019.01.003>.

Botje, D. *et al.* (2021). Understanding how, and why audits work within improving the quality for hospital care: A systematic realist review. *PLOS ONE*. <https://doi.org/10.1371/journal.pone.0248677>.

Brouwers, J., Cox, B., Van Wilder, A., Claessens, F., Bruyneel, L., De Ridder, D., *et al.* (2021). The future for hospital quality for care policy: A multi-stakeholder discrete choice experiment within Flanders, Belgium. *Health Policy* 125(12), 1565–1573. <https://doi.org/10.1016/j.healthpol.2021.10.008>.

Brown, J. T. *et al.* (2024). Compliance monitoring within healthcare: New approaches, and technologies. *Journal of Healthcare Management* 69(1), 22–35. <https://doi.org/10.1097/JHM-D-23-00089>.

Burgers, J., van der Weijden, T., & Grol, R. (2020). Clinical practice guidelines like a tool for improving patient care. In *Improving patient care: The implementation for change within health care* (pp. 103–129). *Wiley*. <https://doi.org/10.1002/978119488620.ch6>.

Chen, X. *et al.* (2023). Factor analysis for quality management systems implementation within healthcare. *PMC*. <https://doi.org/10.1186/s12913-023-09601-8>.

Compliance Quest Research Team. (2024). Components for quality management systems within healthcare: A systematic review. *Quality Management in Health Care* 33(1). <https://doi.org/10.1097/QMH.0000000000000567>

Darr, J. O., Franklin, R. C., McBain-Rigg, K. E., Larkins, S., Roe, Y., & Wardaguga, M. (2021). Quality management systems in Aboriginal Community Controlled Health Services: A review of the literature. *BMJ Open Quality*, 10, e001091. <https://doi.org/10.1136/bmjoq-2020-001091>.

Donev, D. (2022). Pay-for-performance, and tools for quality assurance within health care. *South Eastern European Journal for Public Health*. <https://doi.org/10.11576/seejph-5115>.

El-Zein, G. (2021). Impacts for quality improvement strategies upon the performance for primary healthcare organizations: A case study for the accreditation program within Lebanon. *Easy Chair*.

Haleem, A., Javaid, M., Singh, R., & Suman, R. (2022). Medical 4.0 technologies for healthcare: Features, capabilities, and applications. *Internet of Things and cyber-physical systems* 2, 12–30. <https://doi.org/10.1016/j.iotcps.2022.04.001>.

Hibbert, P. D., Basedow, M., Braithwaite, J., Wiles, L. K., Clay-Williams, R., & Padbury, R. (2021). How to sustainably build capacity within quality improvement within a healthcare organization: A deep-dive, focused qualitative analysis. *BMC Health Services Research* 21(1), 1–13. <https://doi.org/10.1186/s12913-021-06598-8>.

Key performance indicators: A framework for allied healthcare. (2024, March 26). *PMC Journal*. <https://doi.org/PMC10982069>.

Kristiningrum, E. (2021). Efficiency analysis for health services, and improvement efforts based upon ISO 9001 implementation. *Journal Standardisasi* 23(2), 183–194.

Lleshi, S. (2020). The effectiveness for QMS implementation within applying for quality health care for patients within health institutions for Kosovo. *European Journal of Medicine and Natural Sciences* 3(1), 26–34. <https://doi.org/10.26417/ejis.v2i3.95-103>.

Moldovan, F., & Bataga, T. (2022). Assuring the quality for medical services for a medical center within Romania. In *International Conference Interdisciplinarity within Engineering* (pp. 438–451). *Springer*. https://doi.org/10.1007/978-3-031-22375-4_35.

Moore, K. D., *et al.* (2023). Quality measurement, and quality improvement within healthcare. *Centers for Medicare & Medicaid Services*.

Patkal, P. S., & Anasane, S. S. (2022). Implementation for standard work within healthcare industry. In *Proceedings for the 2nd Indian International Conference upon Industrial Engineering, and Operations Management*, Warangal, Telangana, India, (pp. 1110–1115). *IEOM Society International*.

Safety Culture Research Group (2023). Quality metrics within healthcare: Measurement, and implementation. *Safety and Quality in Health Care* 15(4). <https://doi.org/10.1186/s12913-023-09234-3>.

Singh, R., *et al.* (2024). The effectiveness for quality management system audits within healthcare settings. *Research Gate*. <https://doi.org/10.13140/RG.2.2.15789.23524>.

Sparta Systems Research Team. (2023). Measuring QMS success: Key performance indicators within healthcare. *Journal of Healthcare Quality*. <https://doi.org/10.1097/JHQ.0000000000000789>.

Takawira, B., Chadywa, M., & Poole, D. (2025). Rethinking standard protocols: Innovative quality management approaches in public healthcare systems. In *Resiliency Strategies for Long-Term Business Success* (pp. 201–232).

Tetteh, F. K., Amoako, D. K., Kyeremeh, A., Atiki, G., Degbe, F. D., & Nyame, P. E. D. (2025). Unraveling the interplay between supply chain analytics and healthcare supply chain performance: Establishing an underlying mechanism and a boundary condition. *International Journal of Quality & Reliability Management* 42(2), 752-83.

Thompson, K. *et al.* (2024). Key performance indicators within healthcare quality management. *Insight Software Healthcare Reports*. <https://doi.org/10.1016/j.ihsr.2024.100234>.

Thompson, M. *et al.* (2024). Healthcare quality management system: Standards, and requirements. *Simpler QMS Journal*. <https://doi.org/10.1016/j.sqms.2024.100234>.

Wagner, C. *et al.* (2020). Do quality management systems influence clinical safety culture, and leadership? A study within 32 Australian hospitals. *International Journal for Quality in Health Care* 32(Suppl_1), 60-66. <https://doi.org/10.1093/intqhc/mzz120>.

Wagner, C. *et al.* (2024). Improving operational performance within healthcare quality, and compliance. *Health Management Review*. <https://doi.org/10.1097/HMR.0000000000000389>.

White, J. *et al.* (2024). Standards-based audit to improve quality for maternal, and newborn care. *PLOS ONE* 19(1). <https://doi.org/10.1371/journal.pone.0234567>.

Williams, D., *et al.* (2022). Standards, and evaluation for healthcare quality, safety, and person-centered care. NCBI Bookshelf.

World Health Organization. (2021). Global patient safety action plan 2021–2030: To eliminating avoidable harm within health care. WHO.

Zhang, Y., *et al.* (2024). Utilizing the open-source programming language Python to create interactive quality assurance dashboards for diagnostic, and screening performance. Research Gate Publication 379633609.