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ABSTRACT

Antioxidants play a pivotal role in mitigating damage caused by oxidative stress, which is implicated in aging, inflam-
mation, neurodegeneration, and various chronic diseases. With the growing interest in natural and synthetic antioxidants
across nutraceutical, pharmaceutical, and food industries, the need for reliable, reproducible, and standardized testing
methods has become increasingly urgent. This mini-review provides a structured overview of the most widely used
antioxidant testing protocols, categorized into in vitro chemical-based assays (e.g., DPPH, ABTS, FRAP, metal chelation),
cell-based assays (e.g., DCFH-DA for intracellular ROS detection), and in vivo biomarker-based models. Each method’s
principle, experimental protocol, advantages, and limitations are critically discussed. The review further highlights the
importance of assay selection based on mechanistic relevance, distinguishing between primary radical scavenging and
secondary antioxidant mechanisms. Finally, it addresses major challenges in assay variability, poor in vitro-in vivo
correlation, and calls for methodological standardization and integration of emerging biosensing and high-throughput

approaches for future advancements.

Keywords: Antioxidant assays, Free radical scavenging, DPPH/ ABTS/ FRAP, Oxidative Stress biomarkers, In vitro and in
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1. Introduction

Antioxidants play a pivotal role in mitigating dam-
age caused by oxidative stress, which is implicated
in aging, inflammation, neurodegeneration, and var-
ious chronic diseases [1, 2]. This imbalance has
profound biological implications, serving as a central
pathological mechanism underlying various diseases
and conditions, including aging [3], cancer [4], in-
flammatory disorders [5], and neurodegeneration
[6, 7]. The accumulation of oxidative damage to
cellular components such as DNA, proteins, and
lipids contributes significantly to disease progression
and cellular dysfunction [8]. The growing recogni-
tion of the therapeutic potential of antioxidants has

created an urgent need for reliable, standardized,
and reproducible antioxidant assays for compound
screening, especially in food science, pharmaceuti-
cal development, and nutraceutical research[9,10].
The complexity of antioxidant mechanisms and the
diversity of available testing methods have led to
significant variability in results and interpretation
challenges across different laboratories and research
groups [11, 12]. This comprehensive review aims
to address these challenges by covering widely used
in vitro and biological assays with a particular
focus on their underlying methodologies and com-
parative applicability. The scope encompasses both
chemical-based and cell-based approaches, provid-
ing researchers with detailed protocols and critical
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Fig. 1. Classification of antioxidant assays.

insights into the selection and implementation of
appropriate antioxidant testing strategies for their
specific research objectives [13, 14].

2. Classification of antioxidant testing
approaches

Antioxidant testing methodologies can be system-
atically classified into several distinct categories
based on their experimental design and biologi-
cal relevance. In vitro assays represent the most
commonly employed initial screening approach, en-
compassing both chemical-based methods such as the
2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric re-
ducing antioxidant power (FRAP) assays, as well as
cell-based systems utilizing fluorescent probes like
2’,7’-dichlorofluorescin diacetate (DCFH-DA) [15,
16]. In vivo assays provide more physiologically rel-
evant information through biomarker analysis in ani-
mal models, typically involving rodent studies where
oxidative stress markers and antioxidant enzyme ac-
tivities are measured in various tissues and biological
fluids [17, 18]. These approaches offer valuable in-
sights into the bioavailability, metabolism, and actual
protective effects of antioxidant compounds under
physiological conditions [19]. A mechanism-based
categorization further distinguishes between primary
antioxidants, which function as direct radical scav-

engers and can be effectively measured using assays
like DPPH and 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) [20, 21], and secondary
antioxidants, which operate through indirect mech-
anisms such as metal chelation, enzyme induction,
or prevention of radical formation [22, 23]. This
classification is particularly important as it influ-
ences the selection of appropriate testing methods
and the interpretation of results. Fig. 1 represents a
comprehensive hierarchical classification of antiox-
idant testing techniques, organized into five major
categories: Chemical Methods, Biological Methods
(including Cell-Based and Enzyme Inhibition Assays),
Electrochemical Methods, Advanced Analytical Tech-
niques, and In Vivo Testing. Each branch includes
representative assays or tools such as DPPH, FRAP,
CAA, SOD inhibition, HPLC, and animal models, re-
flecting the diversity of approaches used to assess
antioxidant activity across in vitro, ex vivo, and in
vivo systems.

The distinction between direct and indirect an-
tioxidant capacity evaluation is fundamental to
understanding the limitations and applicability of
different assays [24]. Direct methods measure the im-
mediate radical scavenging capacity of compounds,
while indirect methods assess the compound’s ability
to enhance cellular antioxidant systems or prevent
oxidative damage through various protective mech-
anisms [25, 26].
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Table 1. Summary of common in vitro antioxidant assays.

Target Detection Method Wavelength Reference
Assay Radical/Mechanism (nm) Standard Advantages Limitations
DPPH DPPH-scavenging UV-Vis 517 Trolox, Ascorbic ~ Simple, Fast hydrophilic
spectrophotometry acid samples
ABTS ABTS+* scavenging UV-Vis 734 Trolox Broad pH range Requires radical-
spectrophotometry generation
step
FRAP Reducing power UV-Vis 593 FeSO4 (Fe2™) Reproducible Does not reflect
(Fe3t — Fe2t) spectrophotometry radical-
scavenging
activity
Metal Fe?* chelation UV-Vis 562 EDTA Measures secondary ~ Not ROS-specific
chelation spectrophotometry antioxidant activity

3. Free radical scavenging assays: Protocols
and principles

Table 1 summarizes widely used in vitro antioxi-
dant assays based on their target mechanisms (e.g.,
radical scavenging, reducing power, metal chelation),
detection methods, optimal wavelengths, reference
standards, and key advantages and limitations. The
comparison highlights methodological distinctions
and supports the appropriate selection of assays de-
pending on compound properties and experimental
goals.

3.1. DPPH assay protocol

The DPPH assay represents one of the most
widely utilized methods for evaluating antioxidant
activity due to its simplicity, reproducibility, and
cost-effectiveness [27, 28]. The principle underly-
ing this assay involves the use of DPPH" (2,2-
diphenyl-1-picrylhydrazyl), a stable violet-colored
free radical that exhibits strong absorption at 517
nm [29]. When antioxidants are present, they do-
nate hydrogen atoms or electrons to DPPH’, reducing
it to the yellow-colored DPPH-H (2,2-diphenyl-1-
picrylhydrazine), resulting in a measurable decrease
in absorbance [30].

Detailed Protocol:

1. Prepare a 0.1 mM DPPH solution in methanol
and store in darkness to prevent photo-
degradation

2. Prepare serial dilutions of test compounds in ap-
propriate solvents (typically methanol or ethanol)

3. Mix 1 mL of DPPH solution with 1 mL of test
compound at various concentrations in test tubes

4. Prepare control samples by mixing 1 mL DPPH
solution with 1 mL of pure solvent

5. Incubate all samples in darkness for 30 minutes
at room temperature (20-25 °C)

6. Measure absorbance at
spectrophotometer

7. Calculate percentage scavenging activity using
the formula (1) [31]:

517 nm wusing a

Agprere — A
% Inhibition = ool — “isample 40 1)

Acontrol

The EC50 value, representing the concentration of
antioxidant required to scavenge 50% of DPPH rad-
icals, serves as a standard parameter for comparing
antioxidant potencies [32, 33].

3.2. ABTS assay protocol

The ABTS radical cation decolorization assay offers
several advantages over the DPPH method, including
its applicability to both hydrophilic and lipophilic an-
tioxidants and its ability to function across a wide pH
range [34, 35]. The principle involves the generation
of the blue-green ABTS-+ radical cation (2,2’-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid)), which
exhibits characteristic absorption at 734 nm and is
readily decolorized by antioxidants [21, 36].

Detailed Protocol:

1. Generate ABTS-+ radical stock solution by mixing
7 mM ABTS with 2.45 mM potassium persulfate in
equal volumes

2. Allow the mixture to stand in darkness for 8-16
hours at room temperature to ensure complete
radical formation

3. Dilute the ABTS + stock solution with phos-
phate buffer (pH 7.4) or ethanol to achieve
an absorbance of approximately 0.7 + 0.02 at
734 nm

4. Add 100 uL of test sample to 1 mL of diluted
ABTS' + solution

5. Mix thoroughly and incubate for exactly 6 minutes
at room temperature
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6. Measure absorbance reduction at 734 nm against
an appropriate blank

7. Calculate antioxidant activity as Trolox equivalent
antioxidant capacity (TEAC) values

3.3. Superoxide scavenging assay (NBT assay)

The superoxide anion radical scavenging assay uti-
lizing nitroblue tetrazolium (NBT) provides specific
information about a compound’s ability to neutralize
one of the most biologically relevant ROS [37, 38].
The principle relies on the non-enzymatic generation
of superoxide radicals through the phenazine metho-
sulfate (PMS)/NADH system, which subsequently
reduces NBT to form a blue formazan product with
maximum absorption at 560 nm [39, 40].

Detailed Protocol:

1. Prepare reaction mixture containing 50 uL of NBT
(0.1 mM in phosphate buffer, pH 7.4)

2. Add 50 uL of NADH (0.1 mM in phosphate buffer)

3. Include 50 pL of PMS (0.1 mM in phosphate
buffer, prepared fresh)

4. Add varying concentrations of test compounds
(50 L)

5. Adjust total volume to 300 uL with phosphate
buffer

6. Incubate for exactly 5 minutes at room tempera-
ture under normal lighting conditions

7. Measure absorbance at 560 nm immediately after
incubation

8. Calculate percentage inhibition using the standard
formula (1)

3.4. Hydroxyl radical scavenging assay
(Deoxyribose assay)

The deoxyribose degradation assay represents the
gold standard for evaluating hydroxyl radical scav-
enging capacity, as hydroxyl radicals are among the
most reactive and damaging ROS encountered in bi-
ological systems [41, 42]. This assay is based on the
principle that hydroxyl radicals, generated through
the Fenton reaction, attack deoxyribose to produce
thiobarbituric acid-reactive substances (TBARS) that
form a pink-colored complex with thiobarbituric acid
(TBA) [43, 44].

Detailed Protocol:

1. Prepare reaction mixture containing 0.1 mL of 2.8
mM deoxyribose in phosphate buffer (pH 7.4)

. Add 0.1 mL of 0.1 mM FeSO4-7H>0

. Include 0.1 mL of 0.1 mM EDTA

. Add 0.1 mL of 0.1 mM ascorbic acid

. Include 0.1 mL of 1 mM H,0,

G hwWN

6. Add test sample (0.1 mL at various concentra-
tions)
7. Adjust total volume to 1.0 mL with phosphate
buffer
8. Incubate at 37 °C for 1 hour with gentle shaking
9. Add 1.0 mL of 2.8% trichloroacetic acid (TCA)
10. Add 1.0 mL of 1% thiobarbituric acid in 0.05 M
NaOH
11. Heat the mixture in a boiling water bath for 15
minutes
12. Cool rapidly in an ice bath
13. Measure absorbance at 532 nm against an
appropriate blank
14. Calculate the hydroxyl radical scavenging
activity as a percentage inhibition of deoxyribose
degradation

4. Reducing power & metal chelation assays

The reducing power and metal chelation capacity
of compounds represent fundamental mechanisms
of antioxidant action that complement free radical
scavenging activities. These assays provide critical
insights into the electron-donating capacity and
metal-binding properties of potential antioxidants,
which are essential for understanding their protective
mechanisms against oxidative damage [45, 46].

4.1. FRAP (ferric reducing antioxidant power)
protocol

The FRAP assay represents one of the most widely
adopted methods for measuring the reducing
power of antioxidants, based on the reduction
of ferric iron (Fe3*) to ferrous iron (Fe®*) in
acidic conditions [47, 48]. The principle underlying
this assay involves the reduction of the colorless
ferric-tripyridyltriazine (Fe®*-TPTZ) complex to the
intensely blue ferrous-tripyridyltriazine (Fe?*-TPTZ)
complex at low pH, with maximum absorption at
593 nm [49, 50]. A concise summary of the key assay
conditions is presented in Table 2.

Detailed Protocol:

1. Prepare FRAP reagent fresh daily by mixing 25 mL
of 300 mM acetate buffer (pH 3.6), 2.5 mL of 10
mM TPTZ solution in 40 mM HCI, and 2.5 mL of
20 mM FeCl3-6H,0 solution

. Warm FRAP reagent to 37 °C before use

3. Add 100 uL of test sample to 3.0 mL of FRAP

reagent

4. Mix thoroughly and incubate at 37 °C for exactly

4 minutes

N
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Table 2. Protocol overview for each key assay.

Assay Key Reagents Incubation Time  Temperature Quantification Formula Instrument

DPPH DPPH in methanol 30 minutes Room temperature (20-25 °C)  Eq. (1) UV-Vis

ABTS ABTS + K5S,0g 6 minutes Room temperature Trolox equivalents UV-Vis
Superoxide = NADH, PMS, NBT 5 minutes Room temperature % Inhibition of formazan  UV-Vis

FRAP TPTZ, FeCls 4 minutes 37 °C umol Fe?* equivalents UV-Vis

DCFH-DA DCFH-DA, H0, 30-60 minutes 37 °C Fluorescence Intensity Microplate reader

5. Measure absorbance at 593 nm against a reagent
blank

6. Prepare standard curve using FeSO4-7H50 solu-
tions (100-1000 pM)

7. Express results as umol Fe? " equivalents per gram
or milliliter of sample

The FRAP assay offers several advantages including
simplicity, reproducibility, and the ability to measure
both water-soluble and fat-soluble antioxidants when
appropriate solvents are used [51, 52]. However, the
assay’s acidic conditions may not reflect physiological
pH, and it measures only electron-donating capac-
ity rather than hydrogen atom transfer mechanisms
[53].

4.2. Metal chelation assay (Ferrozine method)

The metal chelation assay using ferrozine provides
specific information about a compound’s ability to
bind metal ions, particularly iron, which plays a cru-
cial role in catalyzing oxidative reactions through
Fenton chemistry [54, 55]. The principle is based
on the formation of a stable, intensely colored com-
plex between Fe?* and ferrozine (3-(2-pyridyl)-5,6-
diphenyl-1,2,4-triazine-4,4-disulfonic acid), which
exhibits maximum absorption at 562 nm [56, 57].

Detailed Protocol:

1. Prepare 0.1 mM FeSO4-7H,0 solution in distilled
water

2. Prepare 0.25 mM ferrozine solution in distilled
water

3. Mix 1.0 mL of FeSO4 solution with 1.0 mL of test
sample at various concentrations

4. Allow the mixture to react for 5 minutes at room
temperature

5. Add 1.0 mL of ferrozine solution to initiate com-
plex formation

6. Mix thoroughly and incubate at room temperature
for 10 minutes

7. Measure absorbance at 562 nm against an appro-
priate blank

8. Calculate metal chelation activity regarding
Eq. (1)

9. Determine ICsg values representing the concentra-
tion required for 50% chelation

EDTA is typically used as a positive control due to
its well-known metal chelating properties [58, 59].
The assay can be adapted for other metal ions by
using different chromogenic reagents and appropriate
metal solutions [60].

5. Cell-based antioxidant assays

Cell-based antioxidant assays represent a signifi-
cant advancement in antioxidant testing, providing
more physiologically relevant information compared
to chemical assays by incorporating cellular uptake,
metabolism, and bioavailability factors [56, 61].
These assays evaluate antioxidant activity within liv-
ing cellular systems, offering insights into the actual
protective effects against oxidative stress under bio-
logical conditions [10, 18].

5.1. DCFH-DA assay (intracellular ROS detection)

The 2’,7’-dichlorodihydrofluorescein diacetate
(DCFH-DA) assay is the most widely used method
for detecting intracellular ROS production and
evaluating antioxidant protection in living cells
[64, 65]. The principle involves the cellular uptake
of the non-fluorescent DCFH-DA probe, which is
subsequently deacetylated by intracellular esterases
to form DCFH, and then oxidized by various ROS to
produce the highly fluorescent dichlorofluorescein
(DCF) [66, 67].

Detailed Protocol:

1. Seed cells (1x10* cells/well) in 96-well black
plates and incubate overnight at 37°C

2. Remove growth medium and wash cells twice
with phosphate-buffered saline (PBS)

3. Load cells with 10 uM DCFH-DA in serum-free
medium for 30 minutes at 37 °C in darkness

4. Wash cells three times with PBS to remove excess
probe

5. Pre-treat cells with test compounds at various con-
centrations for 1 hour

6. Induce oxidative stress with appropriate ROS gen-
erators (e.g., 500 uM H303, 100 uM tert-butyl
hydroperoxide, or 50 uM menadione)
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7. Measure fluorescence immediately and at regular
intervals using a microplate reader (excitation:
485 nm, emission: 535 nm)

8. Calculate antioxidant activity regarding Eq. (2):

E 4 —F,
% Protection = _oxidant 7 “sample x 100 ()]

F oxidant — Fcontrol

The DCFH-DA assay can be effectively coupled with
viability assays such as MTT (3-(4,5-dimethylthiazol-
2-y1)-2,5-diphenyltetrazolium bromide) or resazurin
to evaluate antioxidant-induced cytoprotection. This
combination provides comprehensive information
about both ROS scavenging capacity and cellular pro-
tection against oxidative damage [68].

5.2. MTT coupling protocol

1. After completing the DCFH-DA measurement, re-
move medium and add 100 pL of MTT solution
(0.5 mg/mL)

2. Incubate for 4 hours at 37 °C

3. Remove MTT solution and add 100 uL of DMSO
to dissolve formazan crystals

4. Measure absorbance at 570 nm with 630 nm as
the reference wavelength

5. Calculate cell viability regarding Eq. (3)

A
Zsample 100 3)

control

% Viability =

6. In vivo antioxidant testing and biomarker
assessment

In vivo antioxidant testing represents the gold
standard for evaluating the actual biological efficacy
of antioxidant compounds under physiologically
relevant conditions. These studies typically employ
rodent models subjected to controlled oxidative stress
conditions, followed by comprehensive biomarker
analysis to assess the protective effects of test
compounds [69].

Experimental Design: Animal models commonly
utilize chemical inducers of oxidative stress, such as
carbon tetrachloride (CCly), hydrogen peroxide, or
doxorubicin, to create reproducible oxidative dam-
age. Following treatment with test antioxidants and
oxidative stress induction, various tissues (liver, kid-
ney, brain, heart) and biological fluids (plasma,
urine) are analyzed for oxidative stress biomarkers
[69].

Key Biomarker Categories:

Lipid Peroxidation Assessment: The thiobarbi-
turic acid reactive substances (TBARS) assay remains

the most widely used method for quantifying lipid
peroxidation products, primarily malondialdehyde
(MDA) [70].

TBARS Protocol:

1. Prepare tissue homogenates (10% w/v) in ice-cold
phosphate buffer (pH 7.4)

2. Mix 0.5 mL of tissue homogenate with 0.5 mL of
30% trichloroacetic acid (TCA)

3. Add 0.5 mL of 0.8% thiobarbituric acid (TBA)
solution

4. Heat the mixture in a boiling water bath for 30
minutes

5. Cool rapidly in an ice bath and centrifuge at 3000

rpm for 10 minutes
. Measure absorbance of the supernatant at 532 nm

)]

7. Calculate MDA  concentration using a
standard curve prepared with 1,1,3,3-
tetramethoxypropane

Antioxidant Enzyme Activity Assays: Superoxide
dismutase (SOD), catalase (CAT), glutathione peroxi-
dase (GPx), and glutathione reductase (GR) activities
are routinely measured to assess the enzymatic an-
tioxidant defense system [17].

SOD Activity Protocol:

1. Prepare tissue homogenate in 50 mM phosphate
buffer containing 0.1 mM EDTA

2. Mix reaction components: 50 mM phosphate
buffer (pH 7.8), 13 mM methionine, 2 uM ri-
boflavin, 100 M EDTA, and 75 uM NBT

3. Add tissue sample and expose to fluorescent light

for 15 minutes

. Measure absorbance at 560 nm

5. Calculate SOD activity as the amount of enzyme
causing 50% inhibition of NBT reduction

N

Non-enzymatic Antioxidant Markers: Glu-
tathione (GSH) levels serve as a critical indicator of
cellular antioxidant status and are typically measured
using Ellman’s reagent (5,5’-dithiobis-2-nitrobenzoic
acid, DTNB) [17].

GSH Measurement Protocol:

1. Deproteinize tissue samples with 10% TCA and
centrifuge

2. Mix supernatant with 0.4 M Tris-HCI buffer (pH
8.9)

3. Add DTNB reagent and measure absorbance at
412 nm

4. Calculate GSH concentration using a standard
curve
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Fig. 2. Workflow diagram of a typical antioxidant screening pipeline.

7. Challenges, standardization, and future
directions

The field of antioxidant testing faces numerous
methodological and interpretive challenges that sig-
nificantly impact the reliability and comparability
of research findings across different laboratories and
applications. Fig. 2 illustrates the stepwise process of
antioxidant testing, beginning with sample prepara-
tion and assay setup, followed by measurement and
data analysis. Based on the results, samples are clas-
sified according to activity thresholds (low or high).
Decisions on further testing are guided by activity
outcomes, ensuring that promising compounds un-
dergo additional validation before final reporting.
This workflow emphasizes iterative testing for reli-
ability and reproducibility in antioxidant evaluation.

71. Major limitations

Methodological Variability: Significant varia-
tions exist in protocols, solvent systems, pH con-
ditions, temperature, and incubation times across
different laboratories, leading to poor reproducibility
and comparability of results.

Poor In Vitro-In Vivo Correlation: Chemical
antioxidant assays often fail to predict biological effi-
cacy due to their inability to account for factors such
as bioavailability, cellular uptake, metabolism, and
tissue distribution. Many compounds showing strong
antioxidant activity in vitro demonstrate limited or
no protective effects in biological systems.

Assay Specificity and Mechanism Limitations:
Individual assays typically measure only specific
aspects of antioxidant activity, such as radical scav-
enging or reducing power, while ignoring other
important mechanisms like enzyme induction, metal
chelation, or membrane stabilization. This narrow
focus can lead to incomplete characterization of an-
tioxidant potential.

72. Critical needs for advancement

Protocol Standardization: The development of
internationally accepted standard operating proce-
dures (SOPs) for major antioxidant assays is essential
for ensuring reproducibility and enabling meaning-
ful comparison of results across different research
groups. This includes standardization of reagent
preparation, reaction conditions, and data reporting
formats.

Multiplexed Approaches: Future antioxidant test-
ing should integrate multiple complementary assays
that combine chemical reactivity measurements with
biological relevance assessments. This approach
would provide more comprehensive antioxidant
profiles and better predictive value for biological
efficacy.

Integration of Advanced Technologies: The in-
corporation of omics-based biomarkers, including ge-
nomics, proteomics, and metabolomics approaches,
offers unprecedented opportunities to understand
the molecular mechanisms of antioxidant action and
identify novel biomarkers of oxidative stress. High-
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throughput screening platforms enable rapid evalu-
ation of large compound libraries, while advanced
biosensor technologies provide real-time monitoring
of antioxidant activity.

Cross-Disciplinary Harmonization: Future direc-
tions must focus on harmonizing antioxidant testing
approaches across diverse fields including food
science, pharmaceutical development, nutraceutical
research, and environmental toxicology. This harmo-
nization should consider field-specific requirements
while maintaining scientific rigor and biological
relevance.

The development of predictive models incorporat-
ing physicochemical properties, structural features,
and biological activity data through machine learn-
ing and artificial intelligence approaches represents a
promising avenue for improving antioxidant discov-
ery and development. Additionally, the integration
of systems biology approaches will enhance our
understanding of antioxidant networks and their in-
teractions within complex biological systems.

8. Conclusion

The accurate evaluation of antioxidant activity is
essential for the development and validation of bioac-
tive compounds targeting oxidative stress-related
diseases. This mini-review summarizes the most com-
mon and validated protocols for testing antioxidant
potential, ranging from rapid in vitro screening as-
says to more biologically relevant cell-based and
in vivo approaches. While assays such as DPPH,
ABTS, and FRAP remain foundational, cell-based sys-
tems like DCFH-DA and animal models offer insights
into physiological relevance. Persistent challenges—
including methodological variability, lack of stan-
dardized protocols, and limited concordance between
experimental platforms—continue to hinder cross-
study comparisons and translational accuracy. Future
progress will depend on the adoption of harmo-
nized operating procedures and the integration of
multiplexed platforms, biosensors, and omics-driven
readouts to improve precision, reproducibility, and
predictive value across antioxidant research.
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