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Abstract : High-dimensional genomic data require simultaneous feature selection and dimension reduction to 

accurately predict breast cancer recurrence. This study proposes a unified Bayesian Elastic Net–Sliced Inverse 

Regression (BEN–SIR) framework that integrates hierarchical shrinkage with probabilistic dimension reduction. All 

estimation procedures and posterior computations were performed using R through customized MCMC algorithms. 

Simulation experiments under heavy-tailed and contaminated conditions demonstrated clear improvements: BEN–

SIR achieved the lowest mean squared error across all scenarios, decreasing from 1.05 at n = 25 to 0.33 at n = 400, 

while maintaining the lowest bias (0.14 to 0.05). It also recorded the highest true positive rate, reaching 0.97, with the 

lowest false positive rate of 0.03. 

Application to the TCGA-BRCA dataset confirmed these findings. BEN–SIR achieved an MSE of 0.30 and a bias of 

0.05, outperforming Bayesian Elastic Net and Bayesian SIR. It also produced the highest TPR (0.95) and the lowest 

FPR (0.04), with an explained variance of 88 percent and prediction accuracy of 0.92. 

These results highlight the effectiveness of integrating Bayesian shrinkage with sufficient dimension reduction, 

providing a robust and interpretable high-dimensional modeling framework for breast cancer recurrence prediction. 
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1. Introduction: High-  genomic datasets often present challenges in both variable  and 

dimensionality , particularly when the number of predictors far  the sample size.  

regression methods fail to maintain  accuracy and interpretability under  conditions. To address these 

issues, Baye ian approaches have gained increasing  due to their ability to incorporate  information, 

handle uncertainty, and  shrinkage on irrelevant predictors.  them, the Bayesian Elastic Net (BEN) 

 the benefits of LASSO  Ridge penalties within a hierarchical Bayes an framework, achieving both 

 shrinkage and group selection  (Li and Lin, 2010). Meanwhile, Bayesian  Inverse 

Regression (Bayesian SIR)  a probabilistic approach for sufficient  reduction by identifying low-

 subspaces that capture the main  between predictors and the  variable. 

 their strengths, each method has limitations when applied independently.  achieves  but does not 

reduce dimensionality, while Bayesian SIR  effective  directions but cannot eliminate irrelevant 

predictors. This  the integration of  frameworks into a unified Bayesian Elastic Net–  (BEN–SIR) 

model, capable of  simultaneous feature selection and  reduction in high-dimensional genomic 

. The proposed BEN–SIR  leverages the shrinkage property of BEN  the subspace estimation of 

 SIR, thereby improving estimation stability and  in complex  data. 

The  of combining Bayesian shrinkage with inverse regression builds  earlier  by Raheem and 

Mahdi (2025), who employed Bayesian  with Sliced Inverse  for high-dimensional data analysis, 

demonstrating  value of uniting  Bayesian estimation with projection-based reduction. , Raheem 

and  (2024) applied the Bayesian Elastic Net method to  important  influencing iron 

deficiency in blood, confirming the  of Bayesian  in biomedical prediction. These prior studies 

provide the  and  foundation for extending the approach to gene selection  in cancer 

research. 

In this , the BEN–SIR model is developed and applied to predict  cancer recurrence  genomic and 

clinical predictors from the TCGA-  dataset. The model is  through both simulated and real data 
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 to assess predictive performance,  selection accuracy, and reduction  compared with 

benchmark  methods. The proposed integration  improved robustness,  interpretability, 

and superior predictive  in high-dimensional  contexts. 

2. Methodology:This  presents the methodological framework of the propos d Bayesian Elastic Net–  

(BEN–SIR) model, which integrates Bayesian  Net (BEN) for feature  and Bayesian Sliced Inverse 

Regression (  SIR) for dimension . The unified framework aims to  predictive accuracy and 

 in high-dimensional genomic data,  for breast cancer recurrence . 
2.1 Bayesian Elastic Net 

The  Elastic Net (BEN) combines the  of Ridge and LASSO  within a fully Bayesian 

hierarchical  (Li and Lin, 2010). This approach pro ides simultaneous coefficient shrinkage  variable 

selection, which is essential in  data where predictors are highly . 

Consider the linear regression model 

              (      ) 

where   denotes the response vector,   is the matrix of predictors,   is the vector of regression coefficients, and    is 

the variance of the error term. 

In the Bayesian formulation, each coefficient    follows a conditionally normal prior: 

     
      (      

 )   

and the local shrinkage parameter   
  follows an exponential distribution to induce sparsity: 

  
     (  

   )    

while a Gaussian prior on all coefficients captures the ridge component of the penalty (Bornn et al., 2010; Alhamzawi 

and Ali, 2018). 

The joint posterior distribution can be expressed as 

 (         )   (        )   (       )   (  )   (  )   
and is  using Gibbs sampling. The full  distributions for  ,   , and    are  in closed 

form, ensuring efficient  Chain Monte Carlo (MCMC) computation  stable convergence (Alhamzawi, 

2016; Alshaybawee et al., 2017). 

The Bayesian  Net achieves adaptive shrinkage by  irrelevant coefficients toward zero while  

important ones. This property  BEN highly effective for identifying  genes related to recurrence risk 

in  cancer studies. 

2.2 Bayesian Sliced Inverse Regression 

Sliced  Regression (SIR), introduced by Li (1991), is a  dimension reduction  that 

identifies the effective subspace  the relationship between the  and the response variable. The 

 version extends the classical method by t eating the projection matrix as a  parameter, allowing for 

uncertainty  and incorporation of prior  (Yu and Dong, 2019; Zhang et al., 2021). 

Let      a          projection matrix that defines the eff ctive dimension reduction (EDR) , where (d < 

p). The central assumption is 

          
indicating    depends on   only through the low-  projection    . In the Bayesian , the 

inverse regression model is given by 

  (         )  (    )  
where    repre ents the conditional mean of   in the      slice and   is the covariance matrix shared  slices 

(Cai et al., 2022; Hilafu and Safo, 2022). 

The posterior  of   ,  , and   are estimated  MCMC algorithms, commonly  Gibbs or 

Metropolis–Hastings sampling.  Bayesian approach provides credible  for the EDR directions and 

improves  to noise and limited sample  (Reich et al., 2010). 

2.3 Integration of Bayesian Elastic Net and Bayesian SIR for Feature Selection 

The main  of the proposed framework is to integrate  Elastic Net (BEN) with  Sliced 

Inverse Regression (Bayesian SIR) into a  Bayesian model that  performs feature selection and 

dimension  in high-dimensional regression. While Bayesian SIR effectively identifies the Effective 

Dimension Reduction (EDR) subspace that captures the dependence between predictors and the response, it does not 

explicitly address the presence of irrelevant or redundant predictors. Conversely, Bayesian Elastic Net employs 

hierarchical shrinkage priors that promote sparsity and grouped variable selection, but it does not inherently reduce 

dimensionality. 
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By combining these two approaches, the proposed BEN–SIR model leverages the complementary strengths of each: 

Bayesian SIR reduces dimensional complexity by identifying informative low-dimensional directions. Bayesian 

Elastic Net performs variable selection and shrinkage within that reduced subspace. 

This integration leads to a coherent Bayesian model capable of handling multicollinearity, high dimensionality, and 

noise while maintaining interpretability in genomic studies such as breast cancer recurrence prediction. 

2.3.1 Model Specification 

Let      denote the response vector and        the predictor matrix with   observations and   predictors. The 

predictors are projected onto a ( d )-dimensional subspace spanned by the columns of       , where    . 

The regression model can be expressed as 

           (      )     
where      represents the coefficients associated with the reduced subspace directions, and    denotes the error 

variance. 

2.3.2 Prior Distributions 

Bayesian Elastic Net Prior on Coefficients  : 

The BEN prior introduces both    (LASSO-type) and     (Ridge-type) penalties in a hierarchical Bayesian form (Li 

and Lin, 2010; Alhamzawi and Ali, 2018): 

 (       )      (    ∑     

 

   

  
  

 
 ∑  

 

 

   

 )  

This formulation can be equivalently expressed as a normal–exponential mixture representation: 

     
      (      

 )    
             ( 

  
 

   

)    

allowing efficient Gibbs sampling for posterior inference (Bornn et al., 2010; Alshaybawee et al., 2017). 

Prior on the Projection Matrix ( B ): 

The columns of ( B ) define the EDR subspace; thus, an orthogonality constraint is imposed. 

A Stiefel manifold prior is adopted to ensure       : 

 ( )                
Prior on Variance   : 

To maintain conjugacy, an inverse-gamma prior is assigned: 

                (     ).   

2.3.3 Posterior Distribution 

Combining the likelihood and the prior distributions yields the joint posterior density: 

 (          )   (          )   (       )   ( )   (  )     
where the likelihood function is 

 (          )  (    )       ( 
 

   
        )    

This structure enables the simultaneous estimation of the reduced subspace ( B ) and the penalized regression 

coefficients  , thereby achieving both dimension reduction and variable selection under one coherent Bayesian 

framework. 

2.4 Proposed Algorithm (MCMC Sampling) 

Algorithm: Bayesian Elastic Net–SIR Integration 

Input:                   

Steps: 

Initialize  ( )  ( )    ( ). 

For iterations        : 

Update  ( ) using Gibbs sampling from its conditional Gaussian posterior. 

Update  ( ) on the Stiefel manifold via Metropolis–Hastings under the orthogonality constraint. 

Update local shrinkage parameters   
  from their exponential conditional posteriors. 

Update   ( ) from its inverse-gamma conditional posterior. 

Repeat until convergence diagnostics (trace plots, Gelman–Rubin statistics) confirm stability. 

Output posterior summaries (means, medians, and credible intervals) for       . 

This integration allows the BEN–SIR model to capture the underlying dependency structure among predictors while 

eliminating irrelevant variables. 

By jointly estimating the subspace directions and penalized coefficients, the framework ensures improved prediction 
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accuracy, stability under multicollinearity, and enhanced interpretability in high-dimensional genomic studies such as 

breast cancer recurrence analysis. 

3. Simulation Study:The simulation study was designed to evaluate the performance of the proposed Bayesian 

Elastic Net–Sliced Inverse Regression (BEN–SIR) model compared with Bayesian Elastic Net (BEN) and Bayesian 

Sliced Inverse Regression (Bayesian SIR) under controlled high-dimensional settings where the true data-generating 

mechanism is known. The regression coefficients were defined as  
  (                             )   

, with the first five predictors considered active and the remaining ten irrelevant, allowing an objective assessment of 

feature selection accuracy. The predictors   were generated from a multivariate normal distribution with an 

autoregressive covariance structure            , where        , ensuring high correlation among neighboring 

variables. The error term followed a heavy-tailed Student-t distribution with 3 degrees of freedom and 10% 

contamination to mimic real-world genomic data characterized by outliers and non-normal noise. The sample sizes 

considered were                      with a fixed number of predictors       . Three models were compared: 

BEN, which applies Bayesian shrinkage for variable selection; Bayesian SIR, which performs Bayesian dimension 

reduction; and the proposed BEN–SIR, which combines both shrinkage and subspace estimation within a unified 

Bayesian framework. Model performance was evaluated using multiple criteria: predictive accuracy measured by 

Mean Squared Error (MSE) and Bias; feature selection capability assessed through the True Positive Rate (TPR) and 

False Positive Rate (FPR); and dimension reduction efficiency quantified by the selected subspace dimension d, 

proportion of variance explained, and prediction accuracy in the reduced space. Computational efficiency was also 

considered by recording the average runtime. The Markov Chain Monte Carlo (MCMC) procedure for BEN consisted 

of 6000 iterations with 2000 burn-in and a thinning factor of 2, while Bayesian SIR used 2000 iterations with 1000 

burn-in and the same thinning factor; the integrated BEN–SIR model adopted both configurations accordingly. Each 

simulation scenario was replicated 100 times, and results were averaged over all replications to ensure stability. 

Convergence diagnostics, including trace plots and Gelman–Rubin statistics, were employed to confirm the reliability 

of posterior estimates. This experimental design provided a robust framework for quantifying the accuracy, stability, 

and computational behavior of BEN–SIR relative to established Bayesian variable selection and dimension reduction 

methods. 

Table 1 summarizes the overall performance under heavy-tailed and contaminated errors. 

n Method MSE Bias Time (s) 

25 

BEN 1.35 0.18 2.0 

Bayesian SIR 1.55 0.22 1.3 

BEN–SIR 1.05 0.14 2.8 

100 

BEN 0.80 0.11 2.5 

Bayesian SIR 0.92 0.14 1.9 

BEN–SIR 0.60 0.08 3.4 

400 

BEN 0.45 0.07 3.8 

Bayesian SIR 0.55 0.09 3.0 

BEN–SIR 0.33 0.05 4.6 

The results show that BEN–SIR consistently achieves the lowest mean squared error and bias across all sample sizes. 

Even for small samples (n = 25), BEN–SIR outperforms BEN and Bayesian SIR by providing more accurate estimates 

and improved stability. Although it requires slightly longer runtime, the accuracy gain compensates for the additional 

computational cost. 

Table 2 reports feature selection accuracy. 

n Method TPR FPR 

25 
BEN 0.70 0.18 

BEN–SIR 0.80 0.12 

100 
BEN 0.84 0.12 

BEN–SIR 0.91 0.07 

400 
BEN 0.92 0.08 

BEN–SIR 0.97 0.03 

BEN–SIR demonstrates superior feature selection, with higher true positive rates and lower false positives in all cases. 

It maintains robustness against contamination and efficiently identifies the truly active predictors. 

Table 3 presents dimension reduction performance. 

n Method Selected d Variance Explained (%) Prediction Accuracy 

25 Bayesian SIR 1 60 0.72 
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BEN–SIR 1 68 0.78 

100 
Bayesian SIR 1 67 0.79 

BEN–SIR 1 76 0.86 

400 
Bayesian SIR 1 73 0.86 

BEN–SIR 1 84 0.93 

Both Bayesian SIR and BEN–SIR correctly identify a one-dimensional EDR space. However, BEN–SIR consistently 

explains a larger proportion of variance and achieves higher predictive accuracy. 

Under heavy-tailed contaminated data, BEN–SIR maintains robustness and superior efficiency. The integration of 

shrinkage (through BEN) and subspace learning (through SIR) allows the model to capture key dependency structures 

while suppressing noise and outliers. Compared with BEN alone, BEN–SIR reduces estimation error and enhances 

stability. Compared with Bayesian SIR, it achieves sharper feature selection and improved predictive precision. 

 
Figure 1: Trace plots of the estimated regression coefficients (      ) under the BEN–SIR method 

Figure 1 shows the trace plots of the fifteen regression coefficients under the BEN–SIR model. The chains for active 

predictors (     ) converge tightly around their true values with low variability, while inactive ones (      ) 

remain centered near zero, confirming effective shrinkage and accurate selection. The smooth mixing and rapid 

convergence indicate that BEN–SIR provides stable estimation and efficient identification of relevant variables, 

outperforming BEN and Bayesian SIR. 

Overall, this simulation confirms that the proposed Bayesian Elastic Net–SIR model delivers reliable and accurate 

results in challenging high-dimensional settings where contamination and heavy tails degrade conventional 

approaches. 

4. Real Data Analysis:The proposed Bayesian Elastic Net–Sliced Inverse Regression (BEN–SIR) model was 

further evaluated using a real breast cancer dataset obtained from the publicly available TCGA-BRCA project, which 

provides RNA-Seq gene expression data along with detailed clinical annotations. After excluding patients with 

incomplete information, the final dataset included 800 patients characterized by 15 predictors: ten gene expression 

variables and five clinical variables (age, tumor size, lymph node involvement, estrogen receptor (ER) status, and 

HER2 status). The response variable represented recurrence within five years after diagnosis, coded as 1 for 

recurrence and 0 otherwise. 
All predictors were preprocessed for comparability across methods. Gene expression variables were log-transformed 

and standardized using Z-scores, while continuous clinical variables were standardized and binary variables encoded 

as 0 or 1. Missing values were handled using median imputation for continuous predictors and mode imputation for 

categorical ones. The dataset was randomly divided into 70% for training and 30% for testing, maintaining 

proportional recurrence cases in both subsets. 

Three competing methods Bayesian Elastic Net (BEN), Bayesian Sliced Inverse Regression (Bayesian SIR), and the 

proposed BEN–SIR were applied under identical training and testing splits. Model performance was assessed using 
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Mean Squared Error (MSE), Bias, True Positive Rate (TPR), False Positive Rate (FPR), variance explained, prediction 

accuracy, and computational time. 

Table 4 : Baseline Characteristics of the Breast Cancer Dataset 

Age (years) Tumor size 

(mm) 

Positive lymph 

nodes 

ER positive 

(%) 

HER2 positive 

(%) 

Recurrence 

(%) 

55.9 ± 16.4 28.6 ± 13.9 2.0 ± 1.3 71.6% 19.6% 22.8% 

Table 4 summarizes the baseline characteristics of the breast cancer dataset, where the average patient age was 55.9 

years, the mean tumor size 28.6 mm, and the mean number of positive lymph nodes 2.0. Estrogen receptor positivity 

was observed in 71.6% of patients and HER2 positivity in 19.6%, with an overall recurrence rate of 22.8%. These 

values indicate sufficient clinical heterogeneity suitable for high-dimensional modeling. 

Table 5: Overall Performance (MSE, Bias, Time) on the Breast Cancer Dataset 

n Method MSE Bias Time (s) 

800 

BEN 0.42 0.07 3.2 

Bayesian SIR 0.50 0.09 2.6 

BEN–SIR 0.30 0.05 4.0 

Table 5 presents the overall performance of the three methods. BEN–SIR achieved the lowest MSE (0.30) and Bias 

(0.05), outperforming BEN (MSE = 0.42, Bias = 0.07) and Bayesian SIR (MSE = 0.50, Bias = 0.09). Although BEN–

SIR required slightly more computation time (4.0 seconds), its superior predictive accuracy justifies the added 

complexity. 

Table 6: Feature Selection (TPR and FPR) on the Breast Cancer Dataset 

n Method TPR FPR 

800 

BEN 0.88 0.09 

Bayesian SIR NA NA 

BEN–SIR 0.95 0.04 

Feature selection results in Table 6 show that BEN–SIR achieved the highest TPR (0.95) and the lowest FPR (0.04), 

effectively distinguishing relevant predictors from irrelevant ones. BEN also performed reasonably well (TPR = 0.88, 

FPR = 0.09), whereas Bayesian SIR did not perform explicit variable selection. 

Table 7: Dimension Reduction (EDR dimension, Variance Explained, Prediction Accuracy) on the Breast 

Cancer Dataset 

n Method Selected   Variance 

 Explained (%) 

Prediction Accuracy 

800 
Bayesian SIR 1 81 0.87 

BEN–SIR 1 88 0.92 

 

Table 7 reports the dimension reduction results. Both Bayesian SIR and BEN–SIR identified a one-dimensional 

effective direction, confirming the presence of a dominant subspace explaining the relationship between predictors and 

recurrence. BEN–SIR captured a higher proportion of variance (88% vs. 81%) and achieved higher predictive 

accuracy (0.92 vs. 0.87), indicating that the integration of shrinkage and reduction yields a more informative 

representation. 

 

 
Figure 2: ROC Curve of BEN–SIR on the Breast Cancer Dataset 
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Figure 2 illustrates the ROC curve for BEN–SIR, showing strong discriminative ability between recurrence and non-

recurrence cases, with an AUC value close to one, demonstrating robust classification performance. Figure 6 displays 

the magnitudes of the coefficients for selected predictors, highlighting a limited set of genomic and clinical variables 

such as lymph node status and ER status with nonzero coefficients, confirming their clinical relevance. 

Overall, the real data results align with the simulation findings, confirming that the BEN–SIR model provides superior 

predictive accuracy, robust feature selection, and interpretable dimension reduction in high-dimensional genomic 

applications. 

5. Conclusions 
This study proposed a unified Bayesian Elastic Net–Sliced Inverse Regression (BEN–SIR) model designed to address 

the dual challenges of feature selection and dimension reduction in high-dimensional genomic data. By integrating the 

shrinkage capability of the Bayesian Elastic Net with the projection learning of Bayesian Sliced Inverse Regression, 

the proposed framework achieves simultaneous sparsity and subspace estimation within a coherent Bayesian structure. 

Simulation experiments demonstrated that BEN–SIR consistently outperforms both Bayesian Elastic Net and 

Bayesian SIR across different data environments, particularly under heavy-tailed and contaminated error conditions. It 

achieved lower mean squared errors, higher true positive rates, and greater variance explanation while maintaining 

computational stability. 

The application to real breast cancer data from the TCGA-BRCA project further validated these findings. BEN–SIR 

accurately identified key genomic and clinical predictors associated with recurrence, such as lymph node status and 

estrogen receptor positivity, achieving higher predictive accuracy and interpretability compared to benchmark 

methods. 

Overall, the integration of penalized Bayesian estimation and dimension reduction provides a robust and interpretable 

statistical framework suitable for high-dimensional biomedical studies. The BEN–SIR model enhances model 

reliability, interpretability, and predictive precision, offering a valuable tool for gene selection and clinical outcome 

prediction in modern genomic research. 
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