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Abstract : Irag's environmental crisis, over the past 20 years, has become incomparable. The explosion of dust-
affected days — 122 annually in 2000 to 283 by 2022, a rise of 132% — has been recorded by the European Centre
for Medium-Range Weather Forecasts. During dust storm events, fine particulate matter (PM2.5) concentrations in
the three provinces exceeded WHO air quality guidelines by 14 to 18 times.We obtained hospital admissions
spanning three provinces (between January 2000 and December 2024) from 32 governmental hospitals resulting in a
total of 864 months for data collection. These clinical reports were cross-referenced with high-resolution satellite
data: MODIS-MAIAC at a 1-km level, TROPOMI at a 3.5-km level, and ERA5 reanalysis datasets.The analytical
strategy used a negative binomial count model in a Bayesian hierarchical framework with Markov Chain Monte
Carlo simulation (50,000 iterations). The results indicate that for every 10 pg/m?® increase in PM2.5, there was a
3.74% increase in admissions of respiratory cases (95% BCI: 2.86-4.63%). The model had a good fit with the
performance results: DIC = 8,342.6 and RMSE = 198.3. The peak health effects of exposure were found to be 2 days
in the distributed lags models (coefficie nt=0.0142). The highest level of spatial variation was found between
geographical areas; Basra, Baghdad, and Karbala were the most sensitive 0.187, 0.134, and 0.089 respectively.

Keywords: Applied statistics, Bayesian hierarchical modeling, credible intervals, distributed lag models, dust
storms, overdispersion, PM2.5, respiratory diseases, spatiotemporal analysis, lIraq

INTRODUCTION: Iraq has been confronted with growing environmental difficulties since 2000. Climatic data
indicates higher temperatures, less rain and desertification occurring more rapidly. This effect raised the amount of
atmospheric dust, impacting on air quality in the country. The statistics are sobering. From 2000 to 2022, the number
of dust storm days per year has increased from 122 to 283—an increment of over two-folds during one generation [1]
[30]. This increase is one of the highest reported globally and provides an important case to study climate—health
relationships in arid environments. Dust storms can also transport large quantities of fine particles. During storm
events, PM2.5 concentrations often exceeded 70 pg/m? in populated cities, with average levels of 78.6 £7.6 pg/m® in
Baghdad, 92.3 +4.4 pg/m* in Basra, and 71.2 +0.9 pg/m® in Karbala—14 to 18 times higher than WHQO's 2021
guideline. These fine particles deposit deep in the lung, causing inflammation and effecting respiratory diseases [8]
[26]. Medical research links PM2. 5 exposure for bronchitis, pneumonia, COPD exacerbations and asthma attacks

.Iragi hospitals report rising burdens of respiratory disease. Early data hint at associations between storm timing and
admission bursts, but this has not been well quantified [4] [21]. Previous Iragi work employed descriptive statistics or
simple correlations, leaving causal relationships undefined. International research shows health responses often occur
with delay; effects typically peak 1-3 days post-exposure.The choice of statistical method is important when analyzing
count data with overdispersion (variance exceeds mean). Hospital admissions often have this property due to
unobserved time-space heterogeneity[9] [19]. Classic Poisson regression produces misleading estimates when this
assumption breaks down. Negative binomial models address overdispersion but are less suitable for nested data from
several provinces and time periods.Bayesian hierarchical frameworks offer advantages for complex spatio-temporal
models. These methods include random effects at various levels (province, year, month) and estimate pollutant effects
with credible intervals simultaneously. MCMC algorithms produce full posterior distributions for probabilistic
parameter statements[15]. However, applications in Middle Eastern environmental health remain limited due to
computational burden and expertise requirements. This study remedies these deficiencies with 25 years of hospital
data from lIrag. Our objectives are to: (1) evaluate PM2. 5 and associations between respiratory hospitalizations
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following adjustment for meteorological confounding; (2) describe temporal lags of health outcomes, (3)
acknowledge geographic variation in the population’s susceptibility; and (4) illustrate transferable Bayesian methods
to regional settings. Results contribute to evidence for public health interventions and environmental policy.

2. Literature Review: Research about the health impact of particulate matter goes back many years. The
groundbreaking Harvard Six Cities Study which was performed by Dockery et al. (1993) Western Electric Study of
over 8000 Americans with 15 years follow-up, who were followed by using Cox proportional hazards regression
analysis and showed dose-response relationships between PM2. 5 and the mortality rate, there were no apparent
cutoff POINTS [11]. Schwartz (2000) weighted study populations in time-series regression by population with a lag-
specific death rate model, which allows for estimation of delayed air pollution health effects using linear terms to
specific lags[28]. This statistical model allowed researchers to disentangle short-term versus long-term health effects
over multiple lag periods. Advanced statistical modeling has significantly improved air pollution health effect
estimation worldwide. Dominici et al. (2006) developed hierarchical Bayesian space-time models analyzing 100
million Medicare enrollees across the United States using spatio-temporal smoothing and demonstrated 1.1%
mortality increases per 10 pg/m* PM2.5 increment[12]. Chen et al. (2008) analyzed dust storm effects in Northern
China using generalized additive models (GAMs) with Poisson regression and found 2.8—-3.5% increases in respiratory
admissions during Gobi desert dust episodes [10]. Gasparrini et al. (2010) established distributed lag non-linear
models (DLNMs) using flexible polynomial basis functions to capture delayed and non-linear exposure-response
relationships [14]. This methodological framework enabled researchers to identify lag patterns where health effects
peak 1-3 days post-exposure. Karanasiou et al. (2012) employed time-series analysis with distributed lag models in
Mediterranean regions and reported significant associations between Saharan dust advection and acute respiratory
disorders [20]. Blangiardo et al. (2013) applied hierarchical Bayesian spatiotemporal models using INLA to small-area
air pollution analyses and successfully partitioned variance components across spatial and temporal scales [7].
Stafoggia et al. (2013) applied case-crossover designs with distributed lag models across 13 European cities and
estimated heterogeneous respiratory hospitalization effects ranging from 0.9% to 4.3% per pollutant increment [31]
.Geographic context significantly influences PM2.5 composition and toxicity. Goudie (2014) demonstrated that desert
dust is chemically different from urban combustion aerosols, with higher content of silica, calcium carbonate and
biogenic material [16]. There is limited research in the Middle East on high dust-exposure countries. Al-Hemoud et al.
(2018) assessed health impacts of PM10 during dust storms in Kuwait using time-series analysis and calculated
mortality fractions attributable to dust events [2]. Liu et al. (2019) integrated machine learning with Bayesian
frameworks to model 652 Chinese cities and identified non-linear dose-response relationships using penalized splines
[23]. Shahsavani et al. (2020) investigated dust storm effects in Tehran and Ahvaz using generalized additive models
with quasi-Poisson regression and found significant increases in respiratory and cardiovascular mortality during dust
events [29]. In lraq, Al-Saadi and Al-Mayahi (2021) reported descriptive analyses in Basra showing temporal
associations between dust storms and pediatric asthma hospitalizations, though dose-response modeling was not
performed [4]. While methodological advances are abundant internationally, applications in the Middle East remain
limited. Effect estimates specific to Iraq have not been reported in peer-reviewed literature, and local policies lack
evidence base. Spatiotemporal heterogeneity in Irag should be studied, as provinces vary greatly by climate,
urbanization, industry, and access to healthcare.

3. Study Objectives

Four specific aims underlie this study:

First,We develop a Bayesian hierarchical model with negative binomial distributions to estimate the structure of
relationships between air pollutants (PM2. 5 and NO 2 (nitrogen dioxide from combustion) as well as meteorological
factors (temperature and humidity), with respiratory hospital admissions.

Second, we estimate time-specific health effects patterns with distributed lag models, in order to show when exactly
PM2. 5 exposure is particularly detrimental and how long its effects last.

Third, we assess the efficiency of the Bayesian approach in relation to conventional models (standard Poisson and
frequentist negative binomial models) with several performance measures: DIC, RMSE, MAE, and adjusted R-
squared.

We fourthly measure the differences in pollution sensitivity by geography (i.e. Baghdad, Basra and Karbala) allowing
for demographic, environmental and healthcare infrastructural variation across a difference-in-difference framework.
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4. Methodology
4.1 Statistical Framework
Number of hospital admissions per month Y _ijt is recorded as count-data, and counts are non-negative integers with
over dispersion, so that the variance greatly exceeds the mean. Count outcomes are often modeled using the Poisson
distribution[9][19]:
p.‘i’e—.l-'
b

P(Y =y) = (1)

where Y is the count, p is the mean and y! denotes factorial. This distribution is defined such that E Y = Var Y
\(YVH)="E"(Y)="Var"(Y)=p. First-stage diagnostics provided a variance-to-mean ratio of 2.1 for Baghdad, 2.5 for Basra
and 2.3 for Karbala, in contradiction with this main assumption.

Overdispersion is handled by the negative binomial model (NB) with a dispersion parameter o
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where I' is the gamma function, i indexes provinces, j indexes hospitals, and t represents months. The expected count
follows:

E(Y | X)=p=exp(fy+ 5 X + X+ ) (3]

where the variance is allowed to adjust for overdispersion by:
Var(Y I X)=p+ap®  ..(4)

The quadratic term au2 accounts for the overdispersion coming beyond Poissonian assumption. When a=0, the model
is just standard Poisson regression.
The complete regression specification becomes:

Iug(ﬂi;’t) = ﬁﬂ + ﬁ"| PMZ.5; + ﬂzNUE,ir + ﬁ]Tﬁmpjt + ﬁq”umidiwlgz + u; + ¥ + Wy (5]

 The equation indicates: S0 = intercept (baseline log-count); overall effect; f1 = PM2. 5 effect per pg/m* (main
covariate of interest); 82,83,84 = coefficients for NO, temperature humidity; ui = province-specific random effect; vj
= hospital-specific random effect; wt = temporal autocorrelated error[15][27]

4.2 Bayesian Hierarchical Structure

Traditional statistics provides point estimates. Bayesian means value distributions that capture the uncertainty. Bayes'
theorem forms the foundation[15:
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where 0 are parameters to be inferred, Y is the observed data, f(01Y) is the posterior distribution and f(Y[0) the
likelihood and f(0) is prior distribution over 6 (‘<’ means ‘proportional to’).
Level 1 - Our data: Hospital admissions are negatively-binomially distributed as, where[19]:
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with f(-) being the PDF.
The mean is a function of predictors and random effects
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log(pije) = o + B1PMy 5. + BNO5 ;, + B3 Temperature;, + fyHumidity;, +u; + v +w, (8)

Level 2 - Fixed effects: This is what we have proposed and used at level two from above (how province random
effects will be considered):
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Year effects follow:
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Month effects follow:
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in which 6” is the variance, and 7~3.14159.
Level 3 - Priors: Weakly informative priors, letting the data speak (hyperparameter):
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4.3 Computing Posterior Distributions
MCMC sampler was used to obtain the posterior distributions. The chain of parameter values produced by the
Metropolis-Hastings algorithm[15][18] :

ple” 1 ¥ig( o™ |e)
P(8 ¥ )a(e" | 6©)

T = min (1 -{15)

where r is the acceptance probability, 6+ a new proposal, and 6(t) the current value at iteration t and g denotes the
proposal distribution.

We conditioned three concurrent chains for 50,000 iterations each while discarding the first 10,000 (burn-in phase).
Convergence was determined by the Gelman-Rubin diagnostic/gtest:
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where m = number of chains, n = number of iterations after burn-in, W = average within-chain variance, B = between-
chain variance and si2= the variances of chain i's\\( ®\\) (means). Values R<1.1 indicate good convergence.
Model fit was assessed through DIC:

MCMC Convergence for PM2.5 Coefficient
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Figure 2: The MCMC Convergence Diagnostics for PM2. 5 Coefficient
Trace plots show good mixing of the chains with R-hat value 1.001, which means the model has converged well. All
chains move around the same area without any problem of bad mixing or non-convergence, so the posterior estimates
are reliable and stable.
Model fit was compared using DIC:
DIC=D7(8)+py = —2E[logp(¥ | 8)] + py (18]

pp = D (8) — D(F)..(19)

where ppstands for effective number of parameters and E for expected value.

stands for effective number of parameters and E for expected value.

4.4 Distributed Lag Models

The consequences for health are not immediate. These delayed responses are modelled in distributed lag
models[14][17]:

log(ke) = fo + ) FIPM2S,i+ 72 .(20)
=0

where | indexes lag days (0 = same day, 1 = yesterday, etc.), L is the maximum lag (7 days), v is coefficients for
confounders, and Z_t are confounding variables.
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Cumulative effect:

Boum = Z B ~(21)

=i

To compare their coefficients as percent changes:
%A = (eF2% — 1) x 100 -(22)

4.5 Performance Metrics

To measure model performance, we used these metrics[9][15][27]:

e RMSE (Root Mean Squared Error): This is the square root of the average squared errors, which shows the average
size of errors with more weight on big errors because of squaring, so a lower value means better prediction.

e MAE (Mean Absolute Error): This is the average of the absolute errors, which shows the average difference
between predicted and actual values without squaring, so a lower value means higher accuracy and it's less sensitive to
extreme values.

We calculated:

n

I E
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i=1
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LS o gnaw =y

z
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(25

5. Data and Sources

5.1 Health Data

Hospitalisation data were from 32 government hospitals scattered across Baghdad (14 hospitals), Basra (10 hospitals)
and Karbala (8 hospitals). Data are available from January 2000 through December 2024, for a total of 864 monthly
observations (288 per province). Included admissions fulfilled diagnostic categories for asthma (ICD-10 J45-J46),
chronic obstructive pulmonary disease (J44), pneumonia (J12-J18), acute bronchitis (J20-J21) and upper respiratory
infections (J00-J06).

The ministry of health in Iragq provided de-identified admissions numbers with ethical considerations. Data quality
analyses showed 97.2% completeness over the entire study period with a small number of gaps, which were filled in
by linear interpolation at province levels. Population denominators based on Iragi Central Statistical Organization
(ICSO) enumeration data (2000, 2010 and 2020) and intercensal estimates[3][4][5][21].

5.2 Environmental Data

PM2.5 concentrations were retrieved at a 1-km spatial resolution using the MODIS-MAIAC algorithm and
subsequently converted to surface-level values through locally tuned empirical models. NO, concentrations and
atmospheric column densities were measured using the TROPOM I sensor with a resolution of 3.5 km. ERA5 climatic
variables were spatially and temporally aggregated at the provincial level. To compensate for less than 5% cloud-
related data gaps, seasonal weighted temporal interpolation was applied to ensure accuracy and continuity of the
environmental time series[13][18][24][25].

5.3 Descriptive Statistics
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Table 1: Descriptive Statistics and Trends [2000-2024]
Variable Province Mean SD Min Max Skewness Annual % Change
Admissions (monthly) Baghdad 1847 413 892 3156 0.34 3.10%
Basra 1343 369 651 2489 041 4.20%
Karbala 978 288 478 1834 0.28 2.70%
PM2.5 (pg/m?) Baghdad 78.6 28.4 22.1 187.3 0.52 2.80%
Basra 92.3 34.7 28.6 215.8 0.68 3.50%
Karbala 71.2 26.1 194 165.7 0.47 2.40%
NO (ppb) All 18.4 6.3 8.2 34.7 0.31 1.90%
Temperature (°C) All 24.8 9.2 8.4 42.3 0.15 0.45%
Humidity (%) All 41.3 14.6 18.2 72.5 0.22 -0.80%

Respiratory admissions were in the region of 1,847 per month in Baghdad, versus approximately 1,343 and 978
per month in Basra and Karbala respectively. The standard deviations show strong temporal variation.
Looking at annual rates of change, the trend is one of steady rises: Baghdad rising by 3.1% annually, Basra by
4.2%, and Karbala by 2.7%. In Basra the steeper trend is concurrent with a faster PM2. 5 increases and
industrial expansion.
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Figure 1: Monthly trend of hospital admissions by province (2000 to 2024)

Monthly Hospital Admissions Trends by Province (2000-2024)
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The graph demonstrates increasing trends of respiratory admissions in all governorates (while Baghdad retaining

greater absolute numbers) with Basra as the highest % increment annually at 4.2%.

175




QJAE, Volume 27, Issue 4 (2025)

6. Results
6.1 Main Effects
Table 2: Bayesian estimates of parameters with convergence diagnostics

Parameter Mean SD 95% Credible Interval R* ESS

Intercept 5.796 0.082 [5.634, 5.958] 1.002 18,432
PM2.5 0.0374 0.0045 [0.0286, 0.0463] 1.001 22,187
NO, 0.0151 0.0031 [0.0089, 0.0213] 1.003 19,654
Temperature -0.0094 0.0024 [-0.0142, -0.0046] 1.002 20,341
Humidity -0.0058 0.0017 [-0.0091, -0.0025] 1.001 21,892
Dispersion (o) 0.294 0.027 [0.241, 0.347] 1.004 17,523
Province variance 0.0421 0.0087 [0.0264, 0.0608] 1.003 16,892
Year variance 0.0187 0.0042 [0.0108, 0.0278] 1.002 19,234
Month variance 0.0134 0.0038 [0.0064, 0.0215] 1.001 20,567

Note: R"= Gelman-Rubin convergence diagnostic (values <1.1 indicate good convergence); ESS = Effective Sample
Size (number of independent posterior samples).

The numbers in Table 2 show results from our Bayesian model for each parameter, with tests to make sure the model
is stable. R~ for all parameters is less than 1.1, which means the results are good and the chains mixed well. ESS
reveals many independent samples, which is good for estimating confidence in the estimates. For PM2. 5, the
coefficient is 0.0374 (95% credible interval 0.0286-0.0463). This indicates that every 10 pg/m? rise in PM2. 5 links to
roughly 3.74% more hospital admissions for respiratory cases. Because there is no zero overlap, the effect is both
large and real. NO, is also having some positive effect, although weaker. Temperature has a negative coefficient; i.e.
fewer infections in warm months. Humidity also shows a weak negative impact. Here the dispersion parameter o =
0.294 suggests that there is overdispersion in the (longitudinal) data and hence negative binomial model was
considered as we could not use Poisson earlier one. Place (provinces), time (years) and month random effects help to
account for systematic variation across different levels of space or time in our data. These findings assist understand
the role of air pollution on hospital visits in Iraq.

6.2 Model Comparison

Table 3: Model Performance Comparison

Model DIC RMSE MAE R2adj
Poisson GLM 10,487.30 287.4 223.6 0.612
Negative Binomial GLM 9,156.80 231.6 178.3 0.734
Bayesian Hierarchical NB 8,342.60 198.3 151.2 0.812

The Bayesian hierarchical model has the lowest DIC value (8,342.6) after accounting for complexity of models,
indicating better fit than other models.. RMSE decreases are striking: 31% reduction w.r.t. Poisson and 14% from
standard negative binomial. Adjusted R-squared is 0.812, over 81% of the temporal-spatial variation is explained.
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Model Performance Across Methods
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Figure 3: Comparison of different methods by model performance.
Bayesian hierarchical modeling has better predictive performance, with RMSE reduction of 31% over Poisson and
14% versus standard negative binomial techniques.
6.3 Distributed Lag Effects
Table 4: Distributed Lag Coefficients for PM2.5

Lag (days) Coefficient 95% Credible Interval Cumulative Effect
0 0.0087 [0.0056, 0.0118] 0.0087
1 0.0124 [0.0091, 0.0157] 0.0211
2 0.0142 [0.0108, 0.0176] 0.0353
3 0.0131 [0.0096, 0.0166] 0.0484
4 0.0109 [0.0073, 0.0145] 0.0593
5 0.0084 [0.0047, 0.0121] 0.0677
6 0.0067 [0.0029, 0.0105] 0.0744
7 0.0048 [0.0009, 0.0087] 0.0792

Same day effects (lag 0) are significant but less strong (0.0087). Coefficients ascend up to lag 2, which reaches a
maximal impact of 0.0142. The cumulative 7-day effect is 0.0792, which suggests if a >10 pg/m® PM2. 5 in one-week
increase correlates with an 8.2% jump in admissions — more than double the single-day effect.
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PM2.5 Distributed Lag Effects
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Figure 4: DLNM for PM2. 5 Health Effects
The maximum effects on respiratory health are observed at 48 (lag 2) h after exposure, but some still remain
statistically significant up to day 6. This temporal pattern corresponds with mechanisms of particulate-induced
inflammation.
6.4 Spatial Heterogeneity

Table 5: Province-Specific Random Effects

Province Random Effect 95% CI Population Hospitals
Baghdad 0.134 [0.087, 0.181] 8,126,755 14

Basra 0.187 [0.139, 0.235] 2,947,211 10
Karbala 0.089 [0.041, 0.137] 1,328,447 8

Table 5 shows random effects for each province. Basra has the biggest effect (0.187), which means about 20% higher
risk there after PM2.5 levels. Baghdad ranks second (0.134) while Karbala places last (0.089). These variations could
reflect differences in industrial pollution, climate and poor access to health care. This highlights the heterogeneity of
dust health risks by province in Irag.

7.Discussion

This study provides the first comprehensive picture of dust storm health effects in Iragbeginning 25 years ago. The
findings demonstrate that the increased risk of hypertension is associated with tirggered blood pressure for 10 pg/m?
increment of PM2. 5, respiratory-related hospitalizations rise by 3.74%. This effect is initiated at 2 days and persists
for about a week. Part of the delay stems from particles first causing inflammation in the lungs, and then infections
after a few days. Basra has 20% more risk, driven mainly by factories and dry climate, while Karbala’s is 8.9%.
Women and children will be most affected by these thousands of additional annual cases, such as in Basra where the
figures could rise from 1,343 to 1,689 with high dust. This is much higher than in Western studies (1-2% increase per
10 pg/m?* in Europe or US, where the pollution is from cars not deserts). In Asia just like in China with dust from the
Gobi desert it's the same (3-4% increase) but Iraq is worse off because of war damage, dilapidated health services and
proximity to desert makes the population more vulnerable. The 2-day peak fits into this view: particles penetrate deep
in the lungs quickly, trigger swelling immediately, and set up infections after a day or two of viral growth. This

178




QJAE, Volume 27, Issue 4 (2025)

mirrors Asian cities such as Beijing where lung problems abound from Gobi desert dust. Our Bayesian model is nicer
than the usual ones. It reduced errors by 14-31% (RMSE lower by 31% compared with the Poisson) and accounted
for 81% of the variation in time and place. Unlike simple Poisson models which are sensitive to space differences, it
copes well with variations at the province and year level.Advice: Iraq needs early warning for dust days — using our
lag of 2 days to warn hospitals in Basra and Baghdad. In the shorter term, control factory pollution and plant trees to
mitigate dust. Long-term, collaborate with neighboring Arab countries to control the spreading deserts — because
dust comes from outside, too.

8. Conclusions

Iraq’s environment is deteriorating rapidly and we can’t afford to wait further to fix it. During 25 years, dust storm
days increased from 122 to 283, PM2.5 levels exceeded W.H.O. limits by 14 to 18 times. Our study utilised a hospital
based Bayesian model to show that every 10 pg/m? increase of PM2. 5 generates 3.74% more respiratory admissions.
The effect begins two days later and endures for a week. Basra poses the highest risk (20% higher) due to factories
and dry weather while Karbala presents the lowest (8.9%). This delayed approach is the result of particles causing a
swelling in the lung to appear first, then an infection. That's thousands of additional cases per year — in Basra, for
example, heavy dust could increase the numbers from 1,343 to 1,689 monthly. Compared to previous ones, our
Bayesian model performs better. It reduced errors by 14-31% and accounted for 81% of time-place differences. This
makes it more reliable for different parts of Iraq. In sum, what Iraq needs are fast but well-informed measures like air-
quality monitoring and early warnings to shield people from dust health risks.
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