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توظيف بعض دوال  عن طريقلبيانات البقاء  (PDF) هذا البحث إلى تقديم تقدير إحصائي دقيق لدالة الكثافة الاحتمالية يهدف :المستخلص

 دالة استعمالتم التركيز على تطوير نموذج مرن ب إذ( (Lindley, Gamma1, Weibull, Inverse-Gaussianةكيرنل غير المتماثل

Weibull غير متماثلة، نظرًا لملاءمتها للبيانات الموجبة والمنحرفة. تم في الجانب النظري اقتراح الدالة، وتحليل خصائصها،  ككيرنل

 ومقارنتها نظرياً بدوال أخرى مستخدمة في الأدبيات، من حيث الشكل والسلوك الاحتمالي وقدرة التمثيل. أما في الجانب التجريبي، فقد تم

أحجام عينات وأربع حالات بيانات مختلفة لتقييم أداء الدالة المقترحة مقارنة بدوال كيرنل متماثلة وغير  ثلاث ستعمالاإجراء دراسة محاكاة ب

 .في تحديد عرض الحزمة Cross-Validationو Silverman وطريقتي (ISE) معيار الخطأ التكاملي التربيعي استعمالمتماثلة أخرى، ب
على بيانات  الانموذج. كما تم تطبيق 022عند حجم العينة  لاسيما، ISEمن حيث أقل قيم للـ Weibull Kernel أظهرت النتائج تفوق دالة

انات المقترح من خلال تقارب دوال البقاء التقديرية مع البي الانموذجبقاء حقيقية لمرضى القسطرة في مستشفى عام، وبينّت النتائج كفاءة 

، في Weibull دالة لاسيمادوال كيرنل غير المتماثلة،  استعمالتؤكد هذه الدراسة فعالية  .p-valueو AIC الحقيقية، استناداً إلى مؤشري
 .تمثيل البيانات الموجبة المنحرفة بدقة

 (ISE)،معيار الخطأ التكاملي التربيعي ،الدوال اللبية غير المتماثلةWeibullدالة  : المفتاحية الكلمات

 

Abstract: In this article aims to provide accurate statistical estimation of the probability density function 
(PDF) for survival data using selected asymmetric kernel functions  ) Lindley, Gamma1, Weibull, Inverse-

Gaussian) ). The focus was on developing a flexible model employing the Weibull function as an 

asymmetric kernel, given its suitability for positive and skewed data. In the theoretical part, the proposed 
kernel function was defined, its properties analyzed, and it was theoretically compared with existing kernels 

in terms of form, probabilistic behavior, and representational capability. 

In the experimental part, a simulation study was conducted across three different sample sizes and data 
scenarios to assess the performance of the proposed kernel against other symmetric and asymmetric kernels, 

based on the Integrated Squared Error (ISE) criterion, using both Silverman’s rule and Cross-Validation for 

bandwidth selection. The results showed the superiority of the Weibull kernel, particularly for a sample 

size of 200, where it achieved the lowest ISE values. 
The model was further applied to real-world survival data from catheter patients in a general hospital. The 

analysis demonstrated the efficiency of the proposed model through the close agreement between the 

estimated and actual survival functions, evaluated via AIC and p-value metrics. This study highlights the 
effectiveness of asymmetric kernels especially the Weibull kernel in accurately modeling positive skewed 

data.  
Keywords: Weibull function, non-symmetric sine functions, integral squared error criterion (ISE) 
 

 ( introductionالمقدمة )  .1

يشكل التقدير غير المعلمي للكثافة الاحتمالية أحد المرتكزات المنهجية المهمة في الإحصاء الحديث، لما يوفره من إطار رياضي 

دون الحاجة إلى افتراض شكل توزيعي مسبق. وتعُد دوال كيرنل من  مرن يمكّن الباحث من تحليل سلوك المتغيرات العشوائية 

دوات التي اعتمدتها هذه المنهجية، نظرًا لقدرتها على تمثيل الأنماط المعقدة في البيانات، وتكيفّها مع التوزيعات إحدى أبرز الأ

 .النماذج المعلمية التقليدية عن طريقغير المتماثلة أو ذات الذيل الطويل التي يصعب التعامل معها 
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و   Gaussian الدوال اللبية  المتماثلة مثل استعمالوقد شهد هذا المجال تطورًا معرفياً لافتاً خلال العقود الأخيرة، بدءًا من 

Epanechnikov وصولًا إلى إدخال دوال غير متماثلة مستندة إلى توزيعات موجبة مثل ، Gamma وInverse Gaussian ،

لى الرغم من وعطق الحديّة وتقليل الانحياز في البيانات المحصورة ضمن المجال الموجب. بهدف تحسين تمثيل الكثافة في المنا

 وما وفرته هذه الدوال من مزايا تطبيقية، إلا أن العديد منها ما زال يفتقر إلى المرونة البنيوية اللازمة للتكيف مع الأنماط الحادة أ

وفي هذا البحث سوف يتم التطرق الى دالة  غير  .لموثوقية والبيانات الماليةالانحرافات الكبيرة التي تظهر في بيانات البقاء وا

 متماثلة مقترحة من توزيع  ويبل 

 .منهجية البحث0

  (   Problem of Researchمشكلة البحث )   2.0

سيكية المعلمية الكلايجعل التوزيعات  ماتشهد بيانات البقاء والأعمار خصائص توزيعية معقدة مثل الانحراف والذيل الطويل، 

، Lognormalو Gamma دوال كيرنل غير متماثلة مثل استعمال من  رغمعلى العند الحواف. و لاسيماعاجزة عن تمثيلها بدقة، 

 من رغملا وعلى إلا أن مرونتها تظل محدودة. كما أن الأدبيات لم تعُطِ اهتمامًا كافياً لتطوير دوال كيرنل مبنية على توزيع ويبل،

يبرز الحاجة إلى دالة كيرنل جديدة تتمتع بدعم موجب وبنية مرنة تقلل التحيز وتعزز  مامته للبيانات الموجبة وغير المتماثلة، ئملا

 .قصور التوزيعات الكلاسيكية والمعلمية عن تمثيل البيانات غير المتماثلة أو المحصورة ضمن المجال الموجبنتيجة  دقة التقدير

تماثلة غياب نماذج كيرنلية غير مو ة  المنشورة في التكيف مع البيانات ذات الذيل الطويل أو السلوك الحديّمحدودية الدوال اللبيو

 يرنلالحاجة إلى بناء دالة كو مته الطبيعية لبيانات الأعمار والبقاءئملامن  رغم ال وعلىمستندة إلى توزيع ويبل في الأدبيات،

 حتماليدون تحيزّ في الحواف أو تشوه في التمثيل الامن جديدة تتمتع بخواص رياضية ملائمة وتسُتخدم لتقدير الكثافة الاحتمالية 

 .وتتلخص مشكلة البحث في تقديم  دالة كيرنل غير متماثلة مقترحة  من توزيع ويبل لتمثل البيانات الموجبة  

 ( Aim of Researchهدف البحث  ) 0.0

دف هذا البحث إلى تطوير نموذج تقديري مرن للكثافة الاحتمالية يستند إلى دالة كيرنل غير متماثلة مبنية على توزيع ويبل، يه

وذلك لتحسين تمثيل البيانات الموجبة وغير المتماثلة، كبيانات البقاء وبيانات الأعمار التي تتسم غالباً بخصائص حديّة أو انحرافات 

بناء دالة كيرنل غير متماثلة جديدة تستند إلى توزيع ويبل، وتسُتخدم اذا تم   دوال كيرنل تقليدية استعمالب حادة يصعب احتواؤها

اشتقاق الخصائص النظرية للدالة المقترحة، مثل شرط عدم السالبية، خاصية التكامل و في التقدير غير المعلمي للكثافة الاحتمالية

 طمقياس الخطأ التكاملي المتوس استعمالالأداء الإحصائي للدالة من حيث التحيز والتباين بتحليل وب إلى واحد، والدعم الموج

(MISE) وتعبيره التقريبي  (AMISE).دراسات محاكاة عددية ومقارنتها مع دوال  عن طريقتقييم كفاءة الدالة المقترحة و

 .Gamma kernel منشورة مثل

 

 .الجانب النظري 3

 .مفهوم التقدير غير المعلمي وأهميته في الإحصاء2.3  

يعُرف التقدير غير المعلمي لدالة الكثافة الاحتمالية بأنه أسلوب يهدف إلى تقدير دالة التوزيع الكامنة وراء مجموعة من البيانات 

نة لتقريب قيم الفعلية في العيدون افتراض شكل توزيعي محدد لها. وبدلاً من ذلك، تسُتخدم أساليب رياضية تعتمد مباشرة على ال

ح إمكانية يتي ماة، مسوغشكل هذه الدالة. وتكمن أهمية هذا النوع من التقدير في كونه لا يتقيد بفرضيات قد تكون خاطئة أو غير 

 .استخلاص خصائص التوزيع كما تظهر فعلياً في البيانات دون تشويه ناتج عن اختيار نموذج غير ملائم

و دوال كيرنل، والذي يمُثل الصيغة العامة له على النح استعمال في هذا النوع من التقدير هو التقدير باستعمالا ومن أكثر الأساليب

 :الآتي

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑋−𝑥𝑖

ℎ
)𝑛

𝑖=1                                                                    (1 ) 

 :إذ إن

𝑓ℎ(𝑥)  للكثافة عند النقطة  : هو التقدير الكيرنليx، 

𝐾(⋅) ،هي دالة الكيرنل، وتحُدد شكل التأثير المحلي لكل نقطة : 
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 ℎ   هو معامل التنعيم : (Bandwidth)، 

𝑛 عدد مشاهدات العينة، و :𝑥𝑖  هي عناصرها. 

   (Probability Density Function)  دالة الكثافة الاحتمالية .0.3

تمُثل الإطار الرياضي  إذإحدى الركائز الأساسية في نظرية الاحتمالات والإحصاء التطبيقي،  (PDF) تعُد دالة الكثافة الاحتمالية

الذي يسُتخدم لوصف سلوك المتغيرات العشوائية المستمرة. فعند التعامل مع بيانات كمية لا تأخذ إلا قيماً مستمرة كما هو الحال 

 يفي قياسات الزمن، الطول، الوزن، أو العمر لا يمُكن الحديث عن احتمال وقوع المتغير في نقطة مفردة، لأن هذا الاحتمال يساو

صفرًا نظريًا. ولذلك، يتم تمثيل توزيع الاحتمالات عبر ما يعُرف بدالة الكثافة الاحتمالية، والتي تحُدد مدى تركز الاحتمالات حول 

 .القيم المختلفة على محور الأعداد الحقيقية

 :تحقق الشرطين الآتيين 𝑓(𝑥) وتعُرّف دالة الكثافة الاحتمالية رياضيًا على أنها دالة 

 :غير سالبة على المجال الحقيقيأنها  .2

𝑓(𝑥) ≥ 0        ∀𝑥 ∈ 𝑅    

 :أن التكامل الكلي لها على المجال الكامل يساوي واحداً .0

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞

 

 :معينة، كما في العلاقة الآتية مدةويسُتخدم التكامل المحدود لهذه الدالة لحساب احتمال أن يقع المتغير ضمن 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

  

إن دالة الكثافة لا تحُدد احتمال وقوع المتغير في قيمة محددة، بل تعُبر عن مدى "كثافة الاحتمال" حول كل نقطة. ولهذا السبب، 

 .تعُبر المساحة تحت المنحنى بين أي نقطتين عن احتمال وقوع المتغير ضمن هذا النطاق إذيكون تمثيلها بيانياً على شكل منحنى، 

 دوال كيرنل استعمالالمعلمي بالتقدير غير .3.3

من أكثر   (Kernel Density Estimation   KDE) دوال كيرنل استعماليعُد التقدير غير المعلمي لدالة الكثافة الاحتمالية ب

ليد الشكل التوزيعي للبيانات. وتكمن قوة هذا الأسلوب في قدرته على تو عنالطرائق شيوعًا وفعالية عندما لا تتوفر فرضية مسبقة 

 دون الحاجة إلى تقسيم البيانات إلى فئات كما هو الحال فيمن تمثيل سلس ومرن لدالة الكثافة الاحتمالية انطلاقًا من العينة فقط، 

 .المدرج التكراري

 من العينة، ثم تجميع هذه 𝑥𝑖 متمركزة حول كل نقطة ملاحظة  (⋅)K وتقوم الفكرة الأساسية للطريقة على تركيب دالة كيرنلية 

 :العلاقة بالاعتماد على ويعُطى التقدير الكيرنلي للكثافة  .ℎ الدوال بشكل موزون اعتماداً على معامل التنعيم 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑋 − 𝑥𝑖

ℎ
)                                                                                                               (2)

𝑛

𝑖=1

 

< ℎ  هو حجم العينة، و 𝑛إذإن    ، الذي يتحكم بدرجة انتشار الكثافة حول كل نقطة. أما (Bandwidth)  هو معامل التنعيم  0 

  و  Gaussian فهي عادةً دالة متماثلة تحقق شرط التكامل إلى واحد وغير سالبة، ومن أمثلتها  (⋅)K دالة الكيرنل 

Epanechnikov  والدالة المثلثية. 

تنُتج تقديرًا ذو تذبذبات حادة )تباين    ℎ معامل التنعيم دورًا جوهرياً في التحكم بجودة التقدير. إذ أن القيم الصغيرة جداً لـ يؤدي

مرتفع(، في حين أن القيم الكبيرة تؤُدي إلى تمثيل مفرط التنعيم يخفي تفاصيل التوزيع )انحياز مرتفع(. وقد طُوّرت العديد من 
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-Cross) ، التحقق المتقاطع (Silverman’s Rule of Thumb) ، من بينها: قاعدة الإبهام ℎر القيمة المثلى لـ الأساليب لاختيا

Validation)والتقليل العددي لمقاييس الخطأ مثل ، MISE وAMISE. 

  أنواع دوال كيرنل .3.3

ول نقطة ة توزع التأثير الإحصائي لنقاط العينة حتسُتخدم دوال كيرنل في التقدير غير المعلمي للكثافة الاحتمالية كوظائف موزون

 معينة. ويمُكن تصنيف هذه الدوال إلى نوعين رئيسين بناءً على خصائصها الشكلية ودعمها الرياضي: دوال كيرنل متماثلة

(Symmetric Kernels) ودوال كيرنل غير متماثلة (Asymmetric Kernels).  ينعكس هذا التصنيف على سلوك التقدير 

  .الناتج ومدى ملاءمته لطبيعة البيانات

 الدوال اللبية  غير المتماثلة 3.4.1

تصُمم دوال الكيرنل غير المتماثلة للتعامل مع بيانات غير سالبة أو ذات دعم أحادي الجانب، وتتميز بأن دعمها يقع غالباً ضمن 

,0] المجال   وهي لا تحقق شرط التماثل السابق، بل تأخذ شكلًا مائلًا أو منحازًا، بما يتوافق مع التوزيعات المنحرفة أو  .(∞

 .المحدودة  

 Gamma اولاً   : دالة كيرنل 

لتقدير الكثافة الاحتمالية، خاصة عند التعامل مع البيانات  (Asymmetric Kernel) كـ نواة غير متماثلة Gamma تسُتخدم دالة

الذي يتمتع بدرجة عالية من المرونة  Gamma الموجبة والانحراف الإيجابي. يعتمد هذا النوع من الأنوية على التوزيع الاحتمالي

 .في تمثيل أشكال مختلفة للبيانات

 الصيغة الرياضية

 :الأتيبالشكل  Gamma تعطى دالة الكثافة الاحتمالية لتوزيع

𝑓(𝑥; 𝛼, 𝛽) = {

𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥  , 𝑥 > 0

0                           , 𝑥 ≤ 0

                                                                              (3) 

α :إذإن > β . (shape parameter) هو معامل الشكل 0 > هي دالة   Γ(α) . (rate parameter) هو معامل المعدل   0

 .غاما القياسية

 :كدالة كيرنل، تكون النواة Gamma استعمالوعند 

𝐾ℎ(𝑥, 𝑋𝑖) =
1

ℎ
𝑓 (

𝑥

ℎ
; 𝛼, 𝛽)                                                                                                                         (4) 

 :يأتيويكون تقدير الكثافة كما 

𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥, 𝑋𝑖)  

𝑛

𝑖=1

                                                                                                                            (5) 

 Inverse-Gaussian ثانياً : دالة كيرنل 

المتماثلة التي تسُتخدم في تقدير الكثافة الاحتمالية للبيانات التي تقتصر على  من الدوال اللبية  غير Inverse-Gaussian تعُد دالة

تركز قرب في حالة البيانات التي ت لاسيماالمجال الموجب فقط. وقد تم اقتراحها كبديل فعاّل للتقليل من التحيز الناتج عن الحدود، 

 .الصفر

 الصيغة الرياضية

 :لصيغةبا Inverse-Gaussian تعطى دالة كيرنل
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𝐾ℎ(𝑥; 𝜇, 𝜆) = √
𝜆

2𝜋𝑥3
𝑒𝑥 𝑝 (−

𝜆(𝑥 − 𝜇)2

2𝜇2𝑥
) , 𝑥 > 0                                                                              (6) 

 :إذإن

𝑥 نقطة التقدير تمثل. 

𝜇 متوسط التوزيع، يؤُخذ عادة مساوياً للقيمة التي نقدر الكثافة عندها. 

𝜆  معلمة الشكل، تعُبر عن عرض الحزمة (Bandwidth) . 

 (Lindley Kernel) ثالثاً : دالة كيرنل ليندلي 

(. 0222وآخرون ) Ghitany الذي قدمه Lindley من الدوال غير المتماثلة وتستند إلى توزيع Lindley Kernel تعُد دالة

 .البيانات موجبة وتنحرف إلى اليمين، مثل بيانات البقاء والوقت حتى الفشلوتسُتخدم عادة لتقدير الكثافة الاحتمالية عندما تكون 

 :الصيغة الرياضية

 : يأتي  تعُطى كما Lindley Kernel الصيغة العامة لدالة

𝐾(𝑥; 𝜃) =
𝜃2

1 + 𝜃
(1 + 𝑥) 𝑒−𝜃𝑥       𝑓𝑜𝑟 𝑥 > 0,  𝜃 > 0                                                                         (7) 

 .الاحتمالي Lindley هذه الدالة موجبة الدعم وتتناسب مع توزيع .يمثل القيم الموجبة للمتغير, 𝑥 هو معلمة الشكل    𝜃 :حيث

 (Bandwidth) أثر اختيار معامل التنعيم .3.3

ر للكثافة الاحتمالية، إذ يتحكم بشكل مباشر بدرجة سلاسة التقدي العنصر الحاسم في عملية التقدير الكيرنلي ℎ يعُد معامل التنعيم 

الاختيار  فإن من ثم تجميع تأثير كل نقطة ملاحظة حول نقطة التقدير، و عن طريقها الناتج. وهو يمثل عرض النافذة التي يتم 

 .المناسب لهذا المعامل يعُد شرطًا أساسياً للحصول على تقدير دقيق وواقعي للكثافة

 :الصيغة العامة لتقدير الكثافة اللبية  هي

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝐾

(𝑥 − 𝑋𝑖)

ℎ

𝑛

𝑖=1

                                                                                                                       (8) 

صغيرة  ℎشكل وحجم الكثافة المُقدرة. فإذا كانت قيمة  فييعني أن له تأثيرًا  مايظهر في المقام،  ℎ من هذه المعادلة أن نلحظ و

.   (Overfitting)يؤدي إلى انخفاض التحيز  وارتفاع التباين  ماجداً، فإن التقدير سيكون حساسًا بشكل مفرط لتقلبات البيانات، 

التحيز  وانخفاض التباين يؤدي إلى ارتفاع  ماكبيرة جداً، فإن التقدير سيكون مفرط التنعيم،  ℎ أما إذا كانت قيمة 

(Oversmoothing)تحقيق التوازن بين التحيز والتباين يعُد الهدف المركزي  .، ويخُفي التفاصيل البنيوية الحقيقية للتوزيع

 :، من أهمها ℎلاختيار معامل التنعيم. ومن أجل ذلك، طُورت عدة طرائق لاختيار القيمة المثلى لـ 

 : (Silverman’s Rule of Thumb) قاعدة الإبهام 

 .هو الانحراف المعياري للعينة، وتسُتخدم هذه القاعدة عندما يفُترض أن البيانات تتبع توزيعاً طبيعيًا  𝜎̂ إذ

 إذ دوال كيرنل، استعمالخطوة مركزية في طريقة التقدير غير المعلمي لدالة الكثافة الاحتمالية ب  hيعُد اختيار معامل التنعيم  

يتحكم هذا المعامل بدرجة التنعيم المطبقة على البيانات، وبالتالي يؤثر بشكل مباشر على شكل المقدرّ النهائي. من أبرز الطرق 

، Silverman (1986) التي وضعها   (Rule of Thumb) قاعدة الإبهام     بـ لتحديد هذا المعامل هي ما يعُرف المستعملة 

 .البيانات تتبع توزيعاً طبيعياً وأن دالة الكيرنل المختارة هي دالة غاوسيةعند افتراض أن  تستعملوالتي 

 تستند هذه الطريقة إلى تقليل الخطأ التكاملي التربيعي الوسيط المعروف                                     

الفرق المتوقع بين دالة  لقياس يستعمل، وهو معيار AMISE (Asymptotic Mean Integrated Squared Error)بـ      

وعند افتراض أن البيانات تتبع التوزيع الطبيعي القياسي  . xعلى مدى مجال     f̂h(x)ومقدرّ الكثافة    f(x)الكثافة الحقيقية 

N(μ, σ2)  فإن القيمة المثلى التقريبية لمعامل التنعيم تعُطى من خلال المعادلة التالية ،: 

ℎ = 1.06 𝜎̂ 𝑛ℎ−1/5                                                                                                                          (9)  
 :إذ إن 

ℎ : معامل التنعيم (bandwidth)، 

𝜎̂ : ،الانحراف المعياري للعينة 

𝑛 : حجم العينة. 

 : (Cross-Validation) التحقق المتقاطع 

في تقدير   ℎ لتحديد القيمة المثلى لمعامل التنعيم  استعمالامن أكثر الأساليب  (Cross-Validation) طريقة التحقق المتقاطع تعُد

دالة الكثافة الاحتمالية. وتقوم الفكرة الأساسية لهذه الطريقة على تقليل خطأ التقدير عن طريق محاكاة الأداء التنبؤي للنموذج على 
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 (Variance) والتباين (Bias) الذي يحُقق أفضل توازن بين التحيّز  ℎيسُهم في اختيار   مافي عملية التقدير،  لتستعمبيانات لم 

.  

 الدالة المقترحة .3.4

 أولًا: الصيغة الرياضية للدالة المقترحة 
غير متماثلة تستند إلى خصائص توزيع ويبل، لما يتمتع به هذا التوزيع من  تنطلق هذه الدراسة من فكرة إعادة تشكيل دالة كيرنل

 .ملاءمة طبيعية لتمثيل البيانات الموجبة المنحرفة، لاسيما في مجالات تحليل البقاء والموثوقية

 :تعُرف دالة الكثافة الاحتمالية لتوزيع ويبل بالصيغة

𝑓(𝑥; 𝜆, 𝜅) =
𝜅

𝜆
(
𝑥

𝜆
)𝜅−1 𝑒𝑥𝑝 (−(

𝑥

𝜆
)𝜅), 𝑥 > 0                                            (10)      

 إن: إذ

  𝜆 >  . (scale parameter) معلمة القياس   0

 𝜅 >  .  (shape parameter) معلمة الشكل     0

 بمعامل التنعيم    𝜅 لإنشاء دالة كيرنل غير متماثلة من توزيع ويبل، يتم إعادة تشكيل دالة الكثافة عن طريق استبدال معلمة الشكل 

ℎ المستخدم في التقدير الكيرنلي. وعليه، نحصل على الدالة اللبية  المقترحة: 

𝑓(𝑥; 𝜆, 𝜅) =
ℎ

𝜆
(
𝑥

𝜆
)ℎ−1 𝑒𝑥𝑝 (−(

𝑥

𝜆
)ℎ), 𝑥 > 0                                           (11) 

 .  ∞إلى  0 من هذه الدالة تمثل كيرنل ويبل غير متماثل، متمركز عند الصفر ودعمه 

𝜅لأن  :و لغرض التحقق من خصائص دالة الكيرنل و التي هي تتمثل بعدم السالبية > 𝑥و    0 > ℎو   0 > ، فإن   0

𝐾ℎ(𝑥) ≥ 0 .  

 نأخذ بعين الاعتبار :لإثبات أن الدالة متكاملة إلى واحد نغير المتغير بالتكامل اما الخاصية الثانية و التي تتمثل بالتكامل إلى واحد , 

 :(22دالة الكيرنل المبنية على توزيع ويبل كما في المعادلة )

 :ونهدف إلى إثبات أن هذه الدالة تتكامل إلى واحد، أي

 ∫ 𝐾ℎ(𝑥) 𝑑𝑥
∞

0

= 1                                                                                    (12) 

 :نقوم بتغيير المتغير كما يلي

𝑢 = (
𝑥

𝜆
)ℎ ⇒ 𝑥 = 𝜆 ⋅ 𝑢

1
ℎ                                                                            (13) 

 du بالنسبة إلى  dx ثم حساب

𝑑𝑥 = 𝜆 ⋅
1

ℎ
⋅ 𝑢(

1
ℎ

)−1  𝑑𝑢                                                                                  (14)  

 :نعُوض في التكامل الأصلي

 ∫
ℎ

𝜆
(
𝑥

𝜆
)ℎ−1 𝑒𝑥𝑝 (−(

𝑥

𝜆
)ℎ)

∞

0

𝑑𝑥                                                                     (15) 

 :ليصبح

 ∫
ℎ

𝜆
⋅ 𝑢(ℎ−1)/ℎ ⋅ 𝑒−𝑢 ⋅ 𝜆 ⋅

1

ℎ
⋅ 𝑢(1/ℎ−1) 𝑑𝑢

∞

0

                                             (16) 

 تبسيط الثوابت والأسس 
ℎ

𝜆
⋅ 𝜆 ⋅

1

ℎ
= 1   

 ل بالشكل التالييصبح التكام



  Warith Scientific Journal    
 

366                                     ISSN: 2618-0278   Vol. 7No. 24 December  2025 

 
 

 ∫ 𝑒−𝑢  𝑑𝑢
∞

0

= 1                                                                                                 (17)  

 .   (∞,0)تظُهر النتيجة أن دالة كيرنل ويبل مُطبقّة بشكل صحيح ومُقاسة بشكل سليم، لأنها تتكامل إلى واحد على الفترة 

 :ام لتقدير الكثافة اللبية  باستعمال هذه الدالة , عند استعمال هذه الدالة في تقدير الكثافة اللبية  غير المعلمية ، نحصل علىالشكل الع

𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

                                                                          (18) 

< 𝑥لكن بما أن الدالة غير متماثلة ودعمها   :، غالباً بصيغة 𝑋𝑖و  𝑥 ، يعُاد بناءها كدالة تعتمد على المسافة النسبية بين 0 

𝑓ℎ(𝑥) =
1

𝑛
∑

ℎ

𝜆
(
𝑥

𝜆
)ℎ−1 𝑒𝑥𝑝 (−(

𝑥

𝜆
)ℎ)

𝑛

𝑖=1

                                                             (19) 

𝑥مع ضمان أن  > 0 . 

 ثانيًا: مميزات الدالة المقترحة

تتميزّ الدالة اللبية  المقترحة، المستندة إلى توزيع ويبل، بعدد من الخصائص النظرية والعملية التي تجعلها مناسبة جداً لتقدير 

في سياق بيانات البقاء والانحرافات الحادة. ويمكن عرض هذه  لاسيماالكثافة الاحتمالية للبيانات الإيجابية وغير المتماثلة، 

  : يأتي المميزات كما

 (Positive Support) موجبة الدعم   -1

 (Asymmetric Shape) غير متماثلة   -2

 (Normalization) قابلة للتكامل إلى واحد   -4

 (Shape Flexibility) السيطرة على شكل الكثافة   -3

 (Low Boundary Bias) التحيز  عند الحواف منخفض   -5

 القابلية للتطبيق العملي  -3

 

 لجانب التجريبيا

  مفهوم المحاكاة   1.4.

تعُد المحاكاة أحد الأساليب الإحصائية والتجريبية الفعالة التي تسُتخدم لدراسة سلوك النماذج الإحصائية في ظل ظروف متنوعة 

نظرياً أو تجريبيًا بشكل مباشر. وتهدف المحاكاة إلى توليد بيانات صناعية )مصطنعة( من توزيعات محددة ومعقّدة يصعب تحليلها 

 ومعروفة، ثم تطبيق نماذج التقدير أو التحليل عليها لتقييم أدائها تحت سيناريوهات مختلفة

 :من أهم مزايا أسلوب المحاكاة

  ثلةماالقدرة على مقارنة أداء طرائق متعددة في ظروف. 

 التحكم الكامل في خصائص البيانات مثل حجم العينة، نوع التوزيع، وجود التحيز أو القيم المتطرفة. 

 توفير بيئة مثالية لاختبار الفرضيات النظرية أو التحقق من مدى ملاءمة الطرائق المقترحة. 

تسُاعد الباحث في التحقق من صلاحية النماذج الإحصائية  إذوتكمن أهمية المحاكاة في كونها تعُدّ جسراً بين النظرية والتطبيق، 

ها في تحليل بيانات حقيقية. كما أنها تعُدّ أداة مركزية في الأبحاث الحديثة لتقييم مرونة الطرائق استعمالالمقترحة واختبارها قبل 

 .الجديدة واستجابتها لمختلف التحديات الإحصائية

 مراحل المحاكاة 3.2

وفق مراحل منهجية متسلسلة تهدف إلى تقييم أداء مجموعة من دوال كيرنل المتماثلة وغير على  تم تنفيذ المحاكاة في هذا البحث 

 :الأتيالمتماثلة في تقدير دالة الكثافة الاحتمالية. وقد جاءت مراحل المحاكاة على النحو 

 تحديد التوزيع للبيانات -1

وفق هذا لى ع تم توليد البيانات العشوائية  إذلحالة المرجعية التي تقُاس نسبة إليها دقة التقديرات. تم اختيار توزيع مستمر يمثل ا

 .التوزيع الحقيقي لضمان وجود مرجع واضح للمقارنة
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 اختيار دوال كيرنل المستخدمة في التقدير -0

، ودوال غير Gaussian ،Epanechnikov ،Biweight ،Triangular :شملت المقارنة بين دوال كيرنل متماثلة هي

 .دقة التقدير في، بهدف فحص تأثير شكل الدالة Inverse-Gaussian، وLindley ،Weibull ،Gamma1 :متماثلة هي

 تحديد أحجام العينات -3

حيث يمثل  اربع حالات متنوعة تعكس سيناريوهات توزيع مختلفة من حيث التماثل  (022,222,32حجوم )تم اعتماد 

 .والانحراف والتشتت

 (Bandwidth) ق تقدير عرض الحزمة ائاختيار طر -3

 :h تم اعتماد طريقتين لحساب عرض الحزمة

 .لعينةالتباين وحجم ا استعمالب h التي تعتمد على قاعدة تقليدية لحساب  : Silverman طريقة 

 .h التي تعتمد على تقليل الخطأ التقديري الكلي للوصول إلى القيمة المثلى لـ  : Cross-Validation طريقة 

 توليد البيانات وتقدير الكثافة -3

لتقدير دالة   h كل دالة كيرنل مع كل طريقة لحساب استعماللكل سيناريو، تم توليد البيانات وحسب حجم العينة المحدد، وتم 

 .كثافة الاحتمالية على البيانات المولدةال

 (ISE) حساب معيار الأداء  -6

حساب الفارق التراكمي  عن كمقياس رئيس لتقييم دقة كل تقدير، وذلك  (ISE) معيار الخطأ التكاملي التربيعي استعمالتم 

 .المربع بين الكثافة التقديرية والكثافة الحقيقية

 توثيق النتائج وتحليلها -7

لكل دالة كيرنل وطريقة تقدير، ثم تم رسم أشكال   hو ISE أظهرت قيم فقدخيص النتائج في جداول مفصلة لكل حالة، تم تل

 .بيانية توضّح تقارب دوال الكثافة التقديرية من الدالة الحقيقية

 مقارنة الأداء واستنتاج النتائج -2

 دالة كيرنل من حيث دقة التقدير في كل سيناريو. وقد تبينّ أن دالة في نهاية المحاكاة، تم تحليل الجداول والأشكال لتحديد أفضل

Weibull غير المتماثلة حققت أدنى ISE في معظم الحالات، بينما كانت دالة Biweight الأفضل بين الدوال المتماثلة. 

 (  222,122,52 وم   )التجربة عند حج4.3 
مع اختيار  Cross-Validationو  Silvermanطريقة تحديد قيمة عرض  الحزمة بالطريقتين  يتم من خلال التجربة  تثبيت

  التوزيع للمتجة المولد و هو التوزيع الاسي , مع تغيير حجوم العينات .

 الحالة الاولى .  n=50: في حالة العينة التجربة 
في اختيار عرض   Cross-Validationو طريقة  Silverman المتماثلة وغير المتماثلة باستعمال طريقتي مقارنة أداء دوال كيرنل( 1جدول )

 ()الحالة الأولى 52عند حجم عينة  ISE على وفق معيار الحزمة 
AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.024515468 0.24066516 1.218592527 0.454489796 

Weibull 0.016237192 0.123159065 1.218592527 0.454489796 

Gamma1 0.217724415 0.144451656 1.218592527 0.454489796 

Inverse-Gaussian 0.179102582 0.191510262 1.218592527 0.454489796 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.18292346 0.118186593 1.218592527 0.454489796 

Epanechnikov 0.199888417 0.121556958 1.218592527 0.454489796 

Biweight 0.120636818 0.09995659 1.218592527 0.454489796 

Triangular 0.120919984 0.100810408 1.218592527 0.454489796 

 

 الأتي :( يتبين لنا 2جدول ) من

عند استعمال طريقة سيلفرمان، إذ سجلت القيمة  ISE حققت أقل قيمة لمعيار الخطأ التكاملي التربيعي Weibullالدالة  أن -2

بقيمة   Inverse-Gaussian(، ثم دالة 2.2033بقيمة )  Lindley (، ما  يدل على دقة تقدير عالية. تليها دالة 2.2260)

(. وعند مقارنة نفس الدوال باستعمال طريقة التحقق 2.0277أعلى خطأ ) التي سجلت  Gamma1(، وأخيرًا دالة 2.27.2)

(، تليها 2.2030حافظت أيضًا على أدائها الأفضل مسجلةً أقل قيمة ) Weibull، يتبين أن دالة  (ISE_CV)  المتقاطع

Gamma1  ( ثم 2.2333بقيمة ،)Inverse-Gaussian  ( وأخيرًا 2.2.23بقيمة ،)Lindley  ت أعلى خطأ التي سجل
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 وفق المعيارين علىأظهرت الأداء الأفضل بين الدوال غير المتماثلة  Weibull(. وعليه، يمكن القول إن دالة 2.0327)

ISE_Silverman وISE_CV  ًمعا. 

عدة عند استعمال قا ISE تفوقاً واضحًا حسب معيار  Biweight أما بالنسبة للدوال اللبية  المتماثلة، فقد أظهرت دالة  -0

(، .2.220بقيمة ) Gaussian(، ثم .2.202بقيمة )  Triangular(، تليها دالة 2.2026سيلفرمان، إذ حققت أقل قيمة بلغت )

  Biweight(. أما عند استعمال طريقة التحقق المتقاطع، فقد حافظت دالة ...2.2التي سجلت )  Epanechnikovوأخيرًا 

، وأخيرًا Gaussian (0.1182)، ثم Triangular (0.1008)لتها دالة (، ت2.2222على مركزها الأول بأقل خطأ )

Epanechnikov (0.1216).   وبناءً على نتائج كلا المعيارين، تعُد دالةBiweight   الأفضل أداءً بين الدوال اللبية  المتماثلة

 .في هذه الحالة

 الحالة الثانية .  n=50التجربة: في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة باستعمال طريقتي( 2جدول )

 (الثانية)الحالة  52عند حجم عينة  ISE على وفق معيار  الحزمة

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.024389747 0.92912992 1.247119971 0.313061224 

Weibull 0.025155181 0.269326893 1.247119971 0.313061224 

Gamma1 0.266504669 0.189362838 1.247119971 0.313061224 

Inverse-Gaussian 0.239094312 0.258684421 1.247119971 0.313061224 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.225369737 0.166287111 1.247119971 0.313061224 

Epanechnikov 0.236876162 0.166794735 1.247119971 0.313061224 

Biweight 0.172424033 0.175669639 1.247119971 0.313061224 

Triangular 0.174890921 0.174686441 1.247119971 0.313061224 

 

 الأتي :( يتبين لنا 0جدول ) من

عند استعمال قاعدة سيلفرمان، إذ سجلت  (ISE) حققت أقل قيمة لمعيار الخطأ التكاملي التربيعي  Lindleyأن دالة  -2

التي سجلت  Gamma1(، وأخيرًا 2.03.2بقيمة )  Inverse-Gaussian(، ثم 2.2030بقيمة ) Weibull(، تليها 2.2033)

في المرتبة   Gamma1، فقد جاءت دالة (ISE_CV) ا عند استعمال طريقة التحقق المتقاطع(. أم2.0663أعلى خطأ بقيمة )

التي   Lindley، وأخيرًا Weibull (0.2693)، ثم Inverse-Gaussian (0.2587)(، تليها 2.22.3الأولى بأقل خطأ )

وال غير المتماثلة، كونها سجلت أداءً جيداً تعُد الأفضل أداءً بين الد  Weibull(. وعليه، فإن دالة 0.2..2سجلت أعلى قيمة )

 .ومستقرًا ضمن المعيارين مقارنةً بباقي الدوال

باستعمال قاعدة سيلفرمان، إذ سجلت  ISE تفوقاً حسب معيار  Biweightأما بالنسبة للدوال اللبية  المتماثلة، فقد أظهرت دالة  -0

التي سجلت  Epanechnikov، وأخيرًا Gaussian (0.2254)، ثم Triangular (0.1749)(، تليها 2.2703أقل قيمة بلغت )

(، تليها 2.2663أفضل نتيجة ) Gaussian، حققت ISE_CV (. بينما عند استعمال معيار.2.036أعلى خطأ بقيمة )

Epanechnikov (0.1668) ثم ،Triangular (0.1747) وأخيرًا ،Biweight (0.1757) .   وعند النظر إلى كلا المعيارين

حققت توازنًا جيداً في الأداء، ما  يجعلها الخيار الأنسب من بين الدوال اللبية  المتماثلة في هذه  Triangularمعاً، نجد أن دالة 

 .الحالة

 الحالة الثالثة .  n=50التجربة: في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman لمتماثلة باستعمال طريقتيمقارنة أداء دوال كيرنل المتماثلة وغير ا( 4جدول ) 

 الثالثة()الحالة  52عند حجم عينة  ISE على وفق معيار الحزمة 

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.022636453 0.089314058 1.784347439 1 

Weibull 0.026407906 0.053190575 1.784347439 1 

Gamma1 0.300812061 0.255524585 1.784347439 1 

Inverse-Gaussian 0.258909171 0.272700063 1.784347439 1 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.282556499 0.234296409 1.784347439 1 
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Epanechnikov 0.297006306 0.242977469 1.784347439 1 

Biweight 0.212167123 0.182306129 1.784347439 1 

Triangular 0.214701167 0.184715595 1.784347439 1 

 

 الأتي :( يتبين لنا 4جدول ) من

وقد بلغت  (ISE_Silverman) سجّلت أقل قيمة للخطأ التكاملي التربيعي باستعمال قاعدة سيلفرمان Lindleyأن دالة  -1

التي حققت أعلى  Gamma1، وأخيرًا Inverse-Gaussian (0.2589)(، ثم 2.2063بقيمة ) Weibull(، تليها 2.2006)

في المرتبة الأولى بأقل خطأ   Weibull، فقد جاءت (ISE_CV) (. أما بالنسبة لطريقة التحقق المتقاطع2.3222خطأ بلغ )

وبمقارنة   .Inverse-Gaussian (0.2727)، وأخيرًا Gamma1 (0.2555)، ثم Lindley (0.0893)(، تليها 2.2330)

أظهرت أفضل أداء إجمالي من إذ الاستقرار وانخفاض الخطأ، ما  يجعلها   Weibullالأداء عبر كلا المعيارين، نجد أن دالة 

 .الدالة الأنسب ضمن الدوال غير المتماثلة في هذه الحالة

، إذ سجلت ISE_Silverman حسب معياريأفضل أداء   Biweightبالنسبة للدوال اللبية  المتماثلة، فقد أظهرت  أما -0

أما عند  .Epanechnikov (0.2970)، وأخيرًا Gaussian (0.2826)، ثم Triangular (0.2147)(، تليها 2.0200)

(، تليها 2.2203أيضًا على المركز الأول بأقل خطأ ) Biweight، فقد حافظت (ISE_CV) استعمال طريقة التحقق المتقاطع

Triangular (0.1847) ثم ،Gaussian (0.2343) وأخيرًا ،Epanechnikov (0.2430).  وبذلك، فإن دالةBiweight 

 .ذه الحالة التجريبيةهتعُد الأفضل أداءً ضمن الدوال المتماثلة وفقاً لكلا المعيارين، ما  يعزز كفاءتها في تقدير الكثافة الاحتمالية في 

 الحالة الرابعة .  n=50التجربة  : في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة باستعمال طريقتي( 3جدول )

 (الرابعة)الحالة  52عند حجم عينة  ISE على وفق معيار  الحزمة 

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.01713042 0.15594716 1.995065963 1 

Weibull 0.0086319 0.108992853 1.995065963 1 

Gamma1 0.347392486 0.311307114 1.995065963 1 

Inverse-Gaussian 0.297443261 0.319267687 1.995065963 1 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.321784227 0.289959651 1.995065963 1 

Epanechnikov 0.329648666 0.295600384 1.995065963 1 

Biweight 0.283509897 0.251633882 1.995065963 1 

Triangular 0.284387227 0.254863171 1.995065963 1 

 

 الأتي :( يتبين لنا 3جدول ) من

وقد بلغت  (ISE_Silverman) سجّلت أقل قيمة للخطأ التكاملي التربيعي باستعمال قاعدة سيلفرمان Weibullأن دالة  -2

التي سجلت أعلى قيمة  Gamma1، وأخيرًا Inverse-Gaussian (0.2974)، ثم Lindley (0.0171)(، تليها 2.2226)

تحقيق أفضل أداء بأقل خطأ  Weibull، فقد واصلت (ISE_CV) طريقة التحقق المتقاطع(. أما عند استعمال 2.3373خطأ )

وبناءً على  .Inverse-Gaussian (0.3193)، وأخيرًا Gamma1 (0.3113)، ثم Lindley (0.1559)(، تلتها 2.22.2بلغ )

ا يؤكد كفاءتها العالية في تقدير الكثافة ترتيب الدوال غير المتماثلة في هذه الحالة، م Weibullكلا المعيارين، تتصدر دالة 

 .الاحتمالية مقارنةً ببقية الدوال

  أفضل أداء عند استعمال قاعدة سيلفرمان  Biweightأما بالنسبة لدوال كيرنل المتماثلة، فقد أظهرت دالة  -0

(ISE_Silverman)  ( تليها 2.0233بتسجيلها أقل خطأ ،)Triangular (0.2844) ثم ،Gaussian (0.3218) وأخيرًا ،

Epanechnikov (0.3296). وباستعمال طريقة التحقق المتقاطع (ISE_CV) استمرت ،Biweight  في التفوق محققة أقل

لذلك،  .Epanechnikov (0.2956)، وأخيرًا Gaussian (0.2900)، ثم Triangular (0.2549)(، تليها 2.0326خطأ )

ن الدوال المتماثلة في هذه الحالة، ما  يعكس قدرتها على تحقيق تقدير دقيق وثابت للكثافة الأفضل أداءً من بي Biweightدالة  تعد

 .الاحتمالية

، Lindley ،Weibull (، والتي استعرضت أداء الدوال غير المتماثلة3-3( إلى )3-2نتائج الجداول الأربعة ) وبشكل عام من

Gamma1و ،Inverse-Gaussian وفقاً لمعياري ISE_Silverman وISE_CVيمكن استخلاص الآتي ،: 
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سجّلت أقل  فقدتفوقاً واضحًا في ثلاث حالات من أصل أربع،  Weibull، أظهرت دالة ISE_Silvermanبالنسبة لمعيار  -2

(، ما  يبينّ استقرارها 3-3(، وكانت ثاني أفضل قيمة في الجدول )3-3(، و)3-2قيمة للخطأ التكاملي التربيعي في الجداول )

في الصدارة بفارق طفيف، إلا أن الأداء العام عبر الحالات  Lindley(، فقد جاءت دالة 3-0وأداءها العالي. أما في الجدول )

 Weibull، فقد واصلت دالة ISE_CVعلى وفق معيار على  أما  .وفق هذا المعيارعلى  كأفضل دالة  Weibull يرُجّح كفة دالة

فقط في الجدول  Gamma1(، بينما تفوقت دالة 3-3(، و)3-3(، )3-2تقديم الأداء الأفضل، إذ حققت أقل قيمة للخطأ في الجداول )

أفضل النتائج في معظم الحالات فحسب، بل كانت الفروق لصالحها لم تقتصر على تحقيق  Weibull أن دالةونلحظ (. 0-3)

تميزت بانخفاض  Weibullوفق كلا المعيارين معاً، نجد أن دالة  على عند النظر إلى أداء كل دالة .واضحة مقارنةً ببقية الدوال

ال غير ما  يجعلها أفضل خيار بين الدومستمر وثابت في قيم الخطأ، سواء باستعمال قاعدة سيلفرمان أو طريقة التحقق المتقاطع، 

 .عبر الحالات الأربع 32المتماثلة في تقدير الكثافة الاحتمالية عند حجم العينة 

أقل قيمة للخطأ التكاملي التربيعي في  Biweight، سجّلت دالة ISE_Silvermanلمعيار اما بالنسبة للدوال المتماثة فان  -0

(، ما  يعكس تفوقها الواضح واستقرار أدائها. أما دالة 0انت في المركز الثاني في الجدول )(، بينما ك3(، و)3(، )2الجداول )

Triangularفقد حافظت على موقع متقدم نسبياً، لكنها لم تتفوق على ، Biweight  في أي حالة، في حين سجّلت كل من

Gaussian وEpanechnikov  أما عند استعمال  .أداءهما تحت هذا المعيارقيمًا أعلى نسبياً في معظم الحالات، ما  يضعف

(، وسجّلت المركز الرابع فقط في الجدول 3(، و)3(، )2تفوقها في الجداول ) Biweight، فقد واصلت دالة ISE_CVمعيار 

ها لم يكن ثابتاً عبر باقي الحالات. وتظُهر ء(، إلا أن أدا0حققت أفضل قيمة في الجدول ) Gaussian(. وعلى الرغم من أن 0)

Triangular استقرارًا نسبياً، إذ جاءت في المرتبة الثانية في أكثر من حالة. 

هي الأكثر استقرارًا وكفاءةً بين الدوال المتماثلة، إذ احتلت المرتبة الأولى  Biweightأن دالة  نلحظعند الدمج بين المعيارين، 

أفضل دالة كيرنل متماثلة لأغراض تقدير الكثافة الاحتمالية عند  عدهاوفق كلا المعيارين. لذا، يمكن  علىفي معظم الحالات، 

 .، عبر الحالات التجريبية الأربعة32حجم عينة 

 الحالة الاولى .   n=100التجربة : في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman المتماثلة وغير المتماثلة باستعمال طريقتي ( مقارنة أداء دوال كيرنل5جدول )

 ()الحالة الأولى 122عند حجم عينة  ISE الحزمة على وفق معيار

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.019612397 0.0641654 1.384800372 0.979795918 

Weibull 0.018467851 0.054067783 1.384800372 0.979795918 

Gamma1 0.285943569 0.260187129 1.384800372 0.979795918 

Inverse-Gaussian 0.262725286 0.269691136 1.384800372 0.979795918 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.265523214 0.241777699 1.384800372 0.979795918 

Epanechnikov 0.275574742 0.25248501 1.384800372 0.979795918 

Biweight 0.202566773 0.181752512 1.384800372 0.979795918 

Triangular 0.206220664 0.184355734 1.384800372 0.979795918 

 

 :( يتبين لنا الأتي3من جدول)

 وفق طريقة سيلفرمانعلى  أقل قيمة للخطأ التكاملي التربيعي  Weibullللدوال غير المتماثلة، سجّلت دالة  بالنسبة -2

(ISE_Silverman) ( تليها 2.2223وبلغت ،)Lindley (0.0196) ثم ،Inverse-Gaussian (0.2627) وأخيرًا ،

Gamma1 ( أما عند استعمال طريقة .2.023التي سجلت أعلى خطأ .)التحقق المتقاطع (ISE_CV) فقد حافظت ،Weibull 

-Inverse، وأخيرًا Gamma1 (0.2602)، ثم Lindley (0.0642)(، تليها 2.2332على موقعها الأول بأقل قيمة خطأ )

Gaussian (0.2697).  يتضح من ذلك أن دالةWeibull يقدمّت الأداء الأفضل والأكثر استقرارًا بين الدوال غير المتماثلة ف 

 .هذه الحالة، وفقاً لكلا المعيارين

(، تليها 2.0206وفق طريقة سيلفرمان )على أقل قيمة للخطأ  Biweightأما بالنسبة للدوال اللبية  المتماثلة، فقد سجلت دالة  -0

Triangular (0.2062) ثم ،Gaussian (0.2655) وأخيرًا ،Epanechnikov (0.2756).  وباستعمال طريقة التحقق
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 Gaussian ، ثمTriangular (0.1844)(، تلتها 2.2222في تحقيق أفضل أداء بأقل قيمة ) Biweightاطع، استمرت المتق

تعُد الخيار الأمثل من بين الدوال المتماثلة في  Biweightوعليه، فإن دالة  .Epanechnikov (0.2525)، وأخيرًا (0.2418)

 .عيارينهذه الحالة، نتيجة لأدائها المتفوق ضمن كلا الم

 الحالة الثانية .   n=100التجربة : في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman ( مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة باستعمال طريقتي3جدول )

 (الثانية)الحالة  122عند حجم عينة  ISE الحزمة على وفق معيار

 

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.020366966 0.091178705 1.602799913 0.898979592 

Weibull 0.013674719 0.055936415 1.602799913 0.898979592 

Gamma1 0.288093202 0.241544527 1.602799913 0.898979592 

Inverse-Gaussian 0.256048765 0.268066463 1.602799913 0.898979592 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.269252259 0.224109073 1.602799913 0.898979592 

Epanechnikov 0.282060801 0.23371209 1.602799913 0.898979592 

Biweight 0.200991607 0.166282646 1.602799913 0.898979592 

Triangular 0.204302877 0.168876121 1.602799913 0.898979592 

 :( يتبين لنا ما يأتي6من جدول)

أقل قيمة للخطأ التكاملي التربيعي باستعمال قاعدة سيلفرمان وبلغت  Weibull بالنسبة للدوال غير المتماثلة، سجّلت دالة -2

التي حققت  Gamma1 (، وأخيرًا2.0362بقيمة ) Inverse-Gaussian (، ثم2.2023بقيمة ) Lindley (، تلتها2.2237)

(، .2.233تحقيق أفضل أداء بأقل خطأ ) Weibull (. أما وفقاً لطريقة التحقق المتقاطع، فقد واصلت2.0222أعلى خطأ بقيمة )

(. يتضح 2.0622ة )بقيم Inverse-Gaussian (، وأخيرًا2.0323بقيمة ) Gamma1 (، ثم2.2.20بقيمة ) Lindley تلتها

 .تعُد الأفضل أداءً ضمن هذه المجموعة في هذه الحالة التجريبية، وفقاً لكلا المعيارين Weibull من ذلك أن دالة

 أقل قيمة لمعيار الخطأ التكاملي التربيعي باستعمال قاعدة سيلفرمان Biweight أما بالنسبة للدوال المتماثلة، فقد سجلت دالة -0

وعند  .Epanechnikov (0.2821) ، وأخيرًاGaussian (0.2693) ، ثمTriangular (0.2043) (، تلتها2.0222بقيمة )

 ، ثمTriangular (0.1689) (، تلتها2.2663أيضًا تفوقها محققة أقل قيمة ) Biweight ، واصلتISE_CV استعمال معيار

Gaussian (0.2241)وأخيرًا ، Epanechnikov (0.2337). يشير ذلك إلى أن دالة Biweight  ًأظهرت أداءً متميزًا وثابتا

 .ضمن الدوال المتماثلة وفق المعيارين معاً

 الحالة الثالثة .   n=100التجربة : في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman ( مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة باستعمال طريقتي7جدول )

 (الثالثة)الحالة  122عند حجم عينة  ISE الحزمة على وفق معيار

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.021056838 0.096796219 1.308011199 0.898979592 

Weibull 0.027044276 0.076981043 1.308011199 0.898979592 

Gamma1 0.287492586 0.262444602 1.308011199 0.898979592 

Inverse-Gaussian 0.27173814 0.280007786 1.308011199 0.898979592 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.25752621 0.241211117 1.308011199 0.898979592 

Epanechnikov 0.263317597 0.24490187 1.308011199 0.898979592 

Biweight 0.224130221 0.209878745 1.308011199 0.898979592 

Triangular 0.225045941 0.211106478 1.308011199 0.898979592 

 :( يتبين لنا ما يأتي7من جدول)

سيلفرمان، إذ سجلت أقل قيمة للخطأ التكاملي أفضل أداء باستعمال قاعدة  Lindley بالنسبة للدوال غير المتماثلة، أظهرت دالة -2

التي حققت أعلى  Gamma1 ، وأخيرًاInverse-Gaussian (0.2717) ، ثمWeibull (0.0270) (، تلتها2.2022التربيعي )
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 (،2.2772على أدائها الجيد بأقل قيمة خطأ ) Weibull (. أما عند استعمال طريقة التحقق المتقاطع، فقد حافظت2.0273خطأ )

 وعمومًا، يتضح أن كل من .Inverse-Gaussian (0.2800) ، وأخيرًاGamma1 (0.2624) ، ثمLindley (0.0968) تلتها

Lindley وWeibull أظهرتا نتائج متقاربة، إلا أن Weibull تتفوق قليلًا عند استعمال طريقة التحقق المتقاطع، بينما تتصدر 

Lindley عند استعمال قاعدة سيلفرمان. 

أقل قيمة لمعيار الخطأ التكاملي التربيعي باستعمال قاعدة سيلفرمان  Biweight أما بالنسبة للدوال المتماثلة، فقد سجلت دالة -0

وعند  .Epanechnikov (0.2633) ، وأخيرًاGaussian (0.2575) ، ثمTriangular (0.2250) (، تلتها2.0032وبلغت )

 Gaussian ، ثمTriangular (0.2111) (، تلتها..2.02تفوقها بقيمة ) Biweight استعمال طريقة التحقق المتقاطع، واصلت

حافظت على أدائها الأفضل بين  Biweight تشير هذه النتائج إلى أن دالة .Epanechnikov (0.2449) ، وأخيرًا(0.2412)

 .الدوال المتماثلة وفق المعيارين معًا

 رابعة .الحالة ال   n=100التجربة : في حالة العينة 
في اختيار عرض   Cross-Validationو طريقة  Silverman ( مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة باستعمال طريقتي8جدول )

 (الرابعة)الحالة  122عند حجم عينة  ISE الحزمة على وفق معيار

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.0222578 0.194908646 1.65584773 0.75755102 

Weibull 0.009187768 0.110700337 1.65584773 0.75755102 

Gamma1 0.30777549 0.254897759 1.65584773 0.75755102 

Inverse-Gaussian 0.274656714 0.28909973 1.65584773 0.75755102 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.279620927 0.233541334 1.65584773 0.75755102 

Epanechnikov 0.28975204 0.241209362 1.65584773 0.75755102 

Biweight 0.228463044 0.189372141 1.65584773 0.75755102 

Triangular 0.230327628 0.191714542 1.65584773 0.75755102 

 :( يتبين ما يأتي2من جدول)

في المرتبة الأولى من إذ الأداء الأفضل باستعمال قاعدة سيلفرمان، إذ  Weibull بالنسبة للدوال غير المتماثلة، جاءت دالة -2

 Inverse-Gaussian ، ثمLindley (0.0223) (، تلتها2.22.0سجلت أقل قيمة لمعيار الخطأ التكاملي التربيعي بلغت )

 Weibull (. وعند استعمال طريقة التحقق المتقاطع، حافظت2.3272أعلى خطأ ) التي سجّلت Gamma1 ، وأخيرًا(0.2747)

-Inverse ، وأخيرًاGamma1 (0.2549) ، ثمLindley (0.1949) (، تلتها2.2227أيضًا على المركز الأول بأقل خطأ )

Gaussian (0.2891). توضح هذه النتائج أن دالة Weibull  وفق المعيارين، ما  يؤكد  علىأظهرت أداءً متفوقاً ومستقرًا

 .كفاءتها في تقدير الكثافة الاحتمالية عند هذا الحجم من العينة

عند استعمال قاعدة سيلفرمان وبلغت  ISE أقل قيمة لمعيار Biweight أما بالنسبة للدوال المتماثلة، فقد سجّلت دالة -0

وباستعمال  .Epanechnikov (0.2898) أخيرًا، وGaussian (0.2796) ، ثمTriangular (0.2303) (، تلتها2.0023)

 Gaussian ، ثمTriangular (0.1917) (، تلتها2.22.3تفوقها أيضًا بأقل خطأ ) Biweight طريقة التحقق المتقاطع، واصلت

حققت أفضل أداء بين الدوال المتماثلة  Biweight وبذلك، يتضح أن دالة .Epanechnikov (0.2412) ، وأخيرًا(0.2335)

 .في هذه الحالة وفقاً لكلا المعيارين

  ، والتي تناولت مقارنة أداء دوال كيرنل غير متماثلة222( اللاسيما بحجم العينة 2( إلى )3استناداً إلى نتائج الجداول الأربعة )

(Lindley ،Weibull ،Gamma1 ،Inverse-Gaussian)  ومتماثلة (Gaussian ،Epanechnikov،  Biweight ،

Triangular)  باستعمال طريقتي Silverman و Cross-Validation لاختيار عرض الحزمة على وفق معيار ISE يمكن ،

 :تلخيص النتائج كما يأتي

 قدمّت الأداء الأفضل في ثلاث حالات من أصل أربع على وفق معيار Weibull بالنسبة للدوال غير المتماثلة، يتبينّ أن دالة -2

ISE_Silverman(. أما على 7(، وكانت قريبة من الأفضل في الجدول )2(، و)6(، )3أقل قيمة للخطأ في الجداول ) ، إذ حققت

على صدارتها في ثلاث جداول أيضًا، ما  يدل على ثباتها وموثوقيتها العالية في  Weibull ، فقد حافظتISE_CV وفق معيار

 Gamma1 في بعض الحالات، لكنها لم تكن الأفضل عمومًا. أماأداءً جيداً  Lindley تقدير الكثافة. في المقابل، أظهرت دالة

 .وفق كلا المعيارين على فقد سجلتا أداءً ضعيفاً نسبياً عبر معظم الحالات Inverse-Gaussianو

على  قدمّت أفضل أداء إجمالي بين نظيراتها، إذ سجّلت أقل خطأ Biweight بالنسبة للدوال المتماثلة، تظُهر النتائج أن دالة -0

، ISE_CV في جميع الجداول الأربعة، واحتفظت كذلك بالمركز الأول أو الثاني ضمن معيار ISE_Silverman وفق معيار
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 Gaussian في المرتبة الثانية في أغلب الحالات، في حين سجّلت Triangular ما  يبرز كفاءتها العالية. في المقابل، جاءت دالة

 .Biweight ، ما يشير إلى أداء أقل استقرارًا مقارنةً بـقيمًا أعلى للخطأ Epanechnikovو

، 222كأفضل الخيارات في تقدير الكثافة الاحتمالية عند حجم عينة  Biweightو Weibull بناءً على ذلك، يمكن اعتماد دالتي

 .وفق كلا المعيارينعلى لما أظهرتاه من تفوق واضح وثبات في الأداء عبر التجارب الأربع، و

 

 الحالة الاولى .   n=200التجربة  : في حالة العينة 

في اختيار عرض   Cross-Validationو طريقة  Silverman طريقتي استعمال( مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة ب9جدول  )

 )الحالة الاولى( 222عند حجم عينة  ISE وفق معيار على الحزمة

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.118603337 0.501300072 0.059385412 0.030204082 

Weibull 0.059448143 0.08047379 0.059385412 0.030204082 

Gamma1 1.608724328 2.167267082 0.059385412 0.030204082 

Inverse-Gaussian 1.826987922 1.916637945 0.059385412 0.030204082 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 2.291823083 2.690966239 0.059385412 0.030204082 

Epanechnikov 2.271330106 2.685837691 0.059385412 0.030204082 

Biweight 2.787030896 2.920125022 0.059385412 0.030204082 

Triangular 2.763574749 2.909700061 0.059385412 0.030204082 

 :الأتي( يتبين .من جدول )

(، 2.23.3قاعدة سيلفرمان، إذ بلغت ) استعمالب ISE أقل قيمة لمعيار Weibull بالنسبة للدوال غير المتماثلة، سجّلت دالة -2

التي سجّلت أعلى  Inverse-Gaussian وأخيرًا(، 2.6227التي سجلت ) Gamma1 ، ثم دالةLindley (0.1186) تليها دالة

 Lindley (، تليها2.2223على تفوقها بأقل قيمة ) Weibull ، فقد حافظت دالةISE_CV (. أما وفق معيار2.2072قيمة بلغت )

 Weibull وهذا يشير بوضوح إلى أن دالة .Gamma1 (2.1673) ، وأخيرًاInverse-Gaussian (1.9166) ، ثم(0.5013)

 .كلا المعيارين استعماللأفضل أداءً بين الدوال غير المتماثلة في هذه الحالة من حيث دقة تقدير الكثافة بهي ا

يدل على ضعف الأداء العام لها في هذه  ما، ISE بالنسبة للدوال المتماثلة، سجلت جميع الدوال قيمًا مرتفعة نسبياً لمعياري -0

 Gaussianو Epanechnikov (2.2713) تعود إلى دالة ISE_Silverman الحالة. فقد كانت أدنى القيم ضمن معيار

، ISE_CV أما وفق معيار .Triangular (2.7636)و Biweight (2.7870) ، بينما كانت أعلى القيم من نصيب(2.2918)

 Biweight ، بينما سجلتEpanechnikov (2.6858) (، تليها0.6.22الأفضل أداءً نسبياً بقيمة ) Gaussian فقد كانت

يشير إلى أن دوال كيرنل المتماثلة جميعها قدمّت أداءً ضعيفاً نسبياً مقارنة بالدوال غير المتماثلة  ماأعلى القيم،  Triangularو

 .في هذه الحالة، ولم تظُهر أية دالة منها تميزًا واضحًا

 الحالة الثانية .   n=200التجربة  : في حالة العينة 

في اختيار عرض   Cross-Validationو طريقة  Silverman طريقتي استعمالمقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة ب ( 12جدول )

 )الحالة الثانية( 222عند حجم عينة  ISE وفق معيارعلى الحزمة 

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.082232122 0.380990234 0.060945138 0.030204082 

Weibull 0.031624464 0.054152947 0.060945138 0.030204082 

Gamma1 1.757145252 2.484924156 0.060945138 0.030204082 

Inverse-Gaussian 1.952049044 2.030783363 0.060945138 0.030204082 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 2.433636144 3.102902505 0.060945138 0.030204082 

Epanechnikov 2.390210671 3.075629035 0.060945138 0.030204082 

Biweight 3.288381614 3.609210703 0.060945138 0.030204082 



  Warith Scientific Journal    
 

374                                     ISSN: 2618-0278   Vol. 7No. 24 December  2025 

 
 

Triangular 3.235309074 3.585097951 0.060945138 0.030204082 

  : يأتي( يتضح ما22من خلال جدول )

 

قاعدة سيلفرمان، حيث سجّلت أقل  استعمالالأداء الأفضل بوضوح عند  Weibull بالنسبة للدوال غير المتماثلة، حققت دالة -2

(، 2.7372بقيمة مرتفعة ) Gamma1 (، ثم2.2200التي سجلت ) Lindley (، تلتها دالة2.2326بلغت ) ISE قيمة لمعيار

تفوقها  Weibull (. وبالنسبة لطريقة التحقق المتقاطع، واصلت دالة302..2بأعلى خطأ بلغ ) Inverse-Gaussian وأخيرًا

 ، وأخيرًاInverse-Gaussian (2.0308) ، ثمLindley (0.3810) (، تلتها2.2330بلغت ) ISE_CV بتسجيلها أقل قيمة

Gamma1 ( يدل هذا الأداء الثابت على أن دال.0.323التي سجلت أعلى خطأ .)ة Weibull  ما تزال تحتفظ بمركزها كأفضل

 .دالة غير متماثلة من حيث دقة التقدير

سيلفرمان أو  استعمالأما فيما يخص دوال كيرنل المتماثلة، فقد سجلت جميعها قيمًا مرتفعة للخطأ التكاملي التربيعي، سواء ب -0

( 0.3336بأفضل القيم نسبياً ) Epanechnikovو Gaussian ، جاءتISE_Silverman التحقق المتقاطع. فوفق معيار

الأفضل مرة  Gaussian ، كانتISE_CV أعلى القيم. وضمن معيار Triangularو Biweight (، بينما سجلت0.3.20و)

على أدائهما  Triangularو Biweight ، في حين حافظتEpanechnikov (3.0756) (، تلتها.3.220أخرى نسبيًا )

دون تقديم أي دالة منها لنتائج مميزة بالمقارنة من ى أن أداء الدوال المتماثلة بقي ضعيفاً في هذه الحالة، الأضعف. يشير ذلك إل

 .مع نظيراتها غير المتماثلة

 

 الحالة الثالثة .   n=200التجربة  : في حالة العينة 

في اختيار عرض   Cross-Validationو طريقة  Silverman طريقتي استعمال( مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة ب11جدول )

 )الحالة الثالثة( 222عند حجم عينة  ISE وفق معيارعلى الحزمة 

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.116338472 0.386284867 0.054452669 0.030204082 

Weibull 0.086314716 0.060227944 0.054452669 0.030204082 

Gamma1 2.063108917 2.74067567 0.054452669 0.030204082 

Inverse-Gaussian 2.165680714 2.255804307 0.054452669 0.030204082 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 2.767783983 3.29425515 0.054452669 0.030204082 

Epanechnikov 2.732874931 3.280343623 0.054452669 0.030204082 

Biweight 3.520416715 3.882818036 0.054452669 0.030204082 

Triangular 3.477840543 3.834404228 0.054452669 0.030204082 

  يأتي: ( يتضح ما22من خلال جدول )

 

ت بلغ إذقاعدة سيلفرمان،  استعمالأقل قيمة للخطأ التكاملي التربيعي ب Weibull بالنسبة للدوال غير المتماثلة، حققت دالة -2

بنتائج مرتفعة جداً تجاوزت  Inverse-Gaussianو Gamma1 (، في حين جاءت2.2263بقيمة ) Lindley (، تلتها2.2263)

على تفوقها  Weibull قاطع، فقد حافظتطريقة التحقق المت استعماليدل على ضعف أدائهما في هذه الحالة. أما عند  ما(، 0.2)

التي سجلت  Gamma1 ، وأخيرًاInverse-Gaussian (2.2558) ، ثمLindley (0.3863) (، تلتها2.2620مسجلةً أقل خطأ )

 .قدمّت الأداء الأفضل من حيث دقة التقدير وفق كلا المعيارين Weibull (. يتضح من ذلك أن دالة0.7327أعلى خطأ )

 Gaussian سجلت فقديخص الدوال اللبية  المتماثلة، فقد أظهرت جميعها أداءً ضعيفاً في هذه الحالة، أما فيما  -0

 وفق لترتيبعلى ا .0.730و 0.7672أقل القيم ضمن هذه المجموعة لكنها ما زالت مرتفعة ) Epanechnikovو

ISE_Silverman)بينما جاءت ، Biweight وTriangular النتيجة ذاتها مع معيار بأعلى الأخطاء. وتكررت ISE_CV ، إذ 

 Biweight (، بينما سجلتالترتيب على  3.0223و 3.0.33أفضل القيم نسبياً ) Epanechnikovو Gaussian حققت

أعلى الخطأ. يشير هذا إلى أن أداء الدوال المتماثلة بقي ضعيفاً ولم تتمكن من مجاراة دقة الدوال غير المتماثلة،  Triangularو

 . Weibull سيما دالةلا 
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 الحالة الرابعة .   n=200التجربة : في حالة العينة 

 

في اختيار عرض   Cross-Validationو طريقة  Silverman طريقتي استعمال( مقارنة أداء دوال كيرنل المتماثلة وغير المتماثلة ب12جدول )

 الرابعة()الحالة  222عند حجم عينة   ISEوفق معيارعلى  الحزمة 

AsKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Lindley 0.030303188 0.154063057 0.233561408 0.151428571 

Weibull 0.008047204 0.044088595 0.233561408 0.151428571 

Gamma1 0.053292372 0.094833566 0.233561408 0.151428571 

Inverse-Gaussian 0.044908406 0.054125373 0.233561408 0.151428571 

SKernel ISE_Silverman ISE_CV h_Silverman h_CV 

Gaussian 0.118872684 0.168350907 0.233561408 0.151428571 

Epanechnikov 0.117985904 0.166946647 0.233561408 0.151428571 

Biweight 0.218572121 0.246543051 0.233561408 0.151428571 

Triangular 0.212216584 0.242021352 0.233561408 0.151428571 

 ( يتبين :20جدول )

 (، تلتها دالة2.2222بلغت ) إذ، Silverman قاعدة استعمالقد سجلت أقل قيمة للخطأ التكاملي التربيعي ب Weibullأن دالة 

Inverse-Gaussian ( ثم.2.233بقيمة ،) Gamma1 (0.0533) ،وأخيرًا Lindley (0.0303).  طريقة استعمالأما عند 

Cross-Validation فقد استمرت دالة ،Weibull  (، تليها2.2332تسجيلها أقل خطأ بقيمة ) عن طريقبتحقيق الأداء الأفضل 

Inverse-Gaussian (0.0541)ثم ، Gamma1 (0.0948)وأخيرًا ، Lindley (0.1541).  بناءً على ذلك، فإن دالة

Weibull هي الأفضل من بين الدوال غير المتماثلة في هذه الحالة وفق كلا المعيارين. 

مسجلةً خطأ قدره  Silverman وفق معيار على  أفضل أداء Epanechnikovأما بالنسبة للدوال اللبية  المتماثلة، فقد حققت دالة 

بقيم أكبر. وعند  Triangular (0.2122)و Biweight (0.2186) ، بينما جاءتGaussian (0.1189) (، تليها2.2222)

، Gaussian (0.1684) (، تليها.2.266على تفوقها بتسجيلها ) Epanechnikov ، حافظتCross-Validation استعمال

وفق على  بين الدوال المتماثلة في هذه الحالة  الفضلى  Epanechnikov وبذلك تعُد دالة  .Biweightو Triangular ثم

 .معاًالمعيارين 

كانت الأكثر استقرارًا وتفوقاً من بين الدوال غير  Weibull، يتبين أن دالة 022من الجداول الأربعة الخاصة بحجم العينة 

في جميع الحالات الأربعة، وهي:  (ISE_Silverman) المتماثلة، حيث سجلت أقل قيمة لمعيار الخطأ التكاملي التربيعي

، فقد واصلت Cross-Validation طريقة استعمال. ما عند رتيب( على الت2.2222)(، و2.2263(، )2.2326(، )2.23.3)

يدل على دقتها وثباتها  ما(، 2.2332(، و)2.2620(، )2.2330(، )2.2332تحقيق أقل القيم كذلك، وهي: ) Weibullدالة 

 .العالي في التقدير

في الحالات  Silverman أداءً أفضل نسبياً وفق معيار Epanechnikovأما بالنسبة للدوال اللبية  المتماثلة، فقد أظهرت دالة 

الأفضل في الحالة الأولى. وعند  Triangularأقل القيم في الحالة الثالثة، وكانت  Biweightالثانية والرابعة، بينما سجلت دالة 

ثانية والرابعة، في حين تفوقت أيضًا بأداء متميز في الحالتين ال Epanechnikov، برزت Cross-Validation معيار استعمال

Biweight في الحالة الثالثة، وTriangular  دالة  عدفي الحالة الأولى. وبمقارنة الأداء الكلي، يمكنEpanechnikov  الأكثر

 .تفوقاً من بين الدوال المتماثلة في هذا الحجم من العينة

، Weibull ، يتضح أن الدوال غير المتماثلة، وعلى وجه الخصوص دالة وبمقارنة الأداء العام للدوال غير المتماثلة مقابل المتماثلة

قدمّت أداءً متفوقاً في تقدير الكثافة الاحتمالية، إذ حققت مستويات منخفضة من الخطأ التكاملي التربيعي عبر مختلف أحجام 

، Weibull دالة  استعماللدوال عند بين جميع ا  ISE_Silverman العينات والحالات. وقد تم تسجيل أقل قيمة مطلقة لمعيار

، مع عرض Silverman طريقة  استعمالب n = 200 وذلك في الحالة الرابعة عند حجم العينة  0.008047204حيث بلغت 

هذا الأداء يبُرز مدى كفاءة الدوال غير المتماثلة في تمثيل البيانات المنحرفة مقارنةً بالدوال   . h = 0.233561408 حزمة

  .المتماثلة، التي أظهرت أداءً أضعف نسبياً في هذا السياق
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 المتماثلة وغير المتماثلة في تقدير دالة الكثافة الاحتمالية مقارنة بالقيمة الحقيقية في التجربة  مقارنة أداء دوال كيرنل( 1شكل )

ً  (2)من الشكل ) باللون السماوي( تعُد الأكثر تطابقاً مع الكثافة الحقيقية )الخط الأسود العريض(  Weibull ، يتبين لنا أن دالةآنفا

في المنطقتين القريبة من الذروة والذيل الأيسر للتوزيع. هذا لاسيما أو غير المتماثلة، وضمن جميع دوال كيرنل، سواء المتماثلة 

العالية على تمثيل البيانات غير المتماثلة بدقة ومرونة، ويعُزز من فاعليتها في  Weibull التوافق البصري الواضح يعكس قدرة

، فشلت Triangularو Gaussian المتماثلة مثل لاسيمابقية الدوال، وتقليل الخطأ التقديري مقارنة بباقي الدوال. كما يلُاحظ أن 

يدل على محدودية أدائها عند وجود انحراف. وعليه، يمُكن الاستنتاج أن الطريقة المقترحة  مافي التقاط الشكل الفعلي للتوزيع، 

 .البياناتتوُفر تقديرًا أكثر واقعية وثباتاً في مثل هذا النوع من  Weibull دالة استعمالب
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في تقدير دالة الكثافة الاحتمالية مقارنة بالدالة  Cross-Validationو Silverman طريقتي استعمالمقارنة أداء دوال كيرنل المختلفة ب( 2شكل )

 الحقيقية في التجربة 

ً  (0)من الشكل قد أظهرت توافقاً عالياً مع الدالة الحقيقية للكثافة الاحتمالية، سواء عند  Weibull، يتبين لنا أن الدالة المقترحة آنفا

فقد تميز منحناها بالانسيابية والدقة في تمثيل شكل التوزيع الحقيقي،  .Cross-Validationأو  Silvermanطريقة  استعمال

 Weibullدوال الأخرى. هذا يعكس قدرة دون مبالغة في القمم أو اهتزازات حادة على الأطراف، بخلاف ما لوحظ في بعض ال

على التعامل بمرونة مع البيانات الموجبة وغير المتماثلة، ويؤكد تفوقها في توفير تقدير أكثر دقة واستقرارًا للكثافة الاحتمالية 

 .المستعملةمقارنة بباقي دوال كيرنل 
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-Crossو Silverman طريقتي استعمالكيرنل المتماثلة وغير المتماثلة ببين دوال  (ISE) مقارنة قيم الخطأ التكاملي التربيعي( 4شكل )

Validation  في التجربة 

ً 3)من الشكل  من بين الدوال غير المتماثلة قد سجلت أقل قيمة للخطأ التكاملي  Weibull، يتبين لنا أن الدالة المقترحة (آنفا

، مقارنة بجميع دوال كيرنل الأخرى، سواء Cross-Validationو Silvermanكل من طريقتي  استعمالب ISEالتربيعي 

المتماثلة أو غير المتماثلة. هذا يشير إلى تفوق أدائها في تقدير دالة الكثافة الاحتمالية بشكل أكثر دقة واستقرار، ويؤكد ملاءمتها 

 .أعلى في كلا الطريقتين ISE ظهرت قيمالعالية للبيانات الموجبة غير المتماثلة، على خلاف دوال كيرنل المتماثلة التي أ

 الاستنتاجات والتوصيات5

 الاستنتاجات  1.5

، قدمّت أداءً أكثر دقة مقارنةً Weibull أظهرت النتائج التجريبية أن الدوال غير المتماثلة، وعلى وجه الخصوص دالة .2

المتماثلة في تقدير دالة الكثافة الاحتمالية لبيانات موجبة غير متماثلة، كما هو الحال في بيانات البقاء قيد  بالدوال الكيرنل

 .الدراسة

بلغت  إذ ، Silverman مع طريقة Weibull دالة استعمالعند  (ISE) تم تحقيق أدنى قيمة للخطأ التكاملي التربيعي .0

 .تمثيل طبيعة البيانات يعكس تفوقاً ملحوظًا في ما، 2.222القيمة 

مع  Weibull Kernel استعمال، تبيّن أن نموذج التقدير بAIC ومعيار Kolmogorov–Smirnov من خلال اختبار .3

 .AIC وأقل قيمة P-value هو الأكثر كفاءة من بين النماذج المدروسة، حيث حقق أعلى قيمة CV طريقة
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دوال التقدير المختلفة تحت سيناريوهات متعددة، وبينّت بشكل واضح مدى  .أثبتت طريقة المحاكاة فعاليتها في اختبار أداء3

 حساسية النتائج لطبيعة الدالة المختارة وحجم العينة

 التوصيات2.5

، عند التعامل مع بيانات موجبة وغير متماثلة مثل Weibull يوُصى باعتماد دوال كيرنل غير متماثلة، لاسيما دالة .2

  .لما توفره من دقة أعلى في التقديربيانات البقاء، نظرًا 

 ستعمال احجام مختلفة في تقدير الدوال المدروسة  .يوُصى ا .0

 لاختيار عرض الحزمة لما أثبتته من أداء أفضل مقارنة بطريقة (CV) طريقة التحقق المتقاطع استعماليفُضل  .3

Silverman التقليدية. 

 .المختار الانموذجمعاً لتقييم ملاءمة  AIC ومعيار K-S في التطبيقات الواقعية، يوُصى بتطبيق اختبار .3

ينبغي إجراء دراسات مستقبلية لاختبار كفاءة دوال كيرنل غير متماثلة أخرى وتوسيع التجارب لتشمل توزيعات بقاء  .3

 .مختلفة وسيناريوهات متنوعة

ينُصح بتطبيق المنهجية المقترحة على بيانات طبية أخرى، مثل بيانات مدة المكوث في المستشفيات أو أزمنة الشفاء،  .6

 في سياقات تطبيقية مختلفة الانموذجلتقييم عمومية 
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