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Abstract : Robust variable selection is essential in high-dimensional medical data analysis, where the presence of
outliers can significantly impact model performance. This study introduces the Reciprocal Lasso, a novel
regularization method that enhances robustness while preserving sparsity in regression modeling. The method
incorporates an inverse penalty function that dynamically adjusts the penalization strength based on coefficient
magnitudes, reducing sensitivity to extreme values.

A comprehensive simulation study is conducted to evaluate the performance of the Reciprocal Lasso under varying
levels of contamination, comparing it to the Adaptive Lasso and the S-Estimator-based Lasso. To further improve
robustness, the model is integrated with Tukey’s Biweight Loss Function and MM-Estimators, which provide
stronger resistance against extreme observations and improve estimation stability. The results demonstrate that the
Reciprocal Lasso achieves superior variable selection accuracy, lower prediction error, and greater stability in the
presence of outliers. Additionally, the method is applied to a real-world medical dataset, where it effectively
identifies relevant biomarkers associated with disease progression while maintaining robustness to data anomalies.
These findings suggest that the Reciprocal Lasso, combined with advanced robust estimation techniques, is a
promising approach for high-dimensional modeling in medical research. Future studies could explore its application
in genomic and epidemiological studies, as well as its integration with Bayesian frameworks for uncertainty
quantification.

Keywords: Robust regression, Reciprocal Lasso, variable selection, high-dimensional data, medical statistics,
outlier resistance.

INTRODUCTION: High-dimensional regression is fundamental in medical research, where predictive models
often rely on a large number of biomarkers, genetic markers, or clinical measurements. However, traditional penalized
regression methods, such as Lasso (Tibshirani, 1996) and Elastic Net (Zou & Hastie, 2005), are sensitive to outliers,
which are prevalent in medical datasets due to measurement errors, patient heterogeneity, and missing or inconsistent
records. The presence of such anomalies can distort coefficient estimates, leading to unreliable variable selection and
degraded predictive performance.

To address these challenges, robust penalized regression methods have been developed to improve stability and
accuracy in contaminated datasets. Existing techniques, such as Adaptive Lasso (Zou, 2006) and S-Estimator-based
penalization (Maronna et al., 2019), attempt to mitigate the influence of extreme values, but they may still suffer from
over-shrinkage or instability in high-dimensional settings. A more effective solution is required to ensure both
robustness and sparsity in regression modeling (Mohammed & Raheem, 2020), particularly for medical applications
where identifying relevant biomarkers is crucial for clinical decision-making.

This study introduces the Reciprocal Lasso, a novel penalization method designed to enhance robustness in high-
dimensional regression. Unlike traditional Lasso, which applies a uniform L1 -penalty to all coefficients, the
Reciprocal Lasso imposes an inverse penalty function that dynamically adjusts based on coefficient magnitudes. This
approach effectively reduces the impact of small and irrelevant coefficients while maintaining stable estimation for
significant predictors, improving both variable selection accuracy and resistance to contamination.

To further enhance robustness against outliers, the Reciprocal Lasso is integrated with Tukey’s Biweight Loss
Function and MM-Estimators. These methods provide stronger resistance to extreme values than conventional
approaches, improving the model’s ability to handle contaminated datasets. A comprehensive simulation study
evaluates the effectiveness of Reciprocal Lasso in comparison with Adaptive Lasso and S-Estimator-based Lasso,
assessing predictive performance, selection accuracy, and robustness under different contamination levels.
Additionally, the method is applied to a real-world medical dataset, demonstrating its practical utility in identifying
key biomarkers associated with disease progression. The results confirm that the Reciprocal Lasso, combined with
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advanced robust estimation techniques, offers superior performance in both simulated and real data scenarios, making
it a valuable tool for high-dimensional medical modeling.

Methodology

2.1 Reciprocal Lasso Penalty

Lasso regression, introduced by Tibshirani (1996), is a widely used regularization technique that applies an L1-norm
penalty to the regression coefficients, promoting sparsity by forcing some coefficients to shrink exactly to zero. The
Lasso estimator is formulated as:

B(Lasso) = argmin 7L, (y; — X x;; ﬁj)z + 125-;1 1851 ()

where X is the regularization parameter that controls the trade-off between goodness-of-fit and model sparsity. While
Lasso is effective in high-dimensional settings, it has notable limitations. One of the key drawbacks is its sensitivity to
outliers, as extreme observations can disproportionately influence coefficient estimates, leading to biased variable
selection and model instability.

To address these issues, Reciprocal Lasso modifies the penalty function by introducing a reciprocal term that
dynamically adjusts the penalization based on coefficient magnitudes (Alhamzawi et al., 2023) . Unlike Lasso, which
applies uniform shrinkage to all coefficients, Reciprocal Lasso imposes stronger penalization on small coefficients
while allowing significant predictors to retain stable estimates. The objective function for the Reciprocal Lasso is
defined as:

Briasso = (v — XB)'(y — XB) + xz;;l@ I{B; # 0} @)

where 4 is the regularization parameter, and € > 0 is a small constant to prevent division by zero. This reciprocal
penalty enhances robustness by reducing sensitivity to small, noisy coefficients, minimizing the effect of extreme
values, and refining sparsity more effectively than Lasso. Additionally, the Reciprocal Lasso offers better stability
under contamination, ensuring that parameter estimates remain reliable even in the presence of outliers. The following
section discusses the integration of robust estimation techniques to further enhance the model’s performance.
2.2 Robust Estimation for Outlier Handling
In high-dimensional regression, the presence of outliers can significantly distort coefficient estimates and lead to poor
variable selection. To improve robustness, this study integrates the Reciprocal Lasso with two advanced techniques:
Tukey’s Biweight Loss Function and MM-Estimators (Huber, 1981) . These methods provide enhanced resistance to
extreme values while maintaining efficient parameter estimation.
2.2.1 Tukey’s Biweight Loss Function
Tukey’s Biweight Loss Function is a robust alternative to standard loss functions, such as squared error loss or Huber
loss. Unlike the Huber function, which applies linear penalization beyond a certain threshold, Tukey’s function
completely suppresses the influence of extreme values by assigning them zero weight (Maronna et al., 2019). The loss
function is defined as:

c? U213 .
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where u = y — X3 represents the residuals, and cc is a tuning parameter that determines the threshold beyond which
observations are considered outliers. Unlike Huber loss, which continues to grow linearly beyond a threshold, Tukey’s
function completely caps the contribution of extreme residuals, making it highly effective for datasets with a large
number of anomalies.
By incorporating Tukey’s loss function into the Reciprocal Lasso, the model can selectively downweight outlier-
influenced residuals, leading to more reliable coefficient estimates and improved variable selection accuracy in
contaminated datasets.
2.2.2 MM-Estimators for Robust Coefficient Estimation
MM-Estimators extend M-Estimators by achieving higher breakdown points while maintaining efficiency comparable
to traditional maximum likelihood estimators. Unlike standard M-Estimators, MM-Estimators are designed to
maximize robustness by combining three key properties:
1. Initial robust estimation using an S-Estimator to obtain a preliminary estimate that is resistant to extreme values.
2. Efficiency tuning by refining the initial estimate using an M-Estimator with an optimally chosen weight function.
3. Higher breakdown point (typically around 50%), ensuring that the model remains stable even if a large fraction of
the data is contaminated.
The MM-Estimator is obtained by solving:

(22 x = 0 @
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where s is a robust scale estimator, and () is a weighting function that assigns lower weights to extreme residuals.
This approach reduces the influence of extreme values, resulting in more stable parameter estimation, improved model
sparsity, and enhanced predictive performance (Al-Guraibawi, Raheem, & Mohammed, 2025).

By integrating Tukey’s Biweight Loss Function and MM-Estimators with the Reciprocal Lasso, the model achieves:

e Stronger outlier resistance compared to traditional Huber-based methods.

e Higher accuracy in variable selection by reducing the impact of extreme observations.

o Better stability under high contamination levels, making it suitable for complex medical datasets.

The next section presents a simulation study evaluating the effectiveness of this approach under different
contamination scenarios.

3. Simulation Study
To evaluate the effectiveness of the Reciprocal Lasso in high-dimensional regression with contamination, a simulation
study is conducted. The study examines the method’s ability to maintain prediction accuracy, variable selection
performance, and robustness to outliers compared to Adaptive Lasso and S-Estimator-based Lasso.
3.1 Data Generation
The simulated datasets are generated from the following high-dimensional linear model:
y=XB+e€ (5)
where X is an nxp design matrix with predictors sampled from a multivariate normal distribution:
X ~N(0,%)
The covariance matrix X is constructed to introduce correlation among predictors, mimicking real-world medical
datasets. The true regression coefficients g are sparsely generated, with only 20% of the predictors having nonzero
values, ensuring a realistic variable selection scenario.
To test robustness, we introduce contamination in the error term €:
Clean data: € ~ N(0,02) . Contaminated data: A fraction (10%—20%) of observations are replaced with heavy-tailed
errors sampled from a Student’s t-distribution (df = 2), introducing extreme values. Each scenario is replicated 100
times to ensure statistical reliability.
3.2 Benchmark Methods for Comparison
The performance of the Reciprocal Lasso is compared against: Adaptive Lasso (Zou, 2006): Applies adaptive weights
to penalty terms, improving selection consistency, but remains sensitive to outliers. And S-Estimator-based Lasso
(Maronna et al., 2019): Uses S-Estimators for outlier-resistant variable selection.
3.3 Performance Metrics
Each method is assessed using the following criteria:
Prediction Accuracy: Mean Absolute Error (MAE) and Mean Squared Error (MSE).
Variable Selection Performance True Positive Rate (TPR) , False Positive Rate (FPR) and Correct Model Selection
Rate (CMSR) .
Robustness to Outliers Breakdown Point and Computational Time.
Table 1: Prediction Accuracy (MAE & MSE)

Method Clean Contaminated
MAE MSE MAE MSE
Reciprocal Lasso 0.55 0.78 0.72 1.10
Adaptive Lasso 0.60 0.82 0.85 1.25
S-Estimator Lasso 0.65 0.88 0.90 1.40

Table 1 shows that the Reciprocal Lasso outperforms both the Adaptive Lasso and the S-Estimator-based Lasso in
terms of MAE and MSE, particularly under contamination. This confirms its effectiveness in maintaining prediction
accuracy despite the presence of outliers.

Table 2: Variable Selection Performance (TPR, FPR, CMSR)

Method Clean Contaminated
TPR FPR CMSR TPR FPR CMSR
Reciprocal Lasso 0.94 0.05 0.91 0.88 0.1 0.83
Adaptive Lasso 0.89 0.08 0.85 0.8 0.15 0.75
S-Estimator Lasso 0.85 0.12 0.8 0.75 0.18 0.7

Table 2 demonstrates that Reciprocal Lasso maintains the highest TPR and CMSR while keeping the lowest FPR,
ensuring superior variable selection performance even under contamination.
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Table 3: Robustness and Computational Efficiency

Method Breakdown Point Computational Time (seconds)
Reciprocal Lasso 0.48 2.1
Adaptive Lasso 0.40 2.5
S-Estimator Lasso 0.35 2.8

Table 3 highlights that Reciprocal Lasso has the highest breakdown point, meaning it remains stable even under
higher contamination levels. Additionally, its computational time is lower than other methods, making it an efficient
and practical choice.

To further illustrate the differences in performance, the following box plots compare prediction accuracy, variable

selection performance, and robustness metrics.
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Figure 3: Robustness and Computational Efficiency
The simulation study confirms that the Reciprocal Lasso consistently outperforms both the Adaptive Lasso and the S-
Estimator-based Lasso across all evaluation metrics. The method achieves: Lower MAE and MSE, maintaining high
predictive accuracy even in contaminated datasets. Higher TPR and CMSR with lower FPR, ensuring reliable variable
selection. Greater robustness, with the highest breakdown point and lowest computational cost. These results
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demonstrate that the Reciprocal Lasso is a robust and efficient method for high-dimensional regression in medical
applications. The next section presents an application of this method to real-world clinical data.

4. Real Data

To validate the effectiveness of the Reciprocal Lasso in real-world scenarios, we apply the method to a high-
dimensional medical dataset. This section describes the data preprocessing steps, the model implementation, and the
evaluation metrics used to compare the Reciprocal Lasso against benchmark methods. The real dataset consists of
clinical biomarkers, genetic features, and diagnostic variables used to predict disease progression. The preprocessing
steps include:

Handling Missing Values: Imputation using robust mean imputation for numerical variables. Mode-based imputation
for categorical variables.

Outlier Detection and Treatment: Identifying extreme values using Mahalanobis Distance. Winsorization is applied to
continuous variables to reduce the impact of extreme values.

Feature Scaling: Robust standardization (subtracting the median and dividing by the interquartile range) to mitigate
sensitivity to extreme values.

The dataset is then split into training (80%) and testing (20%) sets, ensuring an unbiased evaluation.

The following steps are followed to apply the Reciprocal Lasso and compare its performance with the Adaptive Lasso
and the S-Estimator-based Lasso:

Model Training: Each method is trained using 5-fold cross-validation to select the optimal regularization parameter A .
Reciprocal Lasso is optimized using the reciprocal penalty formulation discussed earlier.

Evaluation Metrics: Prediction Accuracy: Mean Absolute Error (MAE) AND Mean Squared Error (MSE) . Variable
Selection Performance: True Positive Rate (TPR), False Positive Rate (FPR), Correct Model Selection Rate (CMSR) .
Robustness to Outliers: Breakdown Point Analysis

Table 4: Prediction Accuracy (MAE & MSE)

Method MAE MSE
Reciprocal Lasso 1.25 2.48
Adaptive Lasso 1.38 2.80
S-Estimator Lasso 1.50 3.10

Table 4 shows that Reciprocal Lasso achieves the lowest MAE and MSE, confirming its superior predictive accuracy
compared to alternative methods.
Table 5: Variable Selection Performance (TPR, FPR, CMSR)

Method TPR FPR CMSR
Reciprocal Lasso 0.91 0.08 0.85
Adaptive Lasso 0.85 0.12 0.78
S-Estimator Lasso 0.80 0.15 0.72

Table 5 highlights that Reciprocal Lasso maintains the highest TPR and CMSR while keeping the lowest FPR,
ensuring more reliable variable selection.

Table 6: Robustness and Computational Efficiency

Method Breakdown Point Computational Time (seconds)
Reciprocal Lasso 0.52 2.4
Adaptive Lasso 0.45 2.9
S-Estimator Lasso 0.38 3.2

Table 6 confirms that the Reciprocal Lasso remains stable even with higher contamination levels and has a lower
computational cost compared to other methods.

To further illustrate the differences in performance, the following box plots compare prediction accuracy, variable
selection performance, and robustness metrics.
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Figure 5: Real Data Variable Selection Performance (TPR, FPR, CMSR)
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Figure 6: Real Data Robustness and Computational Efficiency

The real-data evaluation confirms that Reciprocal Lasso consistently outperforms Adaptive Lasso and S-Estimator-
based Lasso across all evaluation metrics. The method achieves: Lower MAE and MSE, maintaining high predictive
accuracy. Higher TPR and CMSR with lower FPR, ensuring reliable variable selection. Greater robustness, with the
highest breakdown point and lowest computational cost. These findings validate Reciprocal Lasso as a robust and
efficient method for medical data modeling, making it a valuable tool for high-dimensional clinical applications.

5. Conclusion and Discussion

This study introduced Reciprocal Lasso, a novel regularization method designed to improve robustness in high-
dimensional regression by dynamically adjusting penalization based on coefficient magnitudes. Unlike traditional
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Lasso, which applies uniform shrinkage to all coefficients, Reciprocal Lasso enhances sparsity while mitigating the
influence of outliers. The method was further strengthened by integrating Tukey’s Biweight Loss Function and MM-
Estimators, which provided additional resistance against extreme values.

Through a comprehensive simulation study, Reciprocal Lasso demonstrated superior predictive accuracy, a higher true
positive rate (TPR), and greater robustness compared to Adaptive Lasso and S-Estimator-based Lasso. The results
confirmed that Reciprocal Lasso achieves lower Mean Absolute Error (MAE) and Mean Squared Error (MSE) while
maintaining a higher breakdown point, making it a more reliable method for contaminated datasets.

The application to real-world medical data further validated its effectiveness, showing that Reciprocal Lasso
accurately selected key biomarkers associated with disease progression while remaining stable against data anomalies.
Compared to existing robust penalization methods, it achieved the lowest false positive rate (FPR) and the highest
correct model selection rate (CMSR), ensuring reliable feature selection.

These findings emphasize the importance of integrating robust regularization techniques in medical research, where
datasets are often high-dimensional and contain noise. Future research could explore extending Reciprocal Lasso to
Bayesian frameworks, applying it to genomic datasets, and optimizing its computational efficiency for large-scale
clinical studies.
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