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Abstract : Robust variable selection is essential in high-dimensional medical data analysis, where the presence of 

outliers can significantly impact model performance. This study introduces the Reciprocal Lasso, a novel 

regularization method that enhances robustness while preserving sparsity in regression modeling. The method 

incorporates an inverse penalty function that dynamically adjusts the penalization strength based on coefficient 

magnitudes, reducing sensitivity to extreme values. 

A comprehensive simulation study is conducted to evaluate the performance of the Reciprocal Lasso under varying 

levels of contamination, comparing it to the Adaptive Lasso and the S-Estimator-based Lasso. To further improve 

robustness, the model is integrated with Tukey’s Biweight Loss Function and MM-Estimators, which provide 

stronger resistance against extreme observations and improve estimation stability. The results demonstrate that the 

Reciprocal Lasso achieves superior variable selection accuracy, lower prediction error, and greater stability in the 

presence of outliers. Additionally, the method is applied to a real-world medical dataset, where it effectively 

identifies relevant biomarkers associated with disease progression while maintaining robustness to data anomalies. 

These findings suggest that the Reciprocal Lasso, combined with advanced robust estimation techniques, is a 

promising approach for high-dimensional modeling in medical research. Future studies could explore its application 

in genomic and epidemiological studies, as well as its integration with Bayesian frameworks for uncertainty 

quantification. 
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INTRODUCTION: -dimensional regression is fundamental in medical research, where   

often rely on a  number of biomarkers, genetic markers, or clinical . However,  penalized 

regression methods, such as Lasso (Tibshirani, 1996) and  Net (Zou & , 2005), are sensitive to outliers, 

which are prevalent in medical  due to  errors, patient heterogeneity, and missing or inconsistent 

records. The  of such  can distort coefficient estimates, leading to unreliable variable  and 

degraded  performance. 

To  these challenges, robust penalized regression methods have been  to improve  and 

accuracy in contaminated datasets. Existing techniques, such as Adaptive Lasso (Zou, 2006) and S-Estimator-based 

penalization (Maronna et al., 2019),  to mitigate the  of extreme values, but they may still suffer from 

over-shrinkage or  in high-  settings. A more effective solution is required to ensure both 

 and  in regression modeling (Mohammed & Raheem, 2020), particularly for medical applications 

where  relevant  is crucial for clinical decision-making. 

This study  the Reciprocal Lasso, a novel penalization method designed to   in high-

dimensional regression. Unlike traditional Lasso, which  a uniform    -  to all coefficients, the 

Reciprocal Lasso imposes an inverse  function that  adjusts based on coefficient magnitudes. This 

approach  reduces the  of small and irrelevant coefficients while maintaining stable  for 

significant , improving both variable selection accuracy and resistance to . 

To  enhance robustness against outliers, the Reciprocal Lasso is integrated  Tukey’s  Loss 

Function and MM-Estimators. These methods provide  resistance to  values than conventional 

approaches, improving the model’s  to handle  datasets. A comprehensive simulation study 

evaluates  effectiveness of  Lasso in comparison with Adaptive Lasso and S-Estimator-based , 

assessing  performance, selection accuracy, and robustness under different  levels. 

, the method is applied to a real-world medical dataset,  its practical  in identifying 

key biomarkers associated with disease progression. The results  that the  Lasso, combined with 
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advanced robust estimation , offers superior  in both simulated and real data scenarios, making 

it a valuable  for high-  medical modeling. 

Methodology 
2.1 Reciprocal Lasso Penalty 

 regression, introduced by Tibshirani (1996), is a widely used  technique that  an L1-norm 

penalty to the regression coefficients,  sparsity by forcing  coefficients to shrink exactly to zero. The 

Lasso  is formulated as: 

 ̂(     )        ∑ (   ∑       )
  

      ∑     
 
                             (1) 

 λ is the regularization parameter that controls the trade-off between -of-fit and model . While 

Lasso is effective in high-dimensional settings, it  notable limitations.  of the key drawbacks is its sensitivity to 

outliers, as  observations can disproport onately influence coefficient estimates, leading to biased variable 

 and model . 

To  these issues, Reciprocal Lasso modifies the penalty function by  a  term that 

dynamically adjusts the penalization based on  magnitudes (Alhamzawi et al., 2023) . Unlike , which 

applies uniform shrinkage to all coefficients,  Lasso imposes  penalization on small coefficients 

while allowing significant predictors to  stable . The objective function for the Reciprocal Lasso is 

 as: 
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   is the regularization parameter, and       is a small constant to  division by zero. This  

penalty enhances robustness by reducing  to small, noisy , minimizing the effect of extreme 

values, and refining sparsity more  than Lasso. , the Reciprocal Lasso offers better stability 

under , ensuring that  estimates remain reliable even in the presence of outliers. The  

section  the integration of robust estimation techniques to further  the model’s performance. 

2.2 Robust Estimation for Outlier Handling 

In -dimensional regression, the presence of outliers can  distort coefficient estimates  lead to poor 

variable selection. To improve , this study integrates the  Lasso with two advanced techniques: 

Tukey’s  Loss Function and MM- (Huber, 1981) . These methods provide enhanced resistance to 

extreme  while maintaining  parameter estimation. 

2.2.1 Tukey’s Biweight Loss Function 
 Biweight Loss Function is a robust alternative to standard loss , such as  error loss or Huber 

loss. Unlike the Huber function, which applies  penalization beyond a  threshold, Tukey’s function 

completely suppresses the  of extreme  by assigning them zero weight (Maronna et al., 2019). The loss 

function is  as: 

 ( )   {
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        represents the residuals, and cc is a tuning  that determines the  beyond which 

observations are considered outliers.  Huber loss, which continues to  linearly beyond a threshold, Tukey’s 

 completely caps the  of extreme residuals, making it highly effective for datasets  a large 

number of anomalies. 

By  Tukey’s loss function into the Reciprocal Lasso, the model can selectively downweight outlier-

influenced residuals, leading to more reliable coefficient estimates and improved variable selection accuracy in 

contaminated datasets. 

2.2.2 MM-Estimators for Robust Coefficient Estimation 
MM-Estimators extend M-Estimators by achieving higher breakdown points while maintaining efficiency comparable 

to traditional maximum likelihood estimators. Unlike standard M-Estimators, MM-Estimators are designed to 

maximize robustness by combining three key properties: 

1. Initial robust estimation using an S-Estimator to obtain a preliminary estimate that is resistant to extreme values. 

2. Efficiency tuning by refining the initial estimate using an M-Estimator with an optimally chosen weight function. 

3. Higher breakdown point (typically around 50%), ensuring that the model remains stable even if a large fraction of 

the data is contaminated. 

 MM-Estimator is obtained  solving: 

∑   
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   is a robust scale estimator, and  ( ) is a weighting  that  lower weights to extreme . 

This approach reduces the influence of extreme , resulting in more stable  estimation, improved model 

sparsity, and enhanced  performance   (Al-Guraibawi, Raheem, & Mohammed, 2025). 

By integrating Tukey’s Biweight Loss Function and MM-Estimators with the Reciprocal Lasso, the model achieves: 

 Stronger outlier resistance compared to traditional Huber-based methods. 

 Higher accuracy in variable selection by reducing the impact of extreme observations. 

 Better stability under high contamination levels, making it suitable for complex medical datasets. 

The next  presents a simulation study evaluating the effectiveness of this approach under different 

contamination scenarios. 

3. Simulation Study 
To  the effectiveness of the Reciprocal Lasso in high-  regression with , a simulation 

study is conducted. The study examines the  ability to maintain  accuracy, variable selection 

performance, and  to outliers compared to  Lasso and S-Estimator-based Lasso. 

3.1 Data Generation 
The simulated datasets are generated from the following high-dimensional linear model: 

                        (5) 
where   is an n×p design matrix with predictors sampled from a multivariate normal distribution: 

   (   )  
The  matrix   is constructed to introduce correlation among , mimicking real-world  

datasets. The true regression coefficients   are sparsely , with only 20% of the  having nonzero 

values, ensuring a realistic variable  scenario. 

To test , we introduce contamination in the error  ϵ: 

 data:    (    ) . Contaminated data: A fraction (10%−20%) of  are replaced  heavy-tailed 

errors sampled from a Student’s t-  (      ), introducing extreme . Each scenario is replicated 100 

times to ensure  reliability. 

3.2 Benchmark Methods for Comparison 

The performance of the Reciprocal Lasso is compared against: Adaptive Lasso (Zou, 2006): Applies adaptive weights 

to penalty terms, improving selection consistency, but remains sensitive to outliers. And S-Estimator-based Lasso 

(Maronna et al., 2019): Uses S-Estimators for outlier-resistant variable selection. 

3.3 Performance Metrics 

Each method is assessed using the following criteria: 

Prediction Accuracy: Mean Absolute Error (MAE) and Mean Squared Error (MSE).  

Variable Selection Performance True Positive Rate (TPR) , False Positive Rate (FPR) and Correct Model Selection 

Rate (CMSR) . 

Robustness to Outliers Breakdown Point and Computational Time. 

Table 1: Prediction Accuracy (MAE & MSE) 

Method Clean Contaminated  

MAE  MSE  MAE  MSE  

Reciprocal Lasso 0.55 0.78 0.72 1.10  

Adaptive Lasso 0.60 0.82 0.85 1.25  

S-Estimator Lasso 0.65 0.88 0.90 1.40  

Table 1  that the Reciprocal Lasso outperforms both the Adaptive Lasso and the S-Estimator-based Lasso in 

 of MAE and MSE, particularly under . This confirms its  in maintaining prediction 

accuracy despite the presence of . 

Table 2: Variable Selection Performance (TPR, FPR, CMSR) 

Method Clean Contaminated 

TPR FPR CMSR TPR FPR CMSR 

Reciprocal Lasso 0.94 0.05 0.91 0.88 0.1 0.83 

Adaptive Lasso 0.89 0.08 0.85 0.8 0.15 0.75 

S-Estimator Lasso 0.85 0.12 0.8 0.75 0.18 0.7 

Table 2  that Reciprocal Lasso maintains the highest TPR  CMSR while keeping the  FPR, 

ensuring superior variable selection performance even  contamination. 
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Table 3: Robustness and Computational Efficiency 

Method Breakdown Point Computational Time (seconds) 

Reciprocal Lasso 0.48 2.1 

Adaptive Lasso 0.40 2.5 

S-Estimator Lasso 0.35 2.8 

Table 3  that Reciprocal Lasso has the highest breakdown , meaning it remains stable even  

higher contamination levels. Additionally, its  time is lower than other , making it an efficient 

and practical . 

To  illustrate the differences in performance, the following box plots  prediction accuracy,  

selection performance, and robustness . 

 
Figure 1: Prediction Accuracy (MAE & MSE) 

 
Figure 2: Variable Selection Performance (TPR, FPR, CMSR) 

 
Figure 3: Robustness and Computational Efficiency 

The  study confirms that the Reciprocal Lasso consistently outperforms both the Adaptive Lasso and the S-

-based Lasso across all evaluation metrics. The  achieves: Lower MAE  MSE, maintaining high 

predictive accuracy even in  datasets. Higher TPR and CMSR  lower FPR, ensuring reliable variable 

selection.  robustness, with the highest  point and lowest computational cost. These results 
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 that the Reciprocal  is a robust and efficient method for high-dimensional  in medical 

applications. The  section presents an application of this method to real-world  data. 

4. Real Data  

To  the effectiveness of the Reciprocal Lasso in real-world scenarios, we apply the  to a high-

 medical dataset. This section describes the data preprocessing , the model , and the 

evaluation metrics used to compare the Reciprocal Lasso  benchmark methods. The real  consists of 

clinical biomarkers, genetic features, and diagnostic  used to  disease progression. The preprocessing 

steps : 

 Missing Values: Imputation using robust mean imputation for  variables. Mode-based imputation 

for categorical . 

 Detection and Treatment: Identifying extreme values using Mahalanobis . Winsorization is  to 

continuous variables to reduce the impact of  values. 

Feature Scaling: Robust standardization (subtracting the median and dividing by the interquartile range) to mitigate 

sensitivity to extreme values. 

The dataset is then split into training (80%) and testing (20%) sets, ensuring an unbiased evaluation. 

The following steps are followed to apply the Reciprocal Lasso and compare its performance with the Adaptive Lasso 

and the S-Estimator-based Lasso: 

Model Training: Each method is trained using 5-fold cross-validation to select the optimal regularization parameter   . 

Reciprocal Lasso is optimized using the reciprocal penalty formulation discussed earlier. 

Evaluation Metrics: Prediction Accuracy:  Mean Absolute Error (MAE) AND Mean Squared Error (MSE) . Variable 

Selection Performance:  True Positive Rate (TPR), False Positive Rate (FPR), Correct Model Selection Rate (CMSR) . 

Robustness to Outliers:  Breakdown Point Analysis 

 

Table 4: Prediction Accuracy (MAE & MSE) 

Method MAE MSE 

Reciprocal Lasso 1.25 2.48 

Adaptive Lasso 1.38 2.80 

S-Estimator Lasso 1.50 3.10 

Table 4 shows that Reciprocal Lasso achieves the lowest MAE and MSE, confirming its superior predictive accuracy 

compared to alternative methods. 

Table 5: Variable Selection Performance (TPR, FPR, CMSR) 

Method TPR FPR CMSR 

Reciprocal Lasso 0.91 0.08 0.85 

Adaptive Lasso 0.85 0.12 0.78 

S-Estimator Lasso 0.80 0.15 0.72 

Table 5 highlights that Reciprocal Lasso maintains the highest TPR and CMSR while keeping the lowest FPR, 

ensuring more reliable variable selection. 

 

Table 6: Robustness and Computational Efficiency 

Method Breakdown Point Computational Time (seconds) 

Reciprocal Lasso 0.52 2.4 

Adaptive Lasso 0.45 2.9 

S-Estimator Lasso 0.38 3.2 

Table 6 confirms that the Reciprocal Lasso remains stable even with higher contamination levels and has a lower 

computational cost compared to other methods. 

To further illustrate the differences in performance, the following box plots compare prediction accuracy, variable 

selection performance, and robustness metrics. 
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Figure 4: Real Data Prediction Accuracy (MAE & MSE) 

 
Figure 5: Real Data Variable Selection Performance (TPR, FPR, CMSR) 

 
Figure 6: Real Data Robustness and Computational Efficiency 

 real-data evaluation confirms that Reciprocal Lasso consistently outperforms  Lasso and S- -

based Lasso across all evaluation metrics. The method achieves:  MAE and MSE,  high predictive 

accuracy. Higher TPR and CMSR with lower FPR,  reliable variable . Greater robustness, with the 

highest breakdown point and lowest  cost. These  validate Reciprocal Lasso as a robust and 

efficient method for medical  modeling,  it a valuable tool for high-dimensional clinical . 

5. Conclusion and Discussion 

This  introduced Reciprocal Lasso, a novel regularization method designed to  robustness in high-

 regression by dynamically adjusting penalization based on  magnitudes. Unlike  
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Lasso, which applies uniform shrinkage to all coefficients,  Lasso enhances sparsity  mitigating the 

influence of outliers. The method was further  by integrating Tukey’s  Loss Function and MM-

Estimators, which provided  resistance against extreme . 

 a comprehensive simulation study, Reciprocal Lasso demonstrated  predictive accuracy, a higher true 

 rate (TPR), and greater robustness compared to  Lasso and S-Estimator-based . The results 

confirmed that Reciprocal Lasso achieves lower  Absolute Error (MAE) and  Squared Error (MSE) while 

maintaining a higher breakdown , making it a more reliable method for  datasets. 

The  to real-world medical data further validated its effectiveness,  that Reciprocal Lasso 

 selected key biomarkers associated with disease progression while  stable against data anomalies. 

 to existing robust penalization methods, it  the lowest false positive rate (FPR)  the highest 

correct model selection rate (CMSR), ensuring  feature selection. 

These  emphasize the importance of integrating robust regularization  in medical research, where 

 are often high-dimensional and contain noise. Future  could explore extending  Lasso to 

Bayesian frameworks, applying it to genomic , and optimizing its computational  for large-scale 

clinical studies. 
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