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Abstract : Semiparametric Single Index Models are important and essential tools for addressing the high-
dimensional problem, as they play an important role in the model-building process and selecting marginal variables.
In this research, some modern penal methods have been used, which assess the vector of parameters and
simultaneously select the variable for the quasi-parameter single indicator models (MAVE-LASSO) and MAVE-
Elastic net) to improve the accuracy and predictability of the model. In order to achieve this goal, simulation
experiments were conducted to demonstrate the preferences of the methods used in estimating and selecting the
variable for the model. Different models, different variations, different sample sizes, and real data of factors
influencing patients with blood diabetes were used for comparison and verification of the performance of these
methods in practice. The methods studied will be compared by relying on two benchmarks for comparison: the
average mean square error (AMSE) and the absolute average mean square error (AMAE), and the results will be
obtained based on the R-code.

Theoretically and simulation-wise, the MAVE-EN method for estimating and selecting important variables for a
single-indicator semi-parametric model has been shown to be effective in dealing with cases of high correlation
between explanatory variables in the presence of different variances.
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INTRODUCTION: Previous studies have Semiparametric single index models have gained significant
attention due to their flexibility and effectiveness in handling high-dimensional data[7]. These models
extend traditional linear regression by incorporating a nonparametric link function, allowing for more
complex relationships between variables[8]. Estimation and variable selection within these models have
been enhanced through the development of modern penalized methods such as LASSO and Elastic Net,
which enable simultaneous estimation of parameters and identification of important variables, [7].

Research has shown that penalty functions like LASSO, and Elastic Net [20], improve model
interpretability and prediction accuracy, especially in datasets with multicollinearity or noise. Zou and
Hastie demonstrated the advantages of Elastic Net in dealing with highly correlated variables by combining
L1 and L2 penalties, leading to more stable variable selection[20], the oracle properties of adaptive
LASSO, which can identify true significant variables with high probability. These techniques are
particularly useful in high-dimensional settings where traditional methods may fail or suffer from over
fitting[9].

In practical applications, such as medical studies, the use of penalized semi-parametric models has

been instrumental in selecting relevant factors influencing health outcomes. For example, in the

study of gestational diabetes, variable selection techniques have identified key predictors, which

improved the understanding of the disease’s risk factors and contributed to better clinical decision-

making.

These methods simultaneously estimate model parameters, select relevant variables, and determine

the appropriate link function.,

These methods have since become state-of-the-art tools, applied extensively in genomics for gene selection,
in finance for constructing risk scores, and in econometrics for analyzing complex consumer behavior,
demonstrating their power and flexibility across disciplines.
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Semi-parametric single index model:

The single index model (SIM) is one of the most commonly used semi-parametric models in econometrics.
It was introduced by [1] and its estimation methods were further developed by [2]. This model allows the
conditional mean of the response variable to be a non-parametric function of a linear combination of the
predictive variables [3], [4]. The semi-parametric single index model can be mathematically represented as
follows:

Y =g9g(XT0) + ¢ @

And its conditional expectation function (link function):

2
Where:

T .
e Y=(y,.¥,.-..y,) represents the response variable of order nx1,
T . .
o X=(X1,x2,..., xp) represents the predictor variable vector of order px1,

T . . . .
o 9=(91,62,..., ep) represents a p-dimensional vector of unknown parameters, representing the parametric

part of the model, and satisfying the 676=1 or ||6||=1 condition for model diagnosis.

e g(X'0) represents an unknown, measurable link function, constituting the nonparametric part of the
model.

e ¢ represents a random error with a normal distribution, a mean of zero, and a variance specified by o2,
satisfying E(e|X"0)=0

This model has a single linear component for the explanatory variables, through which most of the
information about the relationship between the response variable and the explanatory variables can be
obtained, thus avoiding the curse of dimensionality. The semi-parametric single index model (SSIM) can be
estimated using a two-step estimation procedure. In the first step, the parameter vector b is estimated to find
the index value (X{0). In the second step, the index values for each observation are used to estimate the link
function g(X'0) using univariate nonparametric regression as a preliminary function that depends on the
data (X] 0,Y;) (Kong & Xia, 2007; Naik, 2001).

1. Advantages of SIM:

The SIM has numerous advantages, which have been studied by many researchers in various fields,
including economics and sociology. These advantages can be explained as follows:

1- The SIM does not assume a known link function g(.), and thus is more flexible and less restrictive than
parametric models for conditional mean functions such as linear models and binary choice models [4].

2- The use of the single index model (SIM) reduces the risk of reaching misleading results [4].

3- Although nonparametric estimation of the conditional mean function increases flexibility and reduces
the risk of misspecification, it does not eliminate it, and the cost of this flexibility can be high for several
reasons, which are [2]:

a. The accuracy of nonparametric estimates decreases rapidly as the dimension of X increases. To obtain a
reasonable level of accuracy when X is high-dimensional, large sample sizes may be required.

b. Nonparametric estimates can be difficult to interpret when X is high-dimensional.

c. Nonparametric estimation does not allow for extrapolation and does not provide predictions for E[Y|X]
at points X that are not in the data. This is a serious drawback for analysis and forecasting. In contrast, the
single index model allows for boundary extrapolation and provides predictions for E[Y|X] at values of X
that are not in the data but are within the range of X0.

4- The SSIM has the ability to overcome the curse of dimensionality [5] through the index structure, since
X" is an index of the dimensions of X. At the same time, the parameter vector 6 can be estimated with the
same (-v/n) convergence rate achieved in parametric models for estimating the parameter vector 6, and it is
as accurate as a one-dimensional nonparametric model in estimating the link function g(X} 0) [6].

121



QJAE, Volume 27, Issue 4 (2025)

2. Variable Selection:
Variable selection technique is very important in many types of statistical modeling, including
semiparametric modeling, as it seeks to simultaneously reduce the chances of including irrelevant data and
minimize the effects of bias [7]. In many applications, we have large datasets where we need to identify the
number of important (significant) variables. These applications include finance, business, medicine,
engineering, environment, sociology, and others. The process of variable selection is an important part of
most applications, and its importance becomes apparent when the true function is nonlinear and the dataset
often contains multicollinearity or outliers. It is known that including a large number of variables in a
regression equation for any phenomenon or study costs time, effort, and money, and the presence of some
non-essential variables in their effect on the dependent variable or their effect is similar to the effect of
other variables or these variables have a high internal correlation among them, which makes their effect
insignificant, which calls for the exclusion of such variables. In this research, modern techniques were used
in the process of selecting significant variables based on different penalty functions, namely the lasso [8]
and elastic net [9] penalty functions. These techniques have emerged since 1990 and are called penalty
methods, which is an alternative approach to variable selection in linear regression models. These methods
have been described for semiparametric models, including the single index model, which has a behavior in
estimating and selecting variables in the modeling process itself, i.e., it works on estimating the parameter
vector 6 and the link function g(.) and automatically selecting significant variables at the same time [10].
3. Penalized likelihood:
The role of the penalty function is to prevent overfitting, meaning that a model with many input variables is
suboptimal (not significant). When the correct model is sparse, meaning that the dependent variable
depends only on a small number of input variables (significant), the penalty function relies on the penalty
parameter (A). Through this parameter, a penalty limit is set, and this limit will push towards obtaining very
large parameters, while parameters that are smaller than the penalty value will have a value of zero, thus the
selection of the appropriate model is automatic [11], [12].
[13] argues that a good penalty function should lead to an estimator with three essential properties:
“unbiasedness”, “sparsity”, and “continuity”. The penalty functions used in this research are:
5.1 LASSO Penalty function:
It was previously proposed by [8] and is also called the [; penalty function and has the following form:

Py (16;])=2104 3)
5.2 Elastic Net Penalty function:
It was proposed by [9] and is a combination of the [; penalty (lasso) and [, penalty (ridge) [14]. It has
advantages over the traditional I; penalty because the elastic net penalty function can handle highly
correlated groups of variables. The elastic net penalty function is given by the following formula:

P (6 ]) P12 (6%) =1, |0;]+1,0 (4)

4. Penalty parameter selection:
The penalty parameter is also known as the tuning parameter and is denoted by A. The penalty parameter
plays a crucial role in the process of selecting significant variables and also controls the degree of shrinkage
of the estimator. Therefore, it is important to determine it accurately and appropriately. When analyzing
data in the scientific field, the value of the penalty parameter is unknown, so the researcher Chakrabarti &
Ghosh (2011) used the BIC criterion to determine the optimal penalty parameter lambda. This criterion was
used because it requires less computational effort and is calculated using the following formula [15], [16]:

BIC(1)=Iné-+df(2) "2 (5)
Where 6 represents the estimated standard error of the random error and is calculated according to the
following formula:

1 2
6= |2 [y, -8(X"6)] (6)
Where:
e D: Represents the dimension of 6,
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o §(X"0): Represents the estimated value of the link function,
o df(L): Represents the model's degrees of freedom and is determined by the number of non-zero
estimated parameters in 6,
e n: Sample size,
e \: The penalty parameter, and the results of the optimal penalty parameter are known through Ag;c.
5. Kernel density function selection:
The choice of a kernel function does not matter much in terms of obtaining a good approximation to the
correct density function, as its choice affects the shape of the estimate density. The researcher [16] points
out an important point regarding the selection of kernel functions and their inclusion. Any reasonable
choice of a kernel function produces reasonable results; thus, the choice itself is not of paramount
importance. The kernel function is selected to fulfill the following conditions:
1- [7K(u)du=1 is PDF
2- K(u)=K(—u) is symmetric

3- [2uK(u)du=0

4- [ :Z u?K (w)du=p, (K)#0 moments of kernel

5- K)=>0
6. Bandwidth parameter selection:
The bandwidth parameter, denoted by h, controls the level of smoothing in the estimation [17]. Selecting an
appropriate value for the bandwidth parameter is crucial for curve fitting, as this parameter plays a
fundamental role in the performance of kernel estimation. The choice of the bandwidth parameter requires
balancing bias and variance, which can be controlled by the mean squared error (MSE). If the bandwidth
parameter is too small, the bias will be low but the variance will be high, resulting in an under smoothed
density estimate. Conversely, if the bandwidth parameter is too large, the bias will be high but the variance
will be low, leading to an over smoothed density estimate that distorts the true shape of the density function
[12].
Since the basic idea of choosing the bandwidth is to minimize the MSE and in this research, the cross-validation
method will be used for the ease of its calculation and its structure is applicable to any regression model and it is
calculated by constructing a C.V function by excluding one observation at a time in the following way:

2
CV(y=n" T, [y-¢,(X™0)] (7)
Then the estimation of the link function g_i(XTG) is calculated for all observations and in each time one

observation is excluded and then the initial value (bandwidth) corresponding to the smallest C.V is chosen
[18].

7. Semiparametric estimation methods for SIM:

9.1 MAVE-LASSO:

[19] introduced the “Minimum Average Variance Estimation (MAVE)” method for semiparametric models,
particularly the SIM. This flexible and easy-to-implement method offers a simple computational approach
through local linear approximation, transforming complex nonlinear optimization problems into linear
minimization problems. [16] proposed a MAVE estimation method with a Lasso penalty for the SIM to
simultaneously estimate and select variables.

All Lasso estimation solutions rely on the soft-thresholding rule when X is orthonormal, meaning: X'X = |
(where 1 is the identity matrix)

014550 = sign (9 )(9 —/1/2) + j=12,..,p

Jols Jols
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(A _ .
0 M2 if 6 >
0= 0 if [0, (<A2 (8)

Lej o M2 if 6 <2

Therefore, the lasso idea can be applied to SSIM to obtain both parameter vector estimates and the link
function simultaneously through the following formula:

2
Q(g,@):arg i1 in1 (Yi'g (XlTe)) +h Z£=1 | Ok Lasso | ©)

When we have a large number of variables (P), this causes the problem of the curse of dimensionality,
where the data becomes sparse. Consequently, the process of building the model becomes more complex.
To overcome this problem, the MAVE method can be used in conjunction with the LASSO penalty
function to estimate a semi-parametric single index model (SSIM). This method was proposed by [16], by
estimating the parameter vector using the following approach.

2
GMAVE-LASSO:arg PPN (Yi'aj 'ijge) Wit szl | Bkasso | (10)
9:| 0] |=1aj,bj=l,2,. .,h

Where:

W;;: weight (Kernel) and it is a function of the distance between Xi and X
B =B, + ... + |Bp| : is the L norm of B

And the calculation of the aforementioned minimization problem can be solved by minimizing two
subproblems:

According to the (LASSO - MAVE) algorithm for SSIM. [4]

Step (1):

Suppose an initial estimate of the parameter 6 is obtained using the OLS method or any arbitrary vector of
dimension p.

Step (2):

We set 6,=0 and compute the solution vector (aj,bj) according to the following equation:

-1

& 1 1 1
HESEYRATEN NN AR
O I (LU
Where: w;=k; (X;;00) ST (12)
Step (3):
4 and b are determined and the parameter vector 6 is estimated according to the following formula:
2
e1\/1AVE_LAsso:arz‘% Zjnzl X (yi'éj'ﬁjxge) ~Wij+7‘ ZE:1 |y | (13)
Step (4):
The iterative procedure of steps 1 and 2 is repeated using OO:sign(Gl)ﬁ until convergence to

obtain the MAVE-LASSO estimator. The final link function g(.) is estimated as 8;=8(u,0y;s v asso)-

9.2 MAVE-Elastic Net:
[8] showed that the Lasso-penalty function lacks the Oracle property and these properties are represented
by consistency in the choice of the variable, that is, the estimation of the parameters is exactly equal to zero,
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and this means that the probability of excluding the non-significant variable tends to one when n—c and
this property is called sparsity, and the second property is that non-zero parameters are efficiently estimated
when the correct model is known and this property is approximated to optimization. The researchers also
found that the lasso method has a bias in estimating non-zero coefficients and also showed that it does not
have the Oracle property. In addition, Lasso does not deal with variables that are interconnected in groups,
which prompted the researcher [20] to propose the elastic net method, where the Ridge penalty function
was added to the Lasso penalty function to solve to deal with variables that are interconnected in groups.
According to the (EN - MAVE) algorithm for SSIM.

Step (1):

Suppose an initial estimate of the parameter 6 is obtained using the OLS method or any arbitrary vector of
dimension p.

Step (2):

We set §,=0 and compute the solution vector \\\(a;,b;\\\) according to the following equation:

@)_{ iy (Xlﬁé) (X%G)}_l ) (xfge)yi (1)

k((XF0,-x100)h
Where: wgozkh(xgeo): (% 00 00))

k(X Oo-x] B0)h) (12)

Step (3):

4 and b are determined and the parameter vector 6 is estimated according to the following formula:

2
Onave-Lasso=arg Xt X (vi-4; -6;X50) Wi tA Xh_ 0] + A X0, O (13)
Step (4):

The iterative procedure of steps 1 and 2 is repeated using 8y=sign(0,) 0

I
obtain the EN-LASSO estimator. The final link function g(.) is estimated as éj=g(u,éM AVE-EN)"

until convergence to

10- A simulation study

In this section the simulation was used for the purpose of comparing the methods used in this study. We
used the criteria (AMSE) and (AMAE) for the purpose of comparing the method (MAVE-LASSO) and
(MAVE-EN) using the R code.

1 A\ 2
AMSE =2E ¥, (Y, - g(xT )
AMAE = ~E 1, |Y; — (X[ B)|
Example 10.1: R = 200 datasets with size n = 25, 50, and 100 were generated from y =1 + Z(XTﬁ +
1)1og(3|XT[3| + 1) + ¢ and ¢ are independent and are identically distributed (i.i.d) from an N (0,02),
and o0%=(1,59), B=(04, —0.4, 0.8, —0.2, 0, 0, 0, 0)", X € R® The multivariate normal
distribution N(0, X) is used to simulate the design matrix X, where 2;; = pli-ilforalll <i <j < p,
and p = (0.1, 0.9).
Example 10.2: R = 200 datasets with size n = 25, 50, and 100 were generated from y = 5 cos(X”B) +
exp(—XTB) + ¢ and ¢ are independent and are identically distributed (i.i.d) from an N (0,02%), and
d?=(1,5,9), = (0.4, —0.4, 0.8,—0.2,0,0,0,0)7, X € R®, The multivariate normal distribution N(O,
%) is used to simulate the design matrix X, where X;; = pli=ilforalll < i < j < p,andp = (0.1,0.9).
Example 10.3: R = 200 datasets with size n = 25, 50, and 100 were generated from y = sin(X7 ) + ¢ and
¢ are independent and are identically distributed (i.i.d) from an N (0,02%), and ¢2 = (1,5,9), B =
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(0.4, —0.4, 0.8,—0.2,0,0,0,0)7, X € R®, The multivariate normal distribution N(0, ¥) is used to simulate
the design matrix X, where £;; = pl=/l forall1 < i < j < p,and p = (0.1,0.9).
Table (1): Results of example 10.1

AMSE AMAE

p n Methods
gt=1 g?=5 a2=9 at=1 g2=5 d2=9
o5 MAVE-LASSO 0.0237 0.2013 0.2262 0.1116 0.2886 0.3192
MAVE-EN 0.0243 0.2011 0.2244 0.1118 0.2881 0.3192
01 50 MAVE-LASSO 0.0169 0.1001 0.2215 0.0842 0.1825 0.2628
MAVE-EN 0.0171 0.1002 0.1957 0.0844 0.1826 0.2488
100 MAVE-LASSO 0.0097 0.0559 0.0928 0.0582 0.1326 0.1729
MAVE-EN 0.0097 0.0559 0.0928 0.0582 0.1326 0.1729
o5 MAVE-LASSO 0.0199 0.1315 0.2477 0.0979 0.2526 0.3508
MAVE-EN 0.0195 0.1306 0.2584 0.0960 0.2499 0.3729
09 50 MAVE-LASSO 0.0160 0.0788 0.1515 0.0893 0.1648 0.2554
MAVE-EN 0.0159 0.0783 0.1499 0.0893 0.1623 0.2513
100 MAVE-LASSO 0.0085 0.0479 0.0681 0.0589 0.1092 0.1057
MAVE-EN 0.0085 0.0479 0.0683 0.0589 0.1089 0.1064

Based on the results in Table (1), by comparing the performance of MAVE-LASSO and MAVE-EN based on AMSE
and AMAE values, we find that the two methods have very similar performance in most cases, with a slight edge for
MAVE-EN in certain instances, especially when p=0.9 and for larger n values, where MAVE-EN shows slightly lower
AMSE and AMAE values in several cases .Overall, MAVE-EN can be considered the better choice when aiming for
the lowest values, though the difference is minor, making both methods highly effective.

Table (2): Results of example 10.2

P 0 Methods AMSE AMAE
gt=1 g?=5 d2=9 a?=1 g?=5 d2=9
- MAVE-LASSO 0.0729 0.1784 0.2582 0.1671 0.2605 0.3358
MAVE-EN 0.0713 0.1971 0.2583 0.1650 0.2776 0.3356
MAVE-LASSO 0.0583 0.1211 0.1465 0.1320 0.2146 0.2304
01 %0 MAVE-EN 0.0580 0.1210 0.1467 0.1315 0.2145 0.2302
MAVE-LASSO 0.0118 0.0598 0.1068 0.0653 0.1356 0.1817
100 MAVE-EN 0.0117 0.0598 0.1068 0.0652 0.1357 0.1817
MAVE-LASSO 0.0234 0.2122 0.2227 0.1128 0.3312 0.3539
2 MAVE-EN 0.0238 0.1387 0.2243 0.1136 0.2593 0.3548
MAVE-LASSO 0.0144 0.1269 0.1382 0.0773 0.2327 0.2145
09 % MAVE-EN 0.0144 0.0812 0.1351 0.0773 0.1958 0.2067
MAVE-LASSO 0.0088 0.0440 0.0901 0.0556 0.1251 0.1633
100 MAVE-EN 0.0088 0.0440 0.0897 0.0557 0.1253 0.1622

Based on the results in Table (2), comparing the performance of MAVE-LASSO and MAVE-EN in terms of AMSE
and AMAE values shows that the two methods perform quite similarly overall, with MAVE-EN demonstrating a
slight advantage in certain cases. Specifically, MAVE-EN performs slightly better at higher n values and often shows
lower AMSE and AMAE values for some combinations of 2 when p=0.9.

In summary, while both methods are highly effective, MAVE-EN can generally be considered the better choice for
obtaining lower values, although the difference remains minor.
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Table (2): Results of example 10.3

) N Methods AMSE AMAE
g?=1 g?2=5 g%2=9 g?=1 o? = o? =

5 MAVE-LASSO 0.0233 0.1045 0.2899 0.0952 0.2185 0.3412
MAVE-EN 0.0226 0.0971 0.3002 0.0958 0.2161 0.3429
01 50 MAVE-LASSO 0.0158 0.0647 0.1100 0.0774 0.1464 0.1980
MAVE-EN 0.0167 0.0671 0.1101 0.0784 0.1487 0.1981
100 MAVE-LASSO 0.0105 0.0487 0.0869 0.0571 0.1123 0.1691
MAVE-EN 0.0105 0.0395 0.0869 0.0571 0.1122 0.1689
5 MAVE-LASSO 0.0206 0.1277 0.3256 0.1078 0.2599 0.3927
MAVE-EN 0.0206 0.1268 0.2327 0.1076 0.2581 0.3259
0.9 50 MAVE-LASSO 0.0369 0.0661 0.1256 0.1090 0.1645 0.1946
MAVE-EN 0.0136 0.0660 0.1218 0.0691 0.1642 0.1943
100 MAVE-LASSO 0.0088 0.0407 0.0714 0.0536 0.1074 0.1198
MAVE-EN 0.0092 0.0405 0.0713 0.0583 0.1058 0.1200

Based on the results in the Table (3), MAVE-EN generally performs better in most cases. While MAVE-
LASSO shows good performance in some instances, MAVE-EN typically yields lower AMSE and AMAE
values, especially when n=50 and p=0.9. For example, at p=0.9 and n=50, MAVE-EN demonstrates a
noticeable reduction in both AMSE and AMAE compared to MAVE-LASSO, making MAVE-EN the
better choice overall for achieving lower values.

10- Real data:

In order to verify the performance of the methods used in this research, The methods have been applied to
the real data of Gestational Diabetes, where the sample of the study consists of 100 pregnant women whose
age is among 20-25 collected from Diwaniyah General Hospital, for the purpose of identifying the factors
influencing the future incidence of type 2 diabetes among pregnant women. The following variables were
selected based on the recommendations of some specialist doctors.

1. x,:Pregnancies: Number of times pregnant.

2. x,: Glucose: Plasma glucose concentration a 2-hours in an oral glucose tolerance test.

3. x3: Blood Pressure: Diastolic blood pressure (mm Hg).

4. x,: Skin Thickness: Triceps skin fold thickness (mm).

5. xs: Insulin: 2-Hour serum insulin (mu U/ml).

6. x¢: BMI: Body mass index (weight in kg/(height in m)"2).

7. x5 Diabetes Pedigree Function: Diabetes pedigree function.

8. xg: Age: Age (years).

9. y: Outcome: Class variable (0 or 1)

Table (4): Represents estimates of 8 parameters vector based on real data.

Method B B2 Bs Ba Bs Bs B Ps
MAVE-LASSO 0.2841 0.7437 0.3585 0.2333 0.1061 . 0.2243 .
MAVE-EN 0.3109 0.5211 0.2321 0.2381 0.2127 | 0.0.2243 | 0.2323

Table (5): MSE and MAE values based on values for real.
Method MSE MAE
MAVE-LASSO 0.0017 0.0216
MAVE-EN 0.0012 0.0209

The results of the real data shown in Table (4 and 5) were reached based on the R code and obtained the
estimates of the 8 parameters vector and the g(XT ) link function of the approved variant (y) and for the
MAVE-LASSO and MAVE-EN methods, we noted the following:
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o The MAVE-LASSO method excluded the x6 variant of IBM as non-significant and also excluded the x8
variant of age. It selected other variables as significant predictors of the target variable (y).
Vi = §6(0.2841x;; + 0.7437x;, + 0.3585x;3 + 0.2333x;, + 0.1061x;5 + 0.2243x;,

¢ The MAVE-EN method excluded one variable, xg, representing age, as it was deemed non-significant. It

selected the other variables, considering them as having a significant effect on the dependent variable (y).

Thus, the prediction model is as follows:

$; = §i(0.3109x;; + 0.5211x;, + 0.2321x;5 + 0.2381x;, + 0.2127x;5 + 0.2243x;4
+ 0.2323x;7

Conclusions:

e The results showed that the MAVE-EN method is the best for estimating the parameter vector and the link

function, as well as for selecting significant variables for gestational diabetes data, as it provides the lowest values for

the MSE and MAE criteria.

e For the MAVE-LASSO and MAVE-EN methods, we observed the following:

The MAVE-LASSO method excluded the IBM variable x6 as statistically insignificant, and also excluded the age

variable x8.

The MAVE-EN method excluded one variable, x8, representing age, as it was not statistically significant. It selected

the other variables, considering them to have a significant effect on the dependent variable (y).

e It can be concluded that the MAVE-EN method can be used for estimation and variable selection in a single-index

semiparametric model.

11- Recommendations:

In light of the theoretical aspect and based on the conclusions reached, the main recommendations are as follows:

e We recommend using the MAVE-EN method for estimating and selecting significant variables for the single-index

semiparametric model due to its efficiency in handling cases of high correlation among explanatory variables and in

the presence of varying variances.

e | recommend using alternative kernel functions, as well as employing various methods for calculating the

bandwidth parameter and utilizing it in semiparametric estimation methods specific to single-index models.

e | recommend using all the indicators used in the real data (Gestational Diabetes) except for the age indicator, as it

was excluded by the MAVE-EN method.
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