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Abstract : This study examined the impact of full or partial confounding factorial treatment on the experiment's
analytical outcomes. Three factors two kinds of herbicides B, two types of cotton C, and nitrogen fertilizer A are
included in the mean amount of seeds of a cotton plant. The outcomes were comparable. After comparing the results
using the experiment's mean square error (Mse), it was determined that employing partial confounding yields the best
outcomes in every situation.
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INTRODUCTION: One of the most basic duties that needs rigorous scientific methodology is executing
scientific experiments. In order to make the best use of the resources at hand, they attempt out the best treatments and
the major factors that affect experimental units. so selecting appropriate and efficient experimental structures is vital
for ensuring the validity and reliability of outcomes. per Montgomery (2020), a carefully planned design strengthens
the interpretability of interactions among experimental factors in addition to the accuracy of the conclusions.

When full factorial designs are not practical, new developments in the theory of partial factorial designs have led to
frameworks for optimizing experimental efficiency. For instance, researchers looked at current optimality criteria and
proposed ways to construct based on the idea of Yates' ordering, making complex designs easier to implement in
implementation. [9]. This approach becomes particularly useful when managing higher-order interactions. In a notable
application, the complete confounding of a triple interaction effect with an incomplete block was employed to reduce
the size of a full factorial layout from 27 experimental plots to just 9 plots thus significantly minimizing resource
consumption [3]

To manage experimental units more effectively, these units are divided into blocks based on a theoretical model for
constructing optimal blocked designs. Techniques such as doubling theory and second-order saturated designs are
used in accordance with the general minimum degree of interference criterion to prevent overlapping or contamination
among blocks [6]. This criterion ensures that the arrangement of treatments within blocks minimizes potential
interference and maintains statistical validity.

Study Problem:

When studying experiments for more than one factor that requires many experimental units, which are difficult to
provide, especially according to the conditions of the experiment, an approach was followed that depends on the
number of blocks within the replicates through Confounding experiments and knowing the effect of the Confound
significant and insignificant factors on the analytical results through the standard of the mean square error.

Study Objectives:

1. The research aims to address the problem of the large number of experimental units in factorial experiments using
the concept of the block within the replicate through Confounding experiments by taking more than one case and
comparing them with the Mse criterion.

2. The research aims to study the selection of Confounding factors and their effect on the analytical results of the
experiment.

3. The research aims to apply more than one method to the experimental units

Study significance and contributions:

1. This research is important as it tackles the challenge of handling numerous experimental units in factorial
experiments.
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2. 2. It was suggested to Confound the non-significant and high-degree effects together.
3. Explain the importance of the combined significant and non-significant factors.
1-Factorial Experiments
If I want to know the effect of two or more factors on a phenomenon, the researcher can conduct a simple experiment
for each factor. This procedure costs effort, time, money, and experimental materials. However, if the experimenter
wants to collect independent and separate pieces of information, the factors used in the simple experiments must be
independent. Therefore, it is necessary to conduct one experiment to demonstrate the independence of these factors.
This situation can be overcome by conducting one experiment for all factors at once [5].
2-Randomized Complete Block Design
When applying a completely randomized block design with r blocks, the factorial treatments are randomly allocated to
the experimental units within each block.
The formula of the mathematical model for the factorial experiment (A*B*C) implemented according to CRBD can
be as follows [4][7]
Yije =+ a;+ B+ (aB)ij + v + @i + (BY) jk + (aBY)ijx + pu
+ Ejjr @

i=12..,a ,j=12,..,b ,k=12,..,c,l=12,..,r
Were
Yijii - The observation value that took level i of factor A, level j of factor B, and level K of factor ¢ in block I, u :
Average value General of the experiment, a; : Impact value of level (i) of factor A, g; Impact value of level (j) of
factor B, y;: Impact value of level (k) of factor C, (aB);; The value of the interference effect of level i of factor A
with level j of factor B, (ay);,: The value of the interference effect of level i of factor A with level k of factor c,
(BY) i - The value of the interference effect of level j of factor A with level k of factor ¢, (aBy);jx The value of the
interference effect of level i of factor A with level j of factor B with level k of factor c, p; : block impact value I, The
value of the random error of the observation that took level (i) of factor A, level j of factor B, and level k of factor C,
which is within block 1.
3-Confounding
This design method is used without a block that accommodates all the factorial treatments. The primary goal of
working with the design idea is to reduce the size of the block to obtain a good estimate of the experimental error. [11]
3-1 Complete Confounding
This type of Confounding means that the effect is combined with the differences between blocks in all repetitions of
the experiment, as no information can be obtained about it at all and therefore it is not calculated in the analysis of
variance [1][8].

Figure (1) shows a factorial experiment of type 2° that contains a complete Confounding of the effect of

ABC
Replicate (1) Replicate (2) Replicate (3)
Block(1) Block(2) Block(1) Block(2) Block(1) Block(2)
(1) a (1) a (1) a
ab b ab b ab b
ac C ac C ac c
be abe be Abe be abe

Figure 1: Complete Confounding
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We note from the Figure above that the ABC effect is Confound into the difference between the two blocks in each of
the three iterations, and therefore it is completely Confound and is not calculated in the analysis.

3-2 Partial Confounding

This type of Confounding means that the effect is Confound with the differences between the blocks in one or some of
the repetitions of the experiment and not in all of them. Therefore, it is calculated in the analysis of the variance
experiment, as information about it can be obtained from the repetitions in which it was not confounded. And General
scheme of research [2][10]

Data experiment

v

Determine the factors

Complete Confounding Partial Confounding

SN

comparison

Figure 2: General Scheme for Research

4-Application
In this aspect, the data of a factorial experiment of 2° were analyzed through two axes:
the first was a Randomized Complete Block Design to determine the non-significant effects to benefit from in the
confounding process, and the second was the confounding of its two types, complete and partial, which was applied in
two blocks and then in four blocks for one replicate, and the confounding of the moral and non-moral effects and
observing their effect on the results of the experiment.
The study was carried out in Nineveh Governorate, Irag. Table (1) presents the mean number of roots per plant from
a 28 factorial experiment arranged in a Randomized Complete Block Desigh (RCBD). The experiment investigated the
effects of:
1. Two nitrogen fertilizer levels (Factor A).
2. Two herbicide types (Factor B).
3. Two cotton varieties (Factor C).

Table (1): Experiment data Average number of roots in cotton

Factor A Fag[or Factor C Block (1) Bl(c;;k B|(°3<;k Bl&gk Block (5) hX
bo Ca 11 10 7 12 13 53

a Ca 12 9 23 15 15 74

Co 10 11 9 20 11 61

by C, 12 13 13 17 10 65

Ca 13 13 11 9 16 62

By @) 14 15 14 11 15 69

& o Co 19 20 17 14 21 01

Cx 20 24 23 12 23 102

The following table shows the results that were reached in a Randomized Complete Block Design for an experiment,
which is considered the basis for implementing confounding
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Table (2): Analysis of variance for a (RCBD) of
a factorial experiment 2°

S.0.vV d.f SIS M.S F
Replicate 4 15.65 3.9125 0.28
Treatment Com. 7 380.975 54.425 *3.956
A 1 126.025 126.025 *0.161
B 1 93.025 93.025 *6.762
C 1 46.225 46.225 3.360
AB 1 99.225 99.225 *7.213
AC 1 99.225 99.225 0.089
BC 1 1.225 1.225 0.307
ABC 1 4.225 4.225 0.801
Error 28 385.15 13.755
Total 39 781.775

Table (2) reveals statistically significant differences (p < 0.05) among the main effects of factor A (nitrogen
levels) and factor B (herbicide types), as well as their interaction effect (AxB).
In addition, there is no significant effect of factor C and its interaction with other factors, as well as the lack of
significance of the triple interaction.
Complete confounding
Depending on the results of table (1) the effect of ABC will be confounding and the table below displays the analysis
outcomes.

Table (3): Analysis of variance for a factorial experiment with 2% Complete

confounding, where the ABC effect was the confound

S.0.V d.f S5 M.S F
Replicates 4 15.65 391 0.258
Block/Replicates 5 33.375 6.67 0.441
Treatment Com. 6 369.95 61.65 *4.078
A 1 126.025 126.025 *8.336
B 1 93.025 93.025 *6.153
C 1 46.225 46.225 3.057
AB 1 99.225 99.225 *6.563
AC 1 1.225 1.225 0.081
BC 1 4.225 4.225 0.279
Error 24 362.8 15.116
Total 39 781.775

Results in Table (3) show significant effects (p < 0.05) of factors A, B, and their interaction, along with a slight MSE
increase to 1.361.
Depending on the table (1) results, the effect of AC and AB will be confounding, and the following table shows the
comparison results for all cases.
Table (4) Complete confounding: comparing the results of
Two blocks in the repeater

Comparative Complete confounding
experiment
One block Two blocks in one repeater Two blocks in one repeater ~ Two blocks in one repeater AB
ABC AC
Cal. F 3.956 4.078 4127 3.415
Mse 13.755 15.116 15.333 13.75
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Table (4) indicates a noticeable increase in the MSE value in the case of combining non-significant interference
effects with a significant interference effect, corresponding to a noticeable decrease in the MSE value in the case of
combining non-significant interference effects with a significant main interaction effect.

Comparison of Cal. F and MSE under Complete Confounding (Two blocks)
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Figure 3: Comparison measures for Complete confounding 2 blocks

The figure shows that confounding in experimental designs is an effective tool for controlling variability, but it comes
with statistical costs. The confounded effect must be carefully selected to avoid mixing with major effects. In this
context, confounding the three-way interaction (ABC) is the least detrimental option, whereas confounding two-way
interactions (AC or AB) leads to a significant increase in MSE and a reduction in test power (Cal. F). Therefore, the
two-block design with confounding of (ABC) is considered the most balanced approach between controlling
variability and maintaining statistical analysis efficiency.
confounding of AB.AC and BC (the repeater contains four blocks). These interactions were chosen based on table (2),
one of which indicates their statistical significance.
Also, the effect of confounding the effect A, BC, and ABC (the repeater contains four blocks). These interactions were
chosen based on table (1), one of which indicates their statistical significance. The data was analyzed based on
Complete confounding, and the table (5) show the results of the comparison.

Table 5: Complete confounding: comparing the results of Four blocks in the repeater

Comparative experiment Complete confounding
One block Four blocks in one repeater Four blocks in one repeater
AB, AC, BC A, BC, ABC
Cal.F 3.956 3.695 5.962
Mse 13.755 18.2 10.05

Table (5) indicates a noticeable increase in the MSE value in the case of confounding non-significant interference
effects with a significant interference effect, corresponding to a noticeable decrease in the MSE value in the case of
confounding non-significant interference effects with a significant main interaction effect.

Comparison of Cal. F and MSE under Complete Confounding (Four blocks)
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Figure 4: Comparison measures for Complete confounding 4 blocks
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The results of table (5) and the figure (4) illustrate the effect of complete confounding when using four blocks as
follows:
1. For the Cal. F values, there is a slight decrease from 3.956 in the one-block case to 3.695 when confounding occurs
with (AB, AC, BC). However, a noticeable increase to 5.962 is observed when the confounding involves (A, BC,
ABC).
2. Regarding the MSE values, the trend shows a sharp increase from 13.755 (one block) to 18.200 under confounding
with (AB, AC, BC), followed by a substantial decrease to 10.050 when confounding occurs with (A, BC, ABC).
These findings suggest that complete confounding alters both Cal. F and MSE in opposite directions depending on the
type of confounding applied. Specifically, while one type of confounding inflates the error variance (MSE), another
reduces it considerably, which highlights the sensitivity of the model’s reliability to the confounding structure.
Partial confounding
confounding the effect of ABC and AB (the repeat contains two blocks). These interactions were chosen based on the
table (2), one of which indicates its statistical significance.
Also, the effect of confounding is the effect of ABC and AC (the repeat contains two blocks). These interactions were
chosen based on the table (2) and they are non-significant interactions. The data was analyzed based on Partial
confounding, and the countries (6) show the results of the comparison.

Table (6) Partial confounding: comparing the results of

Two blocks in the repeater

Comparative experiment Partial confounding
One block Two blocks in one repeater Two blocks in one repeater
AB, ABC AC, ABC
Cal. F 3.956 3.787 3.424
Mse 13.755 13.835 15.441

Table (6) indicates a noticeable increase in the value of MSE in the case of confounding non-significant interference
effects with a significant interference effect, corresponding to a noticeable decrease in the value of MSE in the case of
confounding non-significant interference effects with a significant main interaction effect.

Comparison of Cal. F and MSE under Partial Confounding
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Figure 5: Comparison measures for Partial confounding 4 blocks
Accordingly, the graph provides a visual representation of the differences between the values, showing that partial
confounding leads to a decrease in Cal. F values accompanied by a noticeable increase in MSE values.
5-Conclusion
1. Full and partial confounding techniques have proven their ability to control variance within an experiment,
especially when used to partition treatments into blocks. However, these techniques come with statistical costs that
depend on the appropriate selection of the effects to be confounded.
2. When fully confounding the non-significant three-way interaction (ABC) into two blocks, there was a slight
increase in the Mean Squared Error (MSE), while the calculated F-value retained acceptable statistical power
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confounding ABC thus becomes an ideal choice for reducing variance while still maintaining the value of the
statistical analysis.

3. The test's statistical power vanished when significant interactive effects such as AB) were merged with non-
significant effects (like AC or ABC). In the case of full confounding, four blocks of AB, AC, and BC exhibited a
discernible rise in the MSE value along with a decrease in the calculated F-value.

4. The MSE significantly decreased and the calculated F-value rose when significant main effects (like A) were
mistaken for with insignificant interactive effects (like BC and ABC). This improved the model's sensitivity and its
capacity to identify significant variations.

5. The results of partial confounding, such as conflating ABC with AC or AB, were in between the results from full
confounding and the basic experiment (RCBD), with the MSE rising and the measured F-value slightly falling. This
indicates that when confounding only non-significant effects, partial confounding offers a better balance than full
confounding.

6. Due to partial confounding reduces statistical risks when compared to full confounding, it's made a viable option
when the researcher is uneasy of how important the effects to be confounded are.

7. Because it leads to a loss of vital information and an increase in random variance (MSE), confounding significant
interactive effects (like AB in this experiment) should be avoided.

8. In order to preserve the statistical model's accuracy, confounding non-significant effects (ABC, AC, and BC) are
preferred.

9. Further confounding flexibility can be gained by designing blocks with four sections; yet, the confounded effects
have to be carefully chosen to prevent error or loss of statistical power.

10. All analyses proved that the main impacts of herbicides (B) and nitrogen (A), as well as their interaction (AB),
were significant, showing their importance in raising the number of roots on cotton plants.

11. The variety decision had no major impact on the applied experimental conditions, as determined by the non-
significance of the Variety effect (C) and its interactions with other factors.

12. A useful tool to boost the design of agricultural experiments, the confounding method specifically the full
confounding of ABC helped control variance without altering the findings regarding the significant effects.
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