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The annular geometry with inner cylinder eccentricity and 
rotation is significant in many thermal and engineering fields, 
particularly with non-Newtonian fluid flows. A numerical 
analysis examines the effects of rotation and eccentricity of the 
inner cylinder on the fluid flow and heat transfer characteristics 
of shear-thinning non-Newtonian fluids within annular 
geometry under developing steady laminar flow. The 
computational model simulates non-Newtonian annular flow 
using a power-law viscosity model for generalized Reynolds 
numbers (100 ≤ Reg ≤ 1000), flow behavior index (0.2 ≤ n ≤ 0.8), 
and Taylor number Ta = 104 with radius ratio r* = 0.5. The 
simulation employs hydraulic and thermal boundary 
conditions, including an adiabatic outer cylinder and a constant 
temperature at the inner rotating cylinder, while the outer 
cylinder remains stationary. Results show that axial flow at n = 
0.2 exhibits lower flow resistance and enhances convective 
transport compared to higher n = 0.8, especially for the 
concentric case (ε = 0). However, increasing eccentricity from  
The ε = 0.2 to ε = 0.6 range alters the heat transfer behavior, with 
n = 0.8 yielding the highest Nusselt numbers at ε = 0.6, due to the 
strong secondary flows and intensified local acceleration in the 
narrow gap. These outcomes reveal that heat transfer 
enhancement is not solely governed by flow resistance but is 
also influenced by secondary flows, boundary layer stability, 
and localized acceleration effects. 
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1 Introduction  
 
Fluids are broadly categorized into two key types: 
Newtonian and non-Newtonian. While Newtonian 
fluids maintain a constant viscosity independent of 
the shear rate, non-Newtonian fluids exhibit 
viscosity that varies with the applied shear rate, 
which leads to more complex and non-linear flow 
behavior. [1-3]. The GNF (Generalized Newtonian 

Fluid) formulation describes a subclass of non-
Newtonian fluids where viscosity is time-
independent. [4, 5]. Standard mathematical models 
used for these fluids include the Power-Law, 
Carreau, Ellis, Bingham, and Cross models. [6-9]. 
Investigating the flow dynamics of non-Newtonian 
fluids and their convective heat transfer 
characteristics in annular geometries is crucial for 
various engineering applications, including 
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polymer processing, lubrication systems, drilling 
operations, heat exchangers, biomedical devices, 
and the pharmaceutical industry. [10-12]. Annular 
configurations, particularly those involving inner 
cylinder rotation, introduce centrifugal forces, 
Taylor vortices, and secondary flow patterns, 
which significantly impact heat transfer. [13-17]. 
The power-law model, introduced by Ostwald and 
de Waele [4], is commonly employed to 
characterize the viscosity of purely viscous non-
Newtonian fluids, particularly those that exhibit 
shear-thinning (n < 1) or shear-thickening (n > 1) 
properties. It accurately captures the shear-
thinning region but neglects Newtonian plateaus at 
extreme shear rates. The model is expressed as: 
𝜇 = 𝐾(𝛾̇)𝑛−1                                                                     (1) 
where μ is dynamic viscosity, K denotes the fluid 
consistency coefficient, 𝛾̇ refers to the shear rate, 
and n indicates the flow behavior index.  
Escudier et al. [18] experimentally investigated 
shear-thinning non-Newtonian fluid flow in a fully 
developed concentric annulus (radius ratio 0.5) 
across laminar, transitional, and turbulent regimes. 
They measured axial velocity, turbulence 
 intensity, and friction factors for (CMC) sodium 
carboxymethylcellulose, Xanthan gum, and a 
Laponite/ CMC blend, comparing them to a 
Newtonian glucose syrup-water mixture. While the 
Newtonian fluid followed conventional friction 
factor trends, CMC exhibited shear-thinning with 
drag reduction. Xanthan gum demonstrated 
anomalous fRe behavior due to elasticity, whereas 
the Laponite/CMC blend exhibited thixotropic 
deviations from expected trends. Escudier and 
Gouldson [19] examined Newtonian and shear-
thinning fluid flow within a concentric annular duct 
having a radius ratio of (0.506) with a rotating 
centerbody. Using LDA and pressure 
measurements, they analyzed velocity, turbulence, 
and friction factors. Rotation increased friction in 
laminar flow, while axial velocity fluctuations 
decreased in turbulence. The polymeric fluid 
showed drag reduction, with Taylor vortices 
forming at low Reynolds numbers. Escudier et al. 
[10] conducted a numerical study on fully 
developed laminar non-Newtonian flow in annuli, 
incorporating the effects of eccentricity and inner-
cylinder rotation using the finite volume technique. 
They examined friction factors, pressure drop, and 
velocity distribution for power-law, Herschel-
Bulkley, Cross, and Carreau models across a range 
of Reynolds numbers (10–1000), eccentricity 
ratios (0–0.98), and radius ratios (0.2–0.8). Results 
showed increased pressure drop with higher 

eccentricity, reduced friction factors for shear-
thinning fluids, and velocity concentration in 
narrow regions near the inner cylinder. The 
behavior of the fully developed laminar flow of 
shear-thinning fluids was examined in concentric 
and highly eccentric (80%) annuli both in the 
presence and absence of inner cylinder rotation by  
Escudier et al. [20] used numerical (FVM) and 
experimental (LDA) methods. For Reg = 228–332 
and Ta = 2026–6020, they analyzed solutions of 
0.1% CMC and 0.1% Xanthan gum. Without 
rotation, axial velocity was uniform with stable 
shear stress. Rotation shifted tangential velocity 
inward, slightly increasing shear stress. 
Eccentricity caused asymmetric velocity profiles 
and recirculation zones during rotation. Sefid and 
Izadpanah [21] performed a numerical analysis of 
both developing and fully developed laminar flow 
of power-law non-Newtonian fluids with forced 
convection in concentric annular cylinders. They 
analyzed the power-law index (0.2–1.8), Reynolds 
numbers (10–1000), and aspect ratios (0.2, 0.5, 
0.8), focusing on velocity, friction factor, developing 
length, and Nusselt number under different 
thermal conditions. he results demonstrated that 
shear-thinning fluids improved convective heat 
transfer performance and reduced pressure drop. 
Lower power-law indices resulted in decreased 
friction factors and increased Nusselt numbers, 
thereby improving thermal performance with 
minimal pressure loss. Manglik and Fang [22] 
numerically studied the forced convection of 
laminar flow power-law fluids within eccentric 
annular geometries. For aspect ratios (0.2 ≤ r* < 
0.8), eccentricities (0 ≤ ɛ ≤ 0.6), and flow indices 
(0.2 ≤ n ≤ 1.8), they analyzed velocity, temperature, 
Nusselt numbers, and friction factors. Shear-
thinning fluids had flatter velocity profiles, while 
shear-thickening fluids showed sharper ones. 
Eccentricity increased velocity gradients, reduced 
friction, and enhanced Nusselt numbers at higher 
values. Manglik and Prusa [23] studied viscous 
dissipation effects on convective heat transfer in 
thermally developing flows of power-law fluids in 
tubes with constant wall temperature using finite 
difference methods. Their results, accurate within 
0.3%, showed that decreasing the flow behavior 
index (n) increases the wall temperature gradient. 
Under heating, viscous dissipation causes an initial 
rise in the gradient, unlike non-dissipative fluids. 
The Nusselt number, influenced by bulk 
temperature development, becomes unbounded 
when it matches the wall temperature, limiting its 
effectiveness as a heat transfer measure. Salubi et 
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al. [24] conducted an analytical and numerical 
study on the laminar flow of Newtonian and non-
Newtonian fluids (power-law and Herschel–
Bulkley models) within concentric and eccentric 
annuli, with and without inner pipe rotation. By 
varying eccentricity (0–0.9), rotational speed  
(0–320 rpm), and flowrate (10–70 m³/h), they 
demonstrated that both eccentricity and pipe 
rotation can significantly reduce pressure drop, 
particularly for shear-thinning fluids under low 
flow conditions. Ershadnia et al. [25] developed a 
combined numerical and data-driven (ANN-based) 
framework to model non-Newtonian Carreau fluid 
flow in rotating annular domains. Their analysis 
demonstrated that increasing rotation rate and 
radius ratio enhances the shear rate and secondary 
flow intensity. The ANN model accurately predicted 
flow behavior and pressure gradients, showing 
high agreement with the physics-based Navier–
Stokes solver. Fusi et al. [26] theoretically 
examined the secondary flow of an elasto-visco-
plastic fluid in a slightly eccentric annulus. Using 
asymptotic analysis, they demonstrated that 
eccentricity generates first-order vortices, with 
flow behavior influenced by the Reynolds and 
Bingham numbers, viscoelasticity, and the 
rotational direction. Many experimental and 
numerical efforts have recently been reported that 
use the elastic turbulence of non-Newtonian flow 
with various polymeric viscoelastic fluids and flow 
geometries to enhance convective heat transfer 
performance; examples include an axisymmetric 
swirling (von Karman) flow [27-29] and flow 
within a square serpentine channel [30-32].  

Despite the significant industrial relevance of 
shear-thinning non-Newtonian fluids in annular 
geometries with inner cylinder rotation, most 
existing studies have concentrated primarily on 
flow behavior under fully-developed conditions, 
often neglecting the thermal development and heat 
transfer characteristics. To address this gap, the 
present study numerically investigates the 
combined effects of inner cylinder rotation, 
eccentricity, and rheological properties on both 
velocity fields and convective heat transfer under 
developing laminar flow conditions. The 
simulations are performed using the power-law 
model and conducted under realistic thermal 
boundary conditions, the constant temperature at 
the inner wall and adiabatic outer wall, covering a 
wide range of parameters: flow behavior index (0.2 
≤ n ≤ 0.8), generalized Reynolds number (100 ≤ Reg 
≤ 1000), eccentricity (ε = 0.2, 0.4, 0.6), and Taylor 

number (Ta ≤ 104). The study aims to provide 
comprehensive insights into the interplay between 
non-Newtonian rheology, rotational effects, and 
geometric asymmetry in annular configurations.  
This integrated approach, which captures both flow 
and thermal development under combined 
rotational and eccentric conditions, distinguishes 
the present work from existing studies and 
constitutes its main novelty. In summary, the 
identified research gaps motivated the present 
numerical investigation, as detailed in the next 
section. 

2 Numerical solution 
 
Numerical simulations in ANSYS Fluent 2021R1 
using the Finite Volume Method (FVM) to solve the 
governing equations of continuity, momentum, and 
energy for fluid flow and convective heat transfer 
within eccentric annular cylinders; the Power-law 
model was adopted in this study due to its well-
established capability to describe shear-thinning 
non-Newtonian fluids. This approach has been 
widely employed in previous numerical studies 
dealing with annular geometries. Moreover, the 
chosen configuration and boundary conditions 
reflect real-world engineering systems such as 
rotating heat exchangers and annular cooling 
channels, which justify the use of this numerical 
approach. The applied boundary conditions in this 
investigation consisted of that velocity at the inlet 
was specified as uniform velocity inlet (with bulk 
velocity Ub), which was based on the studied range 
of Reynolds numbers. In contrast, the pressure 
outlet boundary condition was set to the 
atmospheric pressure at the exit of outlet. The inlet 
temperature of the working fluid (Shear-thining) 
was imposed at 298 K. The inner cylinder wall was 
heated to a constant uniform temperature of 323 K, 
and the outer cylinder was set adiabatic with no-
slip velocity conditions. Pressure-velocity coupling 
was handled using the coupled algorithm, while 
convective terms were discretized with a second-
order upwind scheme. Diffusive terms in the 
momentum and energy equations were 
approximated using a second-order central 
difference scheme. The default relaxation factors 
provided by ANSYS Fluent were 0.3 for pressure, 
0.7 for momentum, and 1.0 for energy equations, as 
per the default settings in ANSYS Fluent 2021R1. 
Double-precision computations minimized 
numerical round-off errors and numerical 
convergence was ensured by terminating the 
iterative process once the scaled residuals of 
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velocity components and continuity reached (10-6).  
 

2.1 Details of the physical model 
 
The present study aims to develop laminar flow 
using a three-dimensional (3D) simulation domain. 
As an initial step in this computational study, the 
flow within smooth concentric and eccentric 
annular cylinders is analyzed. The annular domain 
consists of a fixed outer cylinder with a diameter DO 
of 10 cm, while the inner cylinder diameter Di 
varies in eccentricity (ε = 0.2, 0.4, 0.6), at radios 
ratio (r* = 0.5). The annular gap is filled with a 
shear-thinning non-Newtonian fluid. This study 
employs a three-dimensional (3D) numerical 
simulation to capture the full complexity of the flow 
and heat transfer behavior within the annular 
geometry. The 3D domain is essential to resolve the 
axial (z-direction), radial (r-direction), and 
azimuthal (φ-direction) variations of velocity and 
temperature, especially under conditions involving 
inner cylinder rotation and geometric eccentricity. 
The temperature distribution of the working fluid 
was solved using the energy equation in its 
complete 3D form, accounting for axial conduction 
and convective transport. Thermal boundary 
conditions were applied as follows: a constant 
temperature (isothermal) was imposed on the 
inner cylinder wall, while the outer cylinder was 
treated as adiabatic.  

 

Figure 1: Schematic diagram of the concentric and eccentric 
annular cylinders. 

 

This setup enables the accurate prediction of 
secondary flows, asymmetric velocity fields, and 
localized thermal gradients resulting from 
eccentric configurations and rotational effects. 
 

2.2 Assumptions governing equations 
 
In this study, the flow is assumed to be steady, 
laminar, and incompressible. A three-dimensional 
computational domain was adopted to capture the 
full spatial variations of velocity and temperature 
fields. The fluid follows a shear-thinning behavior 
described by the Power-law model. The inner 
cylinder rotates at a constant angular velocity while 
the outer cylinder remains stationary. Thermal 
boundary conditions include an isothermal inner 
wall (323 K) and an adiabatic outer wall (298 K). 
Gravitational effects are neglected, and all 
thermophysical properties are considered 
constant. The governing equations describing the 
three-dimensional annular flow field are 
formulated in cylindrical coordinates (r, φ, z), 
where r denotes the radial direction, φ denotes the 
tangential direction, and z represents the axial 
direction along the annular length, and comprise 
the conservation of mass (the continuity equation), 
the momentum equations (including radial, 
tangential, and axial components), and the energy 
equation. These equations are solved subject to the 
following constraints and assumptions: Therefore, 
a cylindrical coordinate system (r, φ, z) of 
governing equations can be summarized as[33]: 
 
Continuity equation   
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Axial momentum equation 
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Energy equation  
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2.3 Related non-dimensional parameters 

In this study, shear-thinning non-Newtonian fluids 

are represented using the power-law viscosity 

model, where viscosity is a time-independent 

function of the shear rate. The governing equations 

for concentric and eccentric annular flow are 

solved computationally, providing a framework for 

analyzing fluid behavior. Velocity components (ur, 

uφ, uz) correspond to radial, tangential, and axial 

directions, while r, φ, and z define the cylindrical 

coordinates. 
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The Fanning friction factor (f) is derived from the 
balance of forces across the flow cross-section and 
its relation to wall shear stress (τw) and the 
hydraulic diameter (Dh). It is expressed as: 

𝑓 =
𝜏w

1

2
𝜌𝑈𝑏

2 = −
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𝜌𝑈𝑏
2
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                                                         (8) 

Metzner and Reed [33] Introduced the concept of a 
generalized Reynolds (Reg) number, which serves 
as a criterion for laminar flow in non-Newtonian 
fluids within arbitrary cross-sectional geometries. 
For shear-thinning fluids, its expression is given as: 

𝑅𝑒𝑔 =
𝜌𝑈𝑏

2−𝑛𝐷ℎ
𝑛

8𝑛−1𝐾(𝐶2+
𝐶1
𝑛

)
𝑛                                                        (9) 

where Ub is the bulk velocity, The geometric 
parameters 𝐶1 and 𝐶2, which are functions of the 
radius ratio r*(𝑅𝑖/𝑅𝑂), were determined by Kozicki 
et al. [34] based on the Rabinowitsch–Mooney 
equation, and are expressed as follows: 
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and, 𝐶1 + 𝐶2 = (
(1−𝑟∗)2

1+𝑟∗2−
1−𝑟∗2

𝑙𝑛 (
1
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The axial and rotational Reynolds numbers are 
defined as follows: 

𝑅𝑒 =
𝜌𝑈𝑏𝐷ℎ

𝜇𝐹
                                                                      (12) 
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𝜇𝐹
                                                         (13) 

where μF is the characteristic viscosity. The Taylor 
number, reflecting rotational effects, is expressed 
as: 
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In the case of axial flow through an annular 
geometry with a rotating inner cylinder, the 
Reynolds and Taylor numbers are modified as: 

 𝑅𝑒 = (1 + 𝜉2)(1−𝑛)/2𝑅𝑒0                                           (15) 

𝑇𝑎 = (
1

𝜉2 + 1)
1−𝑛

𝑇𝑎0                                      (16) 

where 𝜉 represents the ratio of the angular and 
axial velocities 

 𝜉 =
𝜔𝑅i

𝑈𝑏
                                                                              (17) 

The average Nusselt number for the constant wall 
temperature at the inner wall 𝑁𝑢̅̅ ̅̅  is calculated at z-
direction as: 

𝑁𝑢̅̅ ̅̅ =
ℎ𝐷

𝑘
=

𝐷ℎ

(𝑇𝑤−𝑇𝑏)
(−

∂𝑇

∂𝑟
)                                            (18) 

Where:   The hydraulic diameter  Dh is defined as 
 Dh = 2(𝑅𝑂 − 𝑅𝑖), and this definition remains valid 
even in the eccentric case, as the overall gap width 
does not change with eccentricity. 
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Eccentricity is defined as follow: 

𝜀 =  𝑒/𝛿                                                                          (19) 

Where e is the displacement from inner-cylinder 
center to outer-cylinder center. 𝛿 is the mean 
annular gap width, (𝑅O − 𝑅i). 

2.4 Mesh generation and grid sensitivity 
 

Mesh generation is a crucial step in numerical 
simulations, ensuring an accurate representation of 
flow and heat transfer. The geometry of the annular 
cylinder was generated and meshed using Design 
Modeler within ANSYS Workbench. The Multizone 
meshing method was applied, generating a 
structured hexahedral mesh with inflation layers 
on the inner cylinder to improve accuracy near the 
boundaries while maintaining a well-organized 
grid. The mesh quality was evaluated based on 
orthogonality and skewness, with maximum and 
average values recorded as (0.99983, 0.90908) and 
(0.44554, 0.22035), respectively, ensuring 
numerical stability. To assess the impact of mesh 
refinement, a Grid Independence Test (GIT) was 
performed by varying the number of cells from 
300,000 to 2.0 million. The results showed that 
beyond a certain refinement level, increasing the 
number of cells did not yield noticeable 
improvements in accuracy but led to higher 
computational costs. Therefore, a mesh with 
1.0752 million cells was selected as the optimal 
choice, striking a balance between computational 
efficiency and numerical accuracy. The final mesh 
consisted of approximately 1.075 million cells, 
offering a balance between computational cost and 
numerical accuracy.  
Figure 2 illustrates the generated mesh, showing 
the structured hexahedral elements and boundary 
inflation layers.  A grid sensitivity analysis was 
conducted to assess mesh independence by varying 
the total number of cells from 0.3 million to  
2 million. Figure 3 shows the variation of Nu and 
free concerning cell count, confirming convergence 
beyond the selected mesh size. The following 
section presents the simulation results derived 
using the described computational setup. 

 

 
 
 
Figure 2: Nonuniform computational grid for an eccentric 
annular duct with a radius ratio of r* = 0.5 for the chosen 
mesh with around one million computational cells. 

 
Figure 3. Mesh sensitivity test for an eccentric annular 
cylinder with varying numbers of cells at r* = 0.5, Reg = 1000, 
𝜀 = 0.6. 

 

3 Results and Discussion 
 
Based on the numerical setup described above, the 
following section presents the computed flow and 
thermal characteristics. 
 

3.1 Validation 
 
To validate the numerical solution’s accuracy that 
developed in this study, the obtained average 
Nusselt number (Nu) and Fanning friction factor- 
generalized Reynolds number (fReg) for the fully-
developed power-law non-Newtonian fluid are 
compared with equivalent results from the prior 
literature. As presented in Table 1, the maximum 
numerical deviation from fReg is less than 2.2%. 
Additionally, the calculated Nusselt number under 
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boundary conditions of constant inner wall 
temperature and adiabatic outer wall, for various 
flow behavior indexes and an aspect ratio of 0.5, 
against the results from Refs. [22] and [27]. The 
agreement is reasonable, with deviations not 
exceeding 1.4%.    
 

The present work investigates how the rotation of 
the inner cylinder and eccentricity affect both the 
fluid dynamics and convective heat transfer 
behavior of Shear-thinning non-Newtonian fluids 
under laminar, developing, and forced convection 
conditions. The analysis is conducted for 
generalized Reynolds numbers (10 ≤ Reg ≤ 1000(, 
flow behavior indexes (0.2 ≤ n ≤ 0.8), and a Taylor 
number (Ta = 104), considering an annular radius 
ratio (r* = 0.5) with varying eccentricities (0 ≤ ε ≤ 
0.6). For shear-thinning fluids (n < 1), the reduction 
in viscosity as the shear rate increases. Therefore, 
the effects of Reg, n, ε, Ta, and thermal boundary 
condition on the friction factor, velocity and 
temperature distributions, and Nusselt number are 
presented here. 

3.2 Power-law flow behaviour 

 
The axial velocity contours presented in Figure 4 
illustrate the influence of the flow behavior index 
(n), inner cylinder rotation, and eccentricity (𝜀) on 
the velocity distribution within the annular duct at  
Reg = 1000. The results indicate that for shear-
thinning fluids (n < 1), the velocity field exhibits 
significant variation due to the reduction in 
viscosity at high shear regions. At lower value  

(n = 0.2), the velocity distribution remains 
relatively uniform, whereas for higher value  
(n = 0.8), the flow becomes more localized, with 
high-velocity zones concentrated near the wider 
annular gap. The inner cylinder's rotation at 
 Ta = 104 induces centrifugal forces, which enhance 
velocity gradients, particularly in the presence of 
eccentricity. At concentric conditions (𝜀 = 0), the 
flow remains symmetric; however, increasing 
eccentricity (𝜀 > 0) disrupts this symmetry, 
shifting the high-velocity regions toward the wider 
narrower section. This effect becomes more 
pronounced for shear-thinning fluids, where the 
reduced viscosity enhances velocity variations, 
leading to intensified shear regions and 
asymmetric flow structures. Figure 5 illustrates the 
variation of the friction factor–generalized 
Reynolds number product (free) with eccentricity 
(ε) for various values of the generalized Reynolds 
number (Reg) and flow behavior index (n) at a radius 
ratio (r* = 0.5) and Taylor number (Ta = 10⁴). 
Overall, fReg exhibits a decreasing trend with 
increasing ε, driven by changes in velocity and 
shear stress distributions due to the loss of 
geometric symmetry. As eccentricity increases, the 
annular gap becomes asymmetric, concentrating 
flow on the broader region and modifying wall 
shear.  For shear-thinning fluids (n = 0.2), fReg 
remains relatively stable due to viscosity reduction 
in high-shear zones. In contrast, for fluids with n = 
0.8, fReg decreases more noticeably with ε, 
especially at higher Reg, due to their weaker shear-
thinning response. Notably, at ε = 0.6, the 
redistribution of flow toward the wider region 
results in reduced wall shear and hydrodynamic 
resistance for Newtonian-like fluids.  In addition, at 
low Reynolds numbers (Reg = 100) combined with 
inner cylinder rotation, centrifugal forces develop 
that act radially outward. These forces hinder axial 
flow and create resistance in the narrow gap, 
leading to a slight increase in fReg. However, as 
eccentricity increases particularly at ε = 0.6, this 
frictional resistance decreases again due to 
enhanced flow redistribution and reduced 
confinement, especially in shear-thinning fluids.  

(A) 

   

Table 1.  Results of Nu and fReg for a fully-
developed region with aspect ratio of 0.5 and 

different flow behavior indexes. 
n Source fReg Nu 

0.2 

Escudier et al. [10]  3.8874 ------ 

Manglik and Fang [22] 3.8369 5.7684 

Sefid and Izadpanah[21] ------ 5.6911 

Present study 3.976 5.7678 

0.5 

Escudier et al. [10] 7.9994 ------ 

Manglik and Fang [22] 7.9395 5.7621 

Sefid and Izadpanah[21] ------ ------ 

Present study 8.0481 5.7598 

0.8 

Escudier et al. [10] 15.438 ------ 

Manglik and Fang [22] 15.450 5.745 

Sefid and Izadpanah[21] ------ 5.6615 

Present study 15.587 5.7419 

% Max deviation 2.2 1.4 
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(B) 

   

(C) 

   

(D) 

   
 n = 0.2 n = 0.5 n = 0.8 

           Axial velocity Uz (m/s) 

 
Figure 4: Cross-section contours of axial velocity fields for 
different flow behavior indexes (n) and eccentricities of (A) ε = 
0, (B) ε = 0.2, (C) ε = 0.4, and (D) ε = 0.6, at r*= 0.5, Reg = 1000, 
and Ta = 104. 
 

 
Figure 5: Influence of generalized Reynolds number and flow 
behavior indexes (n) on fReg versus ε for r* = 0.5, Ta = 104, for 
(□) Reg = 100, (△) Reg = 600, (◇) Reg = 1000. 
 

3.3 Convective Heat Transfer Behaviour 

 
The temperature contours in Figure 6 illustrate the 
influence of the flow behavior index (n) and 
eccentricity (ε) on heat transfer characteristics in 
annular geometry under inner cylinder rotation at 
a Taylor number of Ta  =  104, generalized Reynolds 
number of Reg  =  1000, providing insights into how 
fluid rheology and geometric asymmetry modify 
the thermal field.  For the concentric case  

(ε  =  0), the temperature distribution remains 
symmetric, with well-defined thermal boundary 
layers around the inner cylinder. The influence of 
flow behavior index (n) is observed. For  
n  =  0.2, which represents a shear-thinning fluid, the 
viscosity decreases in high-shear regions, leading 
to an enhanced convective heat transfer 
mechanism. This effect results in a wider 
distribution of thermal gradients and a less 
localized heat transfer region, indicating improved 
bulk convective transport. Conversely, at n= 0.8, the 
viscosity remains higher, which restricts fluid 
motion and confines heat transfer to a thinner 
layer. This generates a more concentrated 
temperature gradient near the inner cylinder, 
suggesting a stronger localized heat flux.  As 
eccentricity increases from  0.2, to  0.6, a significant 
asymmetry in temperature distribution emerges. 
At higher eccentricities, thermal gradients intensify 
in the narrower gap of the annular passage, where 
secondary flow structures promote localized heat 
transfer. At ε  =  0.6, this effect is particularly 
evident, leading to stronger thermal stratification 
and a more pronounced contrast between high- 
and low-temperature regions. This localized 
increase in temperature gradient indicates an 
enhancement in heat transfer efficiency near the 
inner wall, despite the outer regions experiencing 
reduced convective transport.  Additionally, the 
inner cylinder rotation at Ta  =  104 plays a crucial 
role in modifying the thermal distribution. The 
rotational motion induces secondary flow patterns 
that interact with the effects of shear-thinning, 
redistributing the temperature field and enhancing 
heat transfer in regions of high shear. The 
combination of rotation and eccentricity further 
amplifies this effect, demonstrating that geometric 
asymmetry combined with rotational influence can 
significantly impact heat transfer efficiency. These 
findings suggest that while shear-thinning fluids  
(n = 0.2) exhibit enhanced convective transport 
over a broader region, fluids with higher power-
law indices (n = 0.8) show intensified localized heat 
flux, particularly in eccentric configurations.  
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(B) 

   

(C) 

   

(D) 

   
 n = 0.2 n = 0.5 n = 0.8 

Temperature (oC) 

 

 
Figure 6:  Cross-section contours of temperature distribution 
fields for different flow behavior indexes (n) and eccentricities 
(ε), For (A) ε = 0, (B) ε = 0.2, (C) ε = 0.4, (D) ε = 0.6, at r*= 0.5,  
Reg = 1000, Ta = 104. 
 

 
Figure 7: Effect of generalized Reynolds number and shear-
thinning rheology (n) on Nu versus ε for r* = 0.5, Ta = 104,  
(□) Reg = 100, (△) Reg = 600, (◇) Reg = 1000.  
 

Figure 7 illustrates the effect of geometric 
eccentricity (ε) on the average Nusselt number 
(Nu) at different flow behavior indices (n) and 
generalized Reynolds numbers (Reg) under fixed 
inner cylinder rotation (Ta = 104) and radius ratio  
(r* = 0.5).  The results reveal a clear trend of 
increasing Nu with eccentricity, particularly at 
higher Reg. At Reg = 100, the enhancement in Nu is 
minimal for all n, indicating that conductive 
mechanisms dominate at low flow intensities and 
the influence of geometric asymmetry is limited. 

However, as Reg increases to 600 and 1000, a 
stronger dependence of Nu on ε is observed, 
especially for fluids with higher n (weaker shear-
thinning behavior). In these cases, eccentricity 
promotes the formation of localized vortices and 
secondary flows near the narrow gap region, 
enhancing convective mixing and thinning the 
thermal boundary layer thereby improving heat 
transfer Interestingly, while shear-thinning fluids 
(n = 0.2) show higher Nu in concentric conditions 
due to their lower viscosity in high-shear zones, 
increasing eccentricity gradually reduces this 
advantage. At ε = 0.6, the heat transfer performance 
becomes more uniform across all n. As shown in 
Figure 7, the highest Nu is recorded for n = 0.8,  
Reg = 1000.  This inversion highlights the crucial 
role of geometric asymmetry in regulating 
convective transport when combined with strong 
rotational and inertial effects. The combined 
impact of eccentricity and inner cylinder rotation 
can overcome rheological limitations and 
significantly enhance thermal performance in 
annular configurations. 
 

4 Conclusion 
 
This study presented a three-dimensional 
numerical investigation of developing laminar flow 
and heat transfer of shear-thinning non-Newtonian 
fluids in annular geometries, considering both 
inner cylinder rotation and geometric eccentricity. 
1. In concentric configurations, fluids with lower 
power-law index (n = 0.2) exhibited reduced 
viscosity, leading to lower flow resistance and 
enhanced convective heat transfer. 
2. Increasing eccentricity (ε  =  0.2 – 0.6) introduced 
significant flow asymmetry, with peak velocity 
shifting toward the wider gap. At the same time, 
heat transfer intensified in the narrow region due 
to elevated shear rates and thermal gradients. 
3. Interestingly, at high eccentricity (ε  =  0.6), fluids 
with a higher power-law index (n = 0.8) achieved 
the highest average Nusselt number contrary to 
typical shear-thinning behavior due to the 
emergence of strong secondary flows that 
enhanced thermal mixing. 
4. The (fReg) did not consistently decrease with 
increasing Reynolds number. In some cases, 
particularly at high eccentricity and Ta = 104, 
vortex-induced circulations contributed to a local 
increase in hydrodynamic resistance. 
5. Among all examined cases, the configuration 
with ε = 0.6, n = 0.8, and Reg = 1000 demonstrated 
the best thermal performance due to intensified 
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secondary flow structures; the lowest (fReg) was 
observed at n = 0.2 for high Reynolds numbers, 
with only a slight decrease in fReg as eccentricity 
increased. 
Finally, while the present study provides valuable 
insights into the hydrothermal behavior of shear-
thinning fluids in annular configurations, future 
research may expand the scope by exploring 
alternative rheological models, varying thermal 
boundary conditions, and a broader range of 
geometric parameters. These efforts would further 
align the study with diverse engineering 
applications mentioned in the introduction. 
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Nomenclature 

𝐷h  hydraulic diameter, 2𝛿 (m) uz axial component of velocity ( m/s ) 

𝑒 
displacement of inner-cylinder axis from 

outer-cylinder axis (m) 
uφ tangential component of velocity ( m/s ) 

𝑓 Fanning friction factor ur radial component of velocity ( m/s ) 

ℎ heat transfer coefficient, W/m m2 K 𝛿 Mean annular gap width, 𝑅O − 𝑅i(m) 

𝑘 thermal conductivity, W/m K 𝜀 eccentricity, 𝑒/𝛿 

K fluid consistency ( Pa s𝑛 ) r* radius ratio, 𝑅i/𝑅O 

𝑛 flow behavior index 𝜇 dynamic viscosity (Pa s) 

𝑁𝑢 
Nusselt number based on hydraulic diameter 

and heat transfer coefficient 
𝜇F  characteristic viscosity for flow (Pa s) 

      Ri   outer radius of inner cylinder (m) 𝜉 velocity ratio, 𝜔𝑅i/𝑈𝑏 

Ro inner radius of outer cylinder (m) 𝜔 angular velocity of inner cylinder (rad/s) 

fReg 
friction factor–generalized Reynolds 

number product 
𝜌 fluid density ( kg/m3 ) 

𝑟∗ radius ratio of annulus cross-section, (𝑟i/𝑟o) 𝛾̇ shear rate ( s−1 ) 

𝑅𝑒g Reynolds number based on hydraulic 𝜏𝑤  wall shear stress (N/m2) 

𝑅𝑒 axial Reynolds number 𝜏𝑤 wall shear stress (N/m2) 

𝑅𝑒𝑅  rotational Reynolds number 𝛾̇F characteristic shear rate for flow ( s−1 ) 

𝑅𝑒0 

correspond with generalised Reynolds 

number when 𝜔 = 0, 𝑅𝑒0 =
𝜌𝑈𝑏

2−𝑛𝐷ℎ
𝑛

8𝑛−1𝐾(𝐶2+
𝐶1
𝑛

)
𝑛 

  

Ta Taylor number   

𝑇𝑎0 

correspond with generalised Taylor number 

when Uz = 0,  𝑇𝑎0 =
1

8
(𝜌

𝜔2−𝑛

𝐾
)

2

𝐷ℎ
2𝑛+1𝑅1

3−2𝑛 

  

𝑈𝑏 Bulk axial velocity (m/s)   
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